

Configuration Manual

MSc Research Project Cyber Security

Tushar Sanjaykumar Vaidya X20254083

School of Computing National College of Ireland

Supervisor:

Prof. Imran Khan

National College of Ireland

MSc Project Submission Sheet

School of Computing

	Tushar Sanjaykumar Vaidya	
Student Name:		
Student ID:	X20254083	
Programme	MSc Cybersecurity	2022 -2023
Programme.	MSc Research Project	
Module:	-	
	Imran Khan	
Lecturer:	0.4 (0.0.0.0.0	
Submission Due Date:	01/02/2023	
	Identifying inappropriate access points using mad	chine learning
Project litle:	algorithms RandomForest and KNN	
	942	
Word Count:	Page Count:	10

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action. Tuchon Conjectionen Voidue

<u>.</u>	Tushar Sanjaykumar Valdya				
Signature:					
	01/02/2023				
Date:					

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office	Use	Only
011100		••••

Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Tushar Sanjaykumar Vaidya Student ID: X20254083 MSc in Cybersecurity National College of Ireland

1 Introduction

This article describes how to develop and run the Identifying improper access points using machine learning code. The application was written throughout the programming language named Python. It explains each of the settings and software tools required to duplicate the development's experimental configuration.

2 System Specification

The system that detects the unauthorized access points in a wireless was created on:

- Processor: i7 processor
- Operating System:
- RAM: 8GB RAM
- Hard Drive: 512 GB

3 Software Tools

The following software tools were utilized to carry out this study:

- Anaconda
- Python
- Tkinter is the Python library is used for creating designing the desktop application
- Sublime text editor

3.1 Setup of Software

This section describes the steps necessary to install the tools.

- 1. On the machine, the Anaconda program has been downloaded and installed. It is available for download from the official website listed here. https://www.anaconda.com/products/individual.
- 2. Once you downloaded then follow the basic steps to installed it.

3. Check the selections just at the stage depicted in the figure below.

ANACONDA.	Advanced Installation Options Customize how Anaconda integrates with Windows	
Advanced Options		
Add Anaconda3	to my PATH environment variable	
menu and select "Ar Anaconda get founc cause problems requ	aconda (64-bit)". This "add to PATH" option makes I before previously installed software, but may jiring you to uninstall and reinstall Anaconda.	
This will allow other PyCharm, Wing IDE, detect Anaconda as	programs, such as Python Tools for Visual Studio PyDev, and MSI binary packages, to automatically the primary Python 3.9 on the system.	
conda, Inc. ————		

4. The sublime utility downloaded from this link: <u>https://www.sublimetext.com/3</u>

3.2 Package details

The environment "int_detect" is created in anaconda. It is made up of custom-installed machine learning python libraries that aid in the execution of the entire program. The following libraries are among those found in the environment:

- Matplotlib: Python Visualization using Matplotlib
- Pickling: Used in the serialization and deserialization of Python object structures
- Pandas: The dataset is used to read the data set.
- Numpy: For array operations.
- Sklearn: It is used for categorization, regression, clustering, and dimensionality reduction are all examples of statistical modeling.

4 Setting up the environment

- Extract IAP_Fullcode.rar compress file
- Extract the int_detect.rar folder and paste it into C:\ProgramData\Anaconda3\envs
- In the project folder, run anaconda prompt.
- Enter the command "activate int_detect" at the prompt.

5 Dataset Source

The dataset for this research topic was obtained from github, an open platform that allows users to view and download multiple dataset collections. The sample was obtained and saved as Project_Dataset in the IAP_Fullcode folder.

6 Code Execution

The Anaconda prompt has been launched. Please execute the following instructions:

• python train.py to model is trained.

(base) (base) C:\ProgramData\Anaconda3\envs\IAP_Fullcode>activate int_detect								
(int_det sys:1: D y dtype	ect) C:\Program typeWarning: Co option on impon	nData\Anaconda3\envs\ plumns (37,38,39,40,4 rt or set low_memory=	\IAP_Fullcode>pytho A1,42,43,44,45,47,4 False.	on tra 8,49,	in.py 50,51,52,53,54,	55,56,57,58,59	,60,61,62,74,8	8) have mixed type	es.
normal	775634	1							
arp	64609)							
cafe_lat	te 44731	L							
fragment	ation 776	9							
Name: cl	ass, dtype: int	t64							
fran	e.interface_id	<pre>frame.offset_shift</pre>	frame.time_epoch		wlan.fcs_good	wlan.wep.key	data.len		
17	0	0.0	1.393661e+09		1	0	1460		
18	0	0.0	1.393661e+09		1	0	60		
20	0	0.0	1.393661e+09		1	0	89		
28	0	0.0	1.393661e+09		1	0	60		
31	0	0.0	1.393661e+09		1	0	60		

• Feature Selection show below:

{'radio	tap.datarate': 1070694.	.2380913538, 'radiotap.channel.type	e.cck': 1050	214.0	89421953, 'radiota	p.channel	.type.ofd	lm': 1050214.0894219
514, 'w	lan.fc.subtype': 637067	7.2175161528, 'wlan.duration': 572	344.47165668	5, 'w	lan.fc.pwrmgt': 31	6672.8062	566692, '	frame.len': 248179.
2915167	436, 'frame.cap_len': 2	248179.2915167436, 'data.len': 247	533.88430662	36, '	radiotap.dbm_antsi	gnal': 41	278.87314	320999, 'frame.time
_epoch'	: 37126.91017964072, 'f	frame.time_relative': 30981.431820	218644, 'rad	iotap	.mactime': 30981.3	764732986	02, 'wlan	.seq': 29906.856234
779174,	'wlan.fc.retry': 8834.	.058395208238, 'wlan.fc.frag': 4769	9.8721942859	11, '	wlan.wep.key': 367	4.1222187	93775, 'w	lan.frag': 3208.508
6967181	89, 'frame.time_delta':	: 1692.0250604903454, 'frame.time_	delta_displa	yed':	1692.025060490345	4, 'wlan.	fc.moreda	ta': 428.5667598360
593, 'r	adiotap.channel.freq':	46.79936789163216, 'wlan.fc.type'	: 19.5940991	36534	76}			
23								
rad	liotap.datarate radiotar	<pre>p.channel.type.cck radiotap.channe</pre>	1.type.ofdm		radiotap.mactime	wlan.seq	class	
17	54.0	0	1		2101817362	96	0	
18	54.0	0	1		2101818213	1217	0	
20	54.0	0	1		2101829175	97	0	
28	54.0	0	1		2101967429	1220	0	
31	54.0	0	1		2101981052	99	0	

• When you require to quickly evaluate quality of the model, models that are expensive to train, or very huge datasets, this strategy is ideal. The data will be divided into two tests: training and testing. 20% of the data will be applied to test or evaluate the performance of the machine classification methods, while the remaining 80% will be utilized to train the machine-learning classifiers.

Training set (708595, 14) (708595,) Testing set (177149, 14) 177149,)

• The effectiveness of the machine-learning model would then be evaluated using a confusion matrix. Here, 0 means Normal and 1 means Melicious found. Below confusion matrix for rendom forest. 154887 of these packets were accurately classed as Normal. 22261 of these packets were appropriately identified as Melicious. One packet was wrongly categorised among them.

• After that our accuracy is 100% base on above confusion matrix but here limitation is that output base on dataset and systems so if we change the dataset then maybe output will be different.

Accuracy	score	for	RF	is	:100.0%
Precision	score	for	RF	is	:100.0%

• Confusion matrix for KNN.

• Accuracy for KNN is 99.7 %.

Accuracy	score	for	KNN	is	:99.7%
Precision	score	for	KNN	is	:97.5%

• Confusion matrix for Genetic Algorithm.

• Accuracy for Genetic Algorithm is 99.6 %.

Accuracy score for Genetic Algorithm is :99.6% Precision score for Genetic Algorithm is :96.7%

• Confusion matrix for SVM.

• Accuracy for SVM is 99.6 %.

• Command: "python predict.py" to utilizing the training model, forecast if the packet is malicious or not. For the data presented below and in the GUI, there are the attributes of the 14 features.

```
(int_detect) C:\ProgramData\Anaconda3\envs\IAP_Fullcode>python predict.py
radiotap.datarate : 1
radiotap.channel.type.cck : 1
radiotap.channel.type.ofdm : 0
wlan.fc.subtype : 0
wlan.duration : 314
wlan.fc.pwrmgt : 0
frame.len : 65
frame.cap_len : 65
data.len : 3
radiotap.dbm_antsignal : -20
frame.time epoch : 1393662474.7679
frame.time relative : 1172.122148
radiotap.mactime : 3273710113
wlan.seq : 2608
[1]
[Danger] : Intrusion Detected
```

• Command: "python gui.py" to demonstrate the Graphical User Interface (GUI), which accepts user input and presents the outcome.

📀 Intrusion Detection	- 0	\times
	Welcome	

Figure 1: Login page with "admin" username and "admin" passwords.

🔊 Intrusic	n Detection					
			Input			
	radiotap.datarate :	1	Output X	frame.cap_len :	12	
	radiotap.channel.type.cck :	11	[INFO] : Normal	data.len :	12	
	radiotap.channel.type.ofdm :	2	ОК	radiotap.dbm_antsignal :	1	
	wlan.fc.subtype :	5		frame.time_epoch :	111	
	wlan.duration :	5		frame.time_relative :	122	
	wlan.fc.pwrmgt :	3		radiotap.mactime :	1	
	frame.len :	1		wlan.seq :	56	
		Predict		Refresh		

Figure 2: Normal output

Intrusion Detection						×
		Input	<u>t</u>			
radiotap.datarate :	1	Output	× frame.cap_len :	65		
radiotap.channel.type.cck :	1	[Danger] : Intrusion Detected	data.len :	3		
radiotap.channel.type.ofdm :	0	ОК	radiotap.dbm_antsign	nal : -20		
wlan.fc.subtype :	0		frame.time_epoch :	1393662474.7679		
wlan.duration :	314	_	frame.time_relative :	1172.122148		
wlan.fc.pwrmgt :	0		radiotap.mactime :	3273710113		
frame.len :	65		wlan.seq :	2608		
	_					
		Predict	Refresh	Þ		

Figure 3: Intrusion Detection

7 References

AnacondaanacondadistributionAnaconda.Availableat:https://www.anaconda.com/products/distribution(Accessed: 14 December 2022).Download - sublime text (no date).Available at: https://www.sublimetext.com/3 (Accessed: 14 December 2022).14 December 2022).