

Provisioning Secure Cloud Environment

Using Policy-as-code and Infrastructure-as-

code

MSc Industrial Internship

MSc in Cybersecurity

Ayushi Tripathi

Student ID: x21120935

School of Computing

National College of Ireland

Supervisor: Prof. Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Ayushi Tripathi

Student ID:

 x21120935

Programme:

 MSc in Cybersecurity

Year:

2022/23

Module:

 MSc Industrial Internship

Supervisor:

Prof. Vikas Sahni

Submission Due

Date:

06/01/2023

Project Title:

Provisioning Secure Cloud Environment Using Policy-as-code and

Infrastructure-as-code

Word Count:

6738 Page Count: 22

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Ayushi Tripathi

Date:

04/01/2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Provisioning Secure Cloud Environment

using Policy-as-code and Infrastructure-as-

code
Ayushi Tripathi

Student ID: x21120935

Abstract

Cloud capabilities are being embraced and managed throughout the organization, not

only by IT personnel. This decentralized system necessitates the development of

automated governance methods, since it can be difficult for teams to manually apply and

validate compliance, security, or operating regulations. The Center for Internet Security

(CIS) Controls reduce the likelihood of data breaches, data leaks, intellectual property

theft, and other cyber threats. A solution to automate the deployment of a policy

compliant infrastructure by codifying numerous policies across the business, help

organizations use Infrastructure as Code and Policy as Code best practices. Terraform

which is used as an Infrastructure as Code (IaC) tool is utilised to enable infrastructure

provisioning automation which minimizes human error, reduces future risk and saves

time and resources for the team.

This work presents an approach for an automated policy compliant secure

infrastructure deployed on Amazon Web Service platform using Terraform. The

infrastructure is compliant with CIS Amazon Web Services Foundations v1.4.0 and

AWS Foundational Security Best Practices v1.0.0. The critical severity policies from

CIS Ubuntu Linux 20.04 LTS Benchmarks have been implemented for Elastic Compute

(EC2) web server.

Keywords- Center for Internet Security, Terraform, AWS, Security Best Practices

1 Introduction

Modern enterprises are turning to cloud services due to the capability of on-demand supply of

computing, storage, and bandwidth resources. Many major technological, commercial, and

media organizations, like Netflix or Salesforce.com, exclusively rely on the cloud, which is a

cutting-edge technology (Patrick Mosca1, 2014). Despite the benefits, cloud computing

presents significant security and privacy issues as an emerging technology, impeding its

widespread adoption. Security has been identified as the most significant obstacle to user

adoption of cloud computing. In the cloud environment, customers that outsource their data

and apps may only rely on the Cloud Service Provider (CSP) to safeguard their security, the

distinct properties of cloud computing provide several new security issues, the immaturity of

security technology and the lack of cloud security governance are barriers to meeting user’s

security expectations. User's confidence in embracing this technology has been eroded by

frequent security breakdowns in the cloud (Liu, 2015).

2

Cloud suppliers give security controls on areas such as data protection, identity

management, application and system/network security and availability to their clients in order

to establish security and privacy. Users, on the other hand, must meet a transparency of

security controls in accordance with industry requirements, while vendors must enable them

to do so. Standards such as NIST, ISO, PCI DSS, and others give a measure of information

security from the standpoint of security (Chemerkin, 2013). Cloud computing governance,

risk, and control are crucial in order manage security risks and safeguard systems and data.

The execution of policies and processes enforces governance. These rules and procedures

should be based on best practices and connected with business and IT goals. Controls should

be created and implemented to guarantee that essential actions are made to address risks and

accomplish business and IT objectives (Mariana Carroll, 2011).

 It is difficult for teams to manually apply and validate compliance, security, or

operation policies in every instance being deployed, which is why it's necessary to discover

automated approaches to maintain governance in this decentralized environment. For policy

enforcement, compliance and governance teams traditionally authored policies in a document

and referred to this whenever approving or denying requests from business. Security teams

are commonly consulted after a project has been coded, creating unfair tension and

unexpected delays when the code has vulnerabilities. These manual processes can be error

prone and difficult to scale. Policy as Code (PaC) allows enterprises to leverage

Infrastructure as Code (IaC) best practices through codifying different policies across the

enterprise. Policies can be managed and documented consistently at scale, with automatic

policy deployments. PaC enables enterprises to leverage IaC best practices by codifying

various policies across the organization.

A technology called Terraform uses the IaC to provision infrastructure. Cloud

infrastructure can be created, modified, and version controlled using Terraform. The

Terraform configuration files that users create define the state of the cloud infrastructure

(Wang, 2019). The infrastructure provisioning procedure can be used to safeguard the

environment from security threats. When requiring the usage of IaC for any modifications in

the environment, code may be evaluated to guarantee that any security flaws are identified

and repaired before infrastructure is supplied. To guarantee that the environment is consistent

with the rules, security or operational guardrails can be formalized and enforced using CI/CD

pipelines, gates, or other automated ways.

For this research work, AWS infrastructure has been spun up using Terraform. The

IaC technique has been used to accelerate the infrastructure related tasks and the PaC

technique has been used to deliver the infrastructure, which is secured, standardised and

consistent with AWS Foundational Security Best Practices v1.0.0 and CIS Amazon Web

Services Foundations v1.4.0. The web server has been integrated with security controls to

make the operating system compliant with CIS Ubuntu Linux 20.04 LTS Benchmark1.

1 https://downloads.cisecurity.org/#/

3

1.1 Research Question:

How to use Policy-as-code to reduce the occurrence of security issues in cloud infrastructure

provisioned by using an infrastructure-as-code automation tool like Terraform?

1.2 Research Objective:

Automating deployment of a policy compliant AWS Infrastructure.

1.3 Research Outline:

A detailed comparison of this study with previous review articles is given in Section 2.

Section 3 describes the technique and methodology used to achieve the objectives of this

research. Section 4 provides the design criteria and the architecture. Sections 5 and 6 present

the implementation along with tools and evaluation of the research respectively. The research

article concludes with Section 7 that covers conclusions, future work, and limitations.

2 Related Work

Companies and organizations benefit from cloud computing since it removes the need

for them to plan ahead for provisioning and enables them to start with small resources and

progressively raise them as service demand grows. Cloud computing adoption also presents

several challenges, but these difficulties also open opportunities for study into a number of

cloud computing-related topics. Security of the information stored, and resources used in a

cloud environment is one of the major issues (Shivam Sharma, 2018). In this paper, several

studies pertaining to security concerns in cloud have been presented. The main objective of

this study is to shed light on the security issues surrounding cloud computing occurring due

to missing standards and policies in place, as well as the various approaches and solutions

that have been suggested.

2.1 Security Challenges and Solutions in Cloud Computing

(Patrick Mosca1, 2014) presented several critical security vulnerabilities that were

compelling to cloud services in 2014. The writers investigated several aspects of cloud

security, such as information security, cloud risks, cloud management, and account hijacking.

In 2010, attackers were successful in building an XSS hijacking attack on AWS. Amazon

Relational Database Service (RDS) was also targeted, such that even if the attackers lost their

unique access, they still had a backdoor into the Amazon framework. The attackers obtained

the login information of anybody who clicked the login button on the Amazon landing page.

The attackers used their servers to infect fresh devices with the Zeus trojan virus and

effectively control machines infected with it. This contextual research revealed an important

conclusion: even a single weakness in a security architecture might endanger a whole system.

The authors ended by suggesting two remedies to such AWS attacks. To begin with, AWS

should not enable services and clients to exchange account login information. Second, a two-

factor authentication approach should be presented. The author however missed to discuss

4

aspects like the security of cloud-stored data, data integrity with several backups for services,

etc.

Security threats, weaknesses, and attacks were covered in research by (Boisrond,

2021) which arise due to misconfigurations of S3 bucket. The author has further discussed

how the (access control list) ACLs of misconfigured buckets which allow public-write,

public-delete, or public change of the ACL, will eventually lead to security and/or privacy

concerns. For example, a bucket that is purposefully made public will raise privacy concerns.

That implies sensitive and secret data might be leaked. When buckets are publicly accessible,

data leaking is an issue. Second, when a writable bucket is exposed to the Internet, malicious

actors have an excellent chance to drop malicious items into the bucket. To comprehend the

significance of exposing S3 buckets to the Internet, the author examined the following

literature: Premier Diagnostics, a medical provider in Utah, exposed 50,000 patient

information in 2021 due to incorrectly setup S3 Buckets that lacked password protection or

authentication. In 2021, numerous US communities suffered a significant data breach as a

result of multiple misconfigured Amazon S3 buckets by PeopleGIS, a software corporation in

Massachusetts, which publicly exposed critical information, including individuals' personal

data. The author has concluded by stating how these misconfigurations could lead to other

security issues, such as cryptocurrency mining, ransomware encryption of the objects in those

buckets, and phishing due to Domain Name Exploitation. As a result, protecting S3 buckets

should be one of the top responsibilities for every firm that has data in AWS. While the

author’s work provides a great deal of insight on the security of S3 buckets, it fails to address

others features in AWS like Security groups and IAM roles that must be secured and

monitored in order to get a secured infrastructure.

The authors (Nalini Subramanian, 2018) discussed the security challenges related to

Virtual Machine layer. The security concerns were divided into categories such as VM

Cloning, VM isolation, VM Escape, VM Rollback. The author has proposed the usage of

Advanced Cloud Protection System (ACPS) which improves security and upholds integrity

while suffering little performance hit. The author has also mentioned the requirement for

deployment of a secure system the regardless of the VMs from various enterprises put on the

same shared network as a future work.

The study conducted by (Abdullah Alqahtani, 2018) throw a light on the security

vulnerabilities present in Amazon Web Service. The authors chose Amazon Elastic Compute

Service (EC2) instances and used them to demonstrate methods for gaining access to and

exploiting an instance. They also demonstrated how to circumvent the payment mechanism

of paid images by changing the AMI file. The author proposed the solution that sharing of

account login details between services and customers should not be permitted by AWS.

Additionally, users of AWS must study the security guidelines for the service before using it.

(Johnson, 2020) have discussed how in order to build a solid Identity Access

Management (IAM) system, businesses are using a variety of standards, control frameworks,

and regulations. The aim of the study conducted was to improve the security and privacy

feature that shield firms from data breaches, financial losses, and reputational damage. The

author has cited cyber-attacks that are caused due to lack of identity and access controls and

absence of well-designed IAM Framework that can effectively stop or quickly report an

attack. The framework designed by the author is appropriate for crucial domains in the

5

government and healthcare industries where identity assurance and verification of workers or

users of the domain are put to the test. In accordance with the organization's needs for user

authentication, the framework has to be tweaked with the necessary alterations for identity

proofing.

2.2 Compliance in Cloud Computing

(Brandic, 2010) created a cloud computing (C3) architecture that addressed security,

compliance, privacy, and trust concerns. According to the authors, C3 could be utilized to

protect data privacy by mandating data storage in specified zones and implementing data

fragmentation. They claimed that the framework could act as a middleman to connect

numerous service providers. To examine rules such as HIPAA, PCI, and SOX, the authors

presented a domain specific language (DSL), a metamodel, and an activity diagram. The

authors however faced implementation issue and their model lacked certification process.

PCI compliance difficulties and solutions in Cloud were described by (Dereje Yimam,

2016) Costs, overlaps, legal issues, security, maintenance, complexity, code quality, and new

technologies were all discussed by the writers. The solutions they provided were based on

best practices. Authentication, authorisation, encryption, and monitoring are among the

options. The authors did not explore how to deal with regulatory complications and overlaps.

(Wayne Jansen, 2011) listed a variety of privacy and security vulnerabilities that

might affect cloud computing. The article discusses governance, compliance, trust,

architecture, identity, access management, software isolation, data security, availability, and

incident reporting challenges and suggestions. According to the study, one of the most

difficult challenges to deal with cloud computing is compliance, understanding and

implementing rules. They investigated the role of data location, loss of control, and

transparency in public cloud compliance. The authors did not provide approaches for

mapping complicated policies into best practices, patterns, or reference architectures. They

also stated that the majority of cloud service providers utilize third-party certification to

certify compliance. The study lacked to address proprietary solutions that lack vendor neutral

models or architectures that all stakeholders may use as a checklist.

Authors (Cisic, 2008) contrasted GLBA, HIPAA, PCI, and SOX standards in terms of

producing audit reports. According to their results, several reports and services, such as the

user login report, user logoff report, user failure report, and logs access report, have common

features. They came to the conclusion that SOX compliance with regard to reporting also

includes the mandatory reports for GLBA, HIPAA, and PCI-DSS. Other aspects of

compliance, such as privacy, security, user control, and notification, were not addressed by

the writers. If the comparison had been supported by more exact artifacts, it would have been

more precise.

(Dipankar Dasgupta, 2012) claimed that tools for security and compliance might aid

firms in certifying compliance They looked at compliance software like WatchGuard and

Trust Wave to assess and produce reports on compliance coverage. Each vendor had a

different level of detail and scope for their reports. Based on "who controls what," the authors

classified service models and created a compliance mapping matrix. However, the matrix

lacked clarity in precisely defining the role of users in cloud. They addressed the HIPAA and

6

PCI standards; however additional standards might not be covered by their findings. To

increase customer confidence and trust, the authors recommended conducting additional

research.

One of the most critical aspects of delivering open cloud services is ensuring

compliance with security and privacy requirements. Cloud providers often give their clients

security and privacy control in order to preserve user privacy and security. However, in order

to achieve transparency, these cloud providers must always enable their users to adhere to the

established security requirements.

2.3 Cloud Resource Orchestration

Academics and practitioners have reported an increasing number of concerns and challenges

as cloud computing gains traction in the IT industry. The switch from monolithic to

microservices design, as well as the shift from a mostly virtual machines (VMs) to a cloud

native architecture, have made it far more critical to automate infrastructure to respond

quickly. The traditional deployment methods and techniques are not simple and appropriate

where a huge infrastructure has to be built, managed and monitored from the vendor console.

Provisioning, application deployment, load balancing and monitoring are common problems

associated with deployment from vendor console (Thiyagarajan, 2021).

A number of orchestration tools, including Heat, CloudFormation, Puppet, Microsoft

Azure Automation, Ansible, Terraform, and others, have been created during the past ten

years, according to a systematic study by (Tomarchio, 2020) and survey conducted by (Denis

Weerasiri, 2018) on orchestration methodologies. The majority of them are IaC tools with

automation of daily chores as their main goal. In order to continue in the orchestration

industry, IaC products constantly add new functionality.

 The OASIS TOSCA (Binz, 2013) standard is noteworthy in the area of orchestration

and is predicted to be more widely accepted by the cloud community in the context of next-

generation IT solutions. The key benefit of TOSCA is that it offers higher-level, portable, and

reusable descriptions of cloud applications in addition to the necessary management

functionalities. This is essential in facilitating cloud application end-to-end orchestration

activities while preserving a high level of compatibility between various clouds. However,

TOSCA has only addressed the modelling of applications and their orchestration features,

without putting out any implementation languages or useful tools to automate their building

on top of cloud infrastructures. Instead, it leaves all implementation concerns to interested

providers and users. Additionally, there is a glaring absence of software solutions that allow

TOSCA-driven holistic orchestration automation. Offering completely original solutions is

tiresome and useless, especially in light of the enormous range of potent DevOps techniques

and technologies that are constantly evolving.

 Infrastructure as a Service clouds, according to the authors (Deelman, 2011), offer the

ability to provision virtual machines (VMs) on demand, but they do not provide information

on how to manage those resources once they have been provisioned. As a result, in order to

utilize such clouds successfully, users must have access to technologies that make it simple to

deploy applications to the cloud. The authors of this study built a system to construct,

configure, and manage cloud-based deployments. However, the system was identified with a

7

drawback as it required the users to respond to failures manually which is un-realistic

approach since many users often leave virtual clusters running unattended for long periods.

The author (Brikman, 2019) conducted a thorough analysis of automation solutions

and provided rating information by popularity. The most popular ones are Terraform,

CloudFormation, Puppet, Chef. Puppet and Chef are only used in outdated projects with lock-

in technologies since they have lost their appeal. Their primary drawback is the client-server

design, which makes future implementations more complicated and unstable. They

established a basis for cloud computing automation, but Ansible and Terraform have taken

their place. The preinstalled environment on the adjustable side does not require these IaC

tools, giving engineers more options for adaptable ongoing infrastructure upkeep. The author

did not cover all cloud service providers but demonstrated how to use Terraform tool in real-

world setting.

2.4 Research Niche

Table 1 Research Niche

Author Strength Weakness

(Patrick

Mosca1, 2014)

Investigated several aspects of cloud

security, such as information security,

cloud risks, cloud management, and

account hijacking. Revealed an important

conclusion: even a single weakness in a

security architecture might endanger a

whole system.

Missed to discuss aspects

like the security of cloud-

stored data, data integrity

with several backups for

services.

(Boisrond,

2021)

Great deal of insight on the security of S3

buckets.

Limited details on Security

Groups and IAM roles.

(Nalini

Subramanian,

2018)

Proposed the usage of Advanced Cloud

Protection System (ACPS) for the security

of Virtual Machines.

Implementation difficulties.

(Abdullah

Alqahtani,

2018)

Proposed the solution that sharing of

account login details between services and

customers should not be permitted by

AWS.

Roles and Responsibilities of

users and Cloud Service

Provider is not clearly

defined.

(Johnson, 2020) The framework designed is appropriate for

crucial domains in the government and

healthcare industries.

The framework needs

tweaking and alterations to

be used by ither industries for

identity proofing

(Brandic, 2010) Created a cloud computing (C3)

architecture that addressed security,

compliance, privacy, and trust concerns.

Implementation issue and the

model lacked certification

process.

(Dereje Yimam,

2016)

PCI compliance difficulties and solutions

in Cloud were discussed.

Failed to explore regulatory

complications and overlaps.

8

(Wayne Jansen,

2011)

The issues and recommendations in the

article relate to governance, compliance,

trust, identity, access management,

software isolation, data security,

availability, and incident reporting.

The authors didn't offer

methods for converting

complex policies into

recommended procedures,

design patterns, or reference

architectures. The study did

not address vendor-neutral

models or designs for

proprietary solutions that all

stakeholders may utilize as a

check list.

(Cisic, 2008) Concluded that SOX compliance with

regard to reporting also includes the

mandatory reports for GLBA, HIPAA, and

PCI-DSS.

The authors did not address

further compliance issues

such user control, privacy,

security, or notification.

(Dipankar

Dasgupta, 2012)

Assessed compliance tools like TrustWave

and WatchGuard to produce compliance

report and created a compliance mapping

matrix. Addressed the HIPAA and PCI

standards

The matrix lacked clarity in

precisely defining the role of

users in cloud.

Additional standards were

not covered by their findings.

Recommended additional

research.

(Binz, 2013) Provides administration functionalities

together with higher level, portable, and

reusable descriptions of cloud

applications.

Tiring to present entirely

unique solutions, especially

in light of the vast array of

effective DevOps approaches

and technologies that are

continually developing.

(Deelman,

2011)

A method for creating, configuring, and

managing cloud-based installations was

created by the study's authors

The system was found to

have a flaw in that it required

users to manually respond to

failures, which is an

unrealistic approach given

how frequently users left

virtual clusters running

unattended for extended

periods of time.

(Brikman,

2019)

Performed a comprehensive examination

of automation solutions and gave

popularity rating statistics and listed out

the advantages and disadvantages.

The author does not cover all

cloud service providers.

3 Research Methodology

The research techniques utilized to accomplish the aforementioned research objectives are

discussed in this section. The suggested solution is intended to address the practical

difficulties associated with manual implementation approaches, including resource

provisioning, visibility, control, governance and compliance. (Heena Kharche, 2020).

9

Figure 1 Proposed Research Methodology

• Requirement Analysis/Planning: The planning phases entail cooperation, discussion,

review, and a strategy for security analysis. The CIS Amazon Web Services

Foundations v1.4.0, AWS Foundational Security Best Practices v1.0.0, CIS Ubuntu

Linux 20.04 LTS Benchmark and system requirements have been studied and

reviewed in this research to analyse the feasibility of implementing the controls with

respect to time and available resources. The framework and guidelines currently in

use for cloud orchestration and provisioning have been examined. Information from

cloud service providers and the service needed for deployment as a part of the

research are analysed.

• Design: The AWS lab has been setup to carry out the deployment and infrastructure

provisioning. The aws_secret_access_key and aws_access_key_ id is used to

authenticate the creation of the Terraform infrastructure in AWS. The connectivity of

the lab setup has been checked with evaluation tools such as Lacework and

Tenable.io.

• Develop: The code required for building the CIS compliant AWS Infrastructure has

been written using HashiCorp Configuration Language in Visual Studio. Using

Terraform commands, the code has been reviewed for any template or syntax errors.

• Deploy: The code is then deployed using Terraform where any programmatic code is

created to construct infrastructure and make API calls to CSP for resource generation.

• Evaluation: The compliance of infrastructure and Operating System is assessed using

Lacework and Tenable respectively. The controls to remediate the security

misconfigurations reported using these tools are integrated in the code again and the

phases are repeated.

• Monitor: Log Metric Filters and Alarms have been setup in the infrastructure to report

for any for unauthorized API calls, IAM policy changes, AWS Organizations

changes, VPC changes and many such events.

Using this methodology and versioning with a descriptive model, Infrastructure as code

(IaC) and Policy as Code (PaC) is used for defining and deploying infrastructure, such as

networks, virtual machines, security groups, alarms, alerts, Identity and access management,

load balancers, and connection topologies and codifying the industry standards and policies

in the deployments. Terraform IaC code is built in Visual Studio and delivered to AWS

Cloud Platform through Terraform CLI. The infrastructure is then scanned for CIS

compliance using Lacework to provide a baseline for comparison. The modules of terraform

are coded with CIS Amazon Web Services Foundations v1.4.0 and AWS Foundational

Security Best Practices v1.0.0 and deployed to configure the AWS account with a baseline

10

that is secure. The infrastructure is then once again scanned using Lacework to provide the

security posture of the infrastructure. An additional module of terraform has been deployed

which makes that Operating System of the Apache Webserver hosted on the EC2 instance

compliant with CIS Ubuntu Linux 20.04 LTS Benchmark.

4 Design Specification

This area of research proposes the architectures that underlie the implementation of the

research work. Figures 2 and 3 show the high-level design of the implemented architectures.

Figure 2 shows the security features of AWS that have been utilised to create a policy

compliant infrastructure which is compliant with AWS Foundational Security Best Practices

v1.0.0 and CIS Amazon Web Services Foundations v1.4.0 The infrastructure built

comprises of Logging and Monitoring, Storage, Identity Access Management and

Networking features. In this case study an AWS VPC and one subnet has been set up. VPC's

default security group has been configured to block all traffic. The security groups have

been configured to provide no access to all the ports used for remote server management.

The security features relate to each other, to trigger alarms, simple notifications, and log

metric filters. An AWS lab setup has been used to carry out the implementation. Terraform

connects with AWS Cloud Build using API. The lab connectivity is checked with Lacework

to get the compliance report.

Figure 3 represents the architectural diagram where EC2 instance hosting an Apache

webserver with Ubuntu 20.04 is spun up using Terraform. The Apache webserver has been

coded to make it compliant using CIS Ubuntu Linux 20.04 LTS Benchmarks. In the AWS

Lab, terraform was used to establish a VPC, Security Group, Subnet, and Internet Gateway,

as well as host an Apache Web server. The instance has been assigned an elastic IP so that

the IP address is preserved when the instance is stopped and restarted in the VPC. The

server is scanned using Tenable.io. for compliance.

Figure 2 AWS Architectural Diagram

11

Figure 3 Architectural Diagram for Apache Webserver

5 Implementation

The implementation of an automated policy compliant infrastructure on a Cloud Service

Provider (AWS) using Terraform has been described in this section. An AWS basic

infrastructure has been spun up using Terraform and scanned using Lacework for CIS

compliance in order to setup a baseline for comparison. A terraform module to configure the

AWS account with a baseline that is relatively safe is then configured and deployed. The new

infrastructure is again scanned against CIS Amazon Web Services Foundations v1.4.0 and

AWS Foundational Security Best Practices v1.0.0 to provide the security posture of the

infrastructure. Terraform-based Hashicorp Configuration Language (HCL) is used to describe

Amazon Web Services (AWS) resources. Each AWS module must be understood

independently to have a basic comprehension of the written code. “vpc_baselines.tf” file

consists setup for VPC flow Logs and VPC baseline. The “bucket.tf” file consists of

configuration of S3 to be compliant with eth CIS benchmarks. Similar to this, all required

AWS resources have been organized with .tf extensions. To build all the defined resources,

the terraform commands are run after scripting all the necessary files for the whole AWS

architecture.

• The Terraform init command initializes the code and downloads the necessary

prerequisite packages depending on CSP which is AWS in our research project.

• The Terraform plan command is comparable to the dry-run method. The code is

checked for mistakes after it has been designed.

• The Terraform Apply command applies any programmatic code created to construct

infrastructure and make API calls to CSP for resource generation.

• Terraform destroy function provides a convenient way to eliminate all produced in the

event of any incorrect configuration, infrastructure. It greatly aids in managing the

operating costs for cloud resources (Howard, 2022)

5.1 Tools

The tools used for the research work are listed in Table 2.

https://github.com/nozaq/terraform-aws-secure-baseline/blob/main/vpc_baselines.tf

12

Table 2 Tools

5.2 CIS Benchmarks

The features in the AWS Infrastructure and corresponding policies (CIS Amazon Web

Services Foundations v1.4.0 and AWS Foundational Security Best Practices) which have

been implemented in the work have been listed below in Table 3.

Table 3 Features and Policies

Users of Amazon Web Services (AWS) can manage users and user permissions in AWS

using the web service known as AWS Identity and Access Management (IAM).

One can manage users, security credentials like access keys, and permissions that govern

which AWS services users can access from a single location with IAM (Pandit, 2021).

To setup IAM Password Policy which should have minimum password length, should require

numbers, symbols, uppercase and lowercase alphabets. The policy also states the number of

13

past passwords that the user is not permitted to use and the duration (days) of a user

password's validity. A support role that has been created to manage incidents with AWS

Support.

By helping the user proactively assess and modify their infrastructure, a well-architected

monitoring and alerting system enhances dependability and performance of the AWS

architecture (Nizam, 2021). For logging and monitoring purpose various resources are used to

provide visibility into the resources and events in the AWS account. The log metric and

alarms have been set for the following events:

• API calls which are unauthorized

• IAM changes

• CloudTrail configuration changes

• Console sign-in failures

• S3 bucket policy changes

• Security group changes

• Route table changes

• VPC changes

• NACL changes

 The "aws_sns_topic" is the SNS topic the CloudWatch alarms transmit events to.

A second module in Terraform has been separately created to make the Operating

System of the EC2 instance compliant with CIS Ubuntu Linux 20.04 LTS Benchmark. The

AMI image chosen for this activity is Ubuntu Linux 20.04 LTS. A VPC, Security Group,

Subnet and Internet Gateway has been created in the AWS Lab using Terraform and an

Apache Web server has been hosted. The EC2 instance has been given elastic IP. The

recommendations and technical controls which have been implemented are mentioned below.

Table 4 Controls Set Correctly

14

6 Evaluation

This section of the work presents the important findings of the research as well as the

experimental investigation and an illustration of a secured policy complaint IT infrastructure

orchestrated using a single tool.

6.1 Experiment 1/ Testing with Terraform based non-compliant

Infrastructure:

As indicated in the implementation phase, the infrastructure with missing policies was first

deployed on AWS using Terraform. Lacework tool was used to generate the compliance

report for this infrastructure. The tool also evaluates the resources that were pre-existing in

the AWS lab environment with each scan.

As per the report, 2014 resources were assessed out of which 490 resources were reported to

be non-compliant. There were 31 policies and recommendations that were identified as

missing out of which 6 were Critical, 17 were High, 7 and 1 were Medium and Low severity

policies respectively.

Figure 4 Summary

• The S3 bucket misconfiguration was reported due to missing encryption of data stored

in the bucket, secure transportation of data and bucket versioning. The number of

assessed and affected resources is shown below.

Figure 5 S3 Bucket

• The Identity and Access Management feature was misconfigured majorly due to

missing password policies where the requirement of symbol in the password and

password length was not set correctly and access key rotation.

15

Figure 6 Identity and Access Management

• The logging feature was misconfigured due to missing encryption of CloudTrail logs

and flow logging for VPC.

Figure 7 Logging and Monitoring

• The Networking feature was vulnerable due to various missing policies associated

with Security Groups.

Figure 8 Networking

6.2 Experiment 2/ Testing with Terraform based compliant

Infrastructure:

A new infrastructure was deployed in AWS that consisted of terraform modules to make the

AWS account compliant with CIS Amazon Web Services Foundations v1.4.0 and AWS

Foundational Security Best Practices v1.0.0. The infrastructure was yet again evaluated using

Lacework and the findings were as follows:

16

2030 resources were assessed out of which, 444 resources reported to be non-compliant.

There were 29 policies and recommendations that were identified as missing out of which 6

were Critical, 17 were High, 5 and 1 were Medium and Low severity policies respectively.

Figure 9 Summary

• In the below figure, it can be observed that for S3 bucket, the number of assessed

resources increased to 22 while the number of non-compliant resources remained the

same for encryption and secure data transport policies However, the versioning of S3

bucket remained non-compliant in the new infrastructure as well.

Figure 10 S3 Bucket

• For Identity and Access Managmenet feature, only two policies are flagged but the

number of affected reources remain the same.

Figure 11 Identity and Access Management

• The number of affected resources for CloudTrail logs, rotation of CMKs and VPC

logging are observed to be 2, 3 and 13 respectively.

17

Figure 12 Logging and Monitoring

• For Networking feature, the number of affected resources remain the same with the

increased number of assessed resources or decline as in case of Network ACLs.

Figure 13 Networking

6.3 Experiment 3/ Testing with Operating System

An Apache webserver was spun up using Terraform on the AWS platform. The server was

scanned using Tenable.io to identify the missing policies and configuration as per the CIS

Ubuntu Linux 20.04 LTS Benchmarks. The bar graph below shows the count of policies per

severity that were detected. 25 Critical severities, 125 High, 16 Medium and 156

Informational policies were missing.

The terraform module was then modified with certain configurations and controls mentioned

in the implementation section in order to remediate the critical severity policies and deployed.

18

The webserver was again scanned with Tenable.io to generate the new report and the findings

illustrated above show that 25 critical severity policies were corrected. The count of High,

Medium, and Informational severity policies remained the same.

6.4 Discussion

A comparison of the two infrastructures demonstrated in Experiment 1 and 2 can be drawn.

The infrastructure initially spun up shows 2014 resources were assessed out of which 490

resources were reported to be non-compliant. The infrastructure spun up in Experiment 2

illustrates that 2030 resources were assessed out of which, 444 resources reported to be non-

compliant. The number of assessed resources in the report generated in Experiment 2 had

increased and due to implementation of certain policies and configurations in all regions, the

number of non-compliant resources were observed to be lessened which clearly indicates that

the new infrastructure is relatively more policy compliant and secure. The S3 bucket has been

configured correctly for data encryption at rest and secure data transport, however the

versioning of the bucket is still missing and hence there is increase in the affected number of

resources. For Identity and Access Management feature, the missing policies have been

configured correctly. The access key rotation has been set correctly which can be inferred

from the number of assessed assets being increased but the number of affected assets remain

the same as in Experiment 1. The lack of encryption for CloudTrail logs and flow logging for

VPC was improperly enabled earlier which was remediated in the new infrastructure. It is

worth noting that enablement of VPC flow logging in all regions has brought down the

number of affected resources from 27 to 13 despite the increase in the number of assessed

resources. As demonstrated above, the number of affected resources due to missing Security

Groups policy have also sharply declined in Experiment 2.

The number of critical severity policies in the Apache webserver were initially 25,

demonstrated in Experiment 3 which were remediated post modifying the Terraform module

with configuration changes. The critical severity missing policies can prove to be a great

threat in increasing data breaches and loss and thus have been remediated on priority. This

work may be developed further to address any severity policies and any configuration that is

lacking from the operating system to bring it into compliance with CIS standards.

7 Conclusion and Future Work

The challenges to manually apply and verify compliance, security, or operational regulations

in each instance that is deployed can lead to security issues like greater chance of credentials

from a hacked or abandoned account being used, increased vulnerability of accounts to brute

force login attempts and much more. This research work presents automated methods for

upholding governance. The CLI-based IAC and PAC technique solves the problem of

handling centralized deployment and administration. The implemented plan shows a

centralized architecture that has Logging & Monitoring, Identity and Access Management

and Networking and Computing features secured which makes the infrastructure compliant

with CIS Amazon Web Services Foundations v1.4.0, AWS Foundational Security Best

Practices. The Operating System of the web server is made compliant with CIS Ubuntu Linux

19

20.04 LTS Benchmarks. Twenty-five critical severity policies have been remediated in this

work.

While terraform proved to be a great automation tool, it does come with the limitation

of not allowing rolling back. All the resources constructed via Terraform need to be deleted

and re-run-in order to fix any blip. The Lacework tool utilised for scanning the infrastructure

only presents the number of non-compliant resources and not the names, which was

challenging while evaluating the work.

 As a part of future work, hardware Multi-Factor-Authentication can be enabled for

root account and all IAM users which will provide an extra layer of security. Versioning of

S3 bucket can be enabled by writing additional code. The possibilities of making a policy

compliant infrastructure using Terraform can be investigated on other public Cloud Service

Providers like Google Cloud Platform and Azure and in a multi-cloud environment. This

work can be further explored to resolve all severity policies and missing configuration in the

Operating System to make it compliant with CIS benchmarks.

8 References

Abdullah Alqahtani, H. G., 2018. Cloud Computing and Security Issues—A Review of

Amazon Web Services. International Journal of Applied Engineering Research ISSN 0973-

4562l, 13(22), pp. 16077-16084.

Binz, T. B. U. K. O. L. F., 2013. TOSCA: Portable Automated Deployment and Management

of Cloud Applications. In: A. S. Q. D. F. Bouguettaya, ed. Advanced Web Series. New York:

Springer, p. 527–549.

Boisrond, P. D., 2021. A Position Paper on Amazon Web Services (AWS) Simple Storage

Service (S3) Buckets. s.l.:A.T. Still University of Health Sciences.

Brandic, S. D. T. A. D. S. F. L. a. R. K., 2010. Compliant Cloud Computing (C3):

Architecture and Language Support for User-Driven Compliance Management in Clouds.

Miami, 2010 IEEE 3rd International Conference on Cloud Computing, pp. 244-251.

Brikman, Y., 2019. Terraform Up and Running. Second ed. United States of America:

O’Reilly Media, Inc.

Chemerkin, Y., 2013. Limitations of Security Standards against Public Clouds. Toronto, EEE

Toronto Section i-Society 2013 Proceedings Contents.

Cisic, D. &. H. Z. &. B. M. &. M. M. &. V. D., 2008. MIPRO 2008 Proceedings. 5 ed.

s.l.:Croatian Society for Information and Communication.

Deelman, G. J. a. E., 2011. Automating Application Deployment in Infrastcruture Cloud.

California, Third IEEE International Conference on Coud Computing Technology and

Science, pp. 658-665.

Denis Weerasiri, M. C. B. B. B. Q. Z. S. a. R. R., 2018. A Taxonomy and Survey of Cloud

Resource Orchestration Techniques. ACM Computing Surveys, 50(2), pp. 1-41.

20

Dereje Yimam, E. B. F., 2016. A survey of compliance issues in cloud. Journal of Internet

Services and Applications, 7(5), pp. 1-12.

Dipankar Dasgupta, D. N., 2012. Security and Compliance Testing Strategies for Cloud

Computing Dr, memphis: s.n.

Heena Kharche, T. S. T. G., 2020. Infrastructure as a code - on Demand Infrastructure.

Special Issue of First International Conference on Advancements in Research and

Development, 02(08), pp. 194-197.

Howard, M., 2022. Terraform — Automating Infrastructure As A, Portland: s.n.

Johnson, F. M. P. D., 2020. ROBUST IDENTITY AND ACCESS MANAGEMENT FOR

CLOUD SYSTEMS, Alberta: Concordia University of Edmonton.

Liu, Y. &. S. Y. &. R. J. &. R. S. &. V. A., 2015. A Survey of Security and Privacy

Challenges in Cloud Computing: Solutions and Future Directions. Journal of Computing

Science and Engineering, 9(3), pp. 119-133.

Mariana Carroll, A. V. d. M. A. V. d. M., 2011. Secure cloud computing: Benefits, risks and

controls. s.l., Information Security South Africa (ISSA), 2011, pp. 1 - 9.

Nalini Subramanian, A. J., 2018. Recent security challenges in cloud computing. Computers

& Electrical Engineering, Volume 71, pp. 28-42.

Nizam, K., 2021. Designing and implementing logging and monitoring with Amazon Cloud

Watch. [Online]

Available at: https://docs.aws.amazon.com/pdfs/prescriptive-guidance/latest/implementing-

logging-monitoring-cloudwatch/implementing-logging-monitoring-cloudwatch.pdf

[Accessed 7 December 2022].

Pandit, P., 2021. Case Study on AWS Identity and User Management, Mumbai: Research

Gate.

Patrick Mosca1, Y. Z. Z. X. Y. W., 2014. Cloud Security: Services, Risks, and a Case.

International Journal of Communications, Network and System Sciences, 7(12), pp. 529-535.

Shivam Sharma, D. N., 2018. CLOUD COMPUTING SECURITY CHALLENGES AND

SOLUTIONS. International Research Journal of Computer Science (IRJCS), 5(02), pp. 65-

69.

Thiyagarajan, S., 2021. Automate Provisioning and Orchestration of Cloud Infrastcture using

AWZ, Dublin: National College of Ireland.

Tomarchio, O. &. C. D. &. D. M. G., 2020. Cloud resource orchestration in the multi-cloud

landscape: a systematic review of existing frameworks. Journal of Cloud Computing, 9(1), p.

49.

Wang, T., 2019. A Service for Provisioning Compute, Uppsala: UPPSALA University.

Wayne Jansen, T. G., 2011. Guidelines on Security and and Privacy in Public Cloud

Computing, Gaithersburg: NIST Special Publication 800-144.

