

Protecting Users Identity Against Browser

Fingerprinting

MSc Research Project

MSc in Cybersecurity

Prem Shankar Shingote

Student ID: X20257040

School of Computing

National College of Ireland

Supervisor: Dr. Vanessa Ayala-Rivera

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

 Prem Shankar Shingote

Student ID:

 x20257040

Programme:

 MSc in Cybersecurity

Year:

2022

Module:

 MSc Research Project

Supervisor:

 Dr. Vanessa Ayala-Rivera

Submission Due

Date:

 15th Dec 2022

Project Title:

 Protecting Users Identity Against Browser Fingerprinting

Word Count:

 6881 Page Count 20

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

 Prem Shankar Shingote.…………………………………………………………

Date:

 15th Dec 2022…………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Protecting Users Identity Against Browser

Fingerprinting

Prem Shankar Shingote

x20257040

Abstract

Nowadays, customer data is the gold mine for advertisers, marketing companies, and

hackers. They use every possible method to track users' online activity, and currently

they are using a new user-tracking mechanism called "Browser Fingerprinting."

This method is different from cookie-based tracking; The browser fingerprinting

mechanism collects common attributes of users' devices like OS version, screen

resolution, font, and many more without their knowledge and combines them to

generate one unique identifier token. This token helps attackers and advertisers spot

that user over the internet with 90–99% accuracy. Consequently, the "privacy" of

online users is seriously threatened; also, attackers can easily craft the attack based

on the users' system configuration. After understanding the seriousness of the issue,

modern browsers like Firefox, Brave, and TOR started blocking JavaScript. As a

result, they are preventing users from browser fingerprinting, but due to the

unavailability of JavaScript, many websites are not functioning properly. That’s why

it’s challenging for users to protect their privacy. To resolve this privacy issue, we

developed a browser extension called "Browser Fingerprint Defender," which

anonymizes the users' browser by performing an API normalization against passive

fingerprinting and object-based JavaScript fingerprinting. It masks the actual system

values with generic random values, before sending them to the requested website.

After randomizing the parameters, fingerprinting token values also change, and it

becomes challenging for advertisers to track users online. To examine the

effectiveness of our extension, we tested it on online experimental sites. And as per

the test results, it provides appropriate anonymity to users and solves the problem of

users' online privacy by making their identity less unique.

1 Introduction

Latest technologies are always being developed to enhance browsing experience of a user

over World Wide Web [1]. Current methods and technologies, such as JavaScript, CSS, and

HTML5, allow users to modify their web pages more easily and help improve the browsing

experience. But on the flip side of the coin, they have various dark sides too, which could

expose users to a wide range of risks, and also compromise their privacy [2]. A few years

back, online tracking companies tracked users' activity using persistence cookies (zombie

cookies), which were then used against the user for targeted marketing and user profiling [3]

[4]. When everyone became aware of cookie-based tracking, almost every modern browser-

built protection against it, and users also started blocking third party cookies. Subsequently,

advertisers have insufficient user data, and their advertising business gets negatively

impacted [5]. So, to overcome this issue, advertisers came up with a new passive user

tracking method in which people who try to protect their identity by disabling cookies, using

2

an incognito window, changing browsers, or even changing their IP address can still be easily

identified using the browser fingerprinting technique [6].

A large amount of high ranked websites performs browser fingerprinting and fetches some

most common system details like System fonts, System Time Zone, whether cookies are

enabled, Operating system, OS language, Platform, Keyboard layout, Tor browser or not?

Secure browser or not?, Browser permissions, User agent, Sensors (such as gyroscope,

proximity, and accelerator), Browser local databases, Navigator properties, HTTP header

attributes, Web browser extensions used, Audio context analysis, CPU class, HTML5 canvas

fingerprinting (looking at canvas size), Touch support and much more [7] [8]. After fetching

all these details, advertisers combine those small details to create one unique token that helps

identify the user on the internet without their previous data or pre-identity, which is called a

"fingerprint. Now, whenever that user accesses the same website or any website over the

internet by clearing the cookies or from a different IP address, online trackers can still simply

recognize a user by their unique fingerprint token [9].

Every system of the user has a different configuration of software and hardware, which

makes their Fingerprint unique. According to research conducted by Panopticlick, it was

discovered that from the set of 133801.5 browsers, only 1 browser has a duplicate fingerprint,

and as per technological development, this uniqueness will increase, making it very easy to

spot a specific user from millions [10]. As reported by Krishna.V. Nair and Elizabeth Rose

Lalson in their 2018 research, they have proven that the fingerprint of every internet user is

96% unique [5].

Currently, online advertising companies are working together with several websites from

different domains to collect user fingerprinting data and create profiles of users based on their

system details, interests, and activities. After collecting all this data from websites,

advertisers create one unique fingerprinting token as well as one digital profile in their

database. Nearly every popular website shares their own database of users' profiles and links

this database to other advertisers for different motives, such as targeted advertising [11] [12].

According to analyses conducted in late 2021, on Alexa 's top-100k websites for browser

fingerprinting attempts, and as a result of this research, nearly 10.18% of websites performed

browser fingerprinting [13]

After understanding the seriousness of fingerprinting, numerous browsers like Firefox and

TOR started providing inbuilt protection against them by blocking WebRTC and Canvas

APIs which are responsible for fingerprinting. But blocking the JavaScript API can lead to

website crashes, and many websites are not working or opening as intended. These crashes

are not user friendly, and they have an effect on the performance of the browser; that is why

many browsers have not implemented fingerprinting protection [14] [13].

So, in the end, if a user becomes aware of being tracked by websites, he cannot do much to

protect himself due to the unavailability of a full proof solution. At this point, our research

question comes into play: "How users can protect their privacy and identity over the internet

where online advertisers and marketers are tracking users' online activity using browser

fingerprinting techniques even though the user is using a VPN and deleting cookies?"

To solve this problem, we have proposed an extension for the Google Chrome browser

named "Browser Fingerprint Defender." We select Chrome since it is the most widely used

browser in the world [15]. In this extension, we have designed several methodologies based

3

on currently existing measures for preventing browser fingerprinting. Browser Fingerprint

Defender intercepts the request for JavaScript, which has the request for system parameters,

and replaces the modified copy of the JavaScript file having dummy system parameters with

the requested one.

Every time, Browser Fingerprint Defender provides dynamic fingerprints and does not

modify any other parts of JavaScript or HTML, reducing its detectability significantly. This

method removing user-uniqueness and pretend to be someone else. We observe that after

enabling this extension, a user's fingerprint is totally different from the original one, and it

won’t affect the performance of the website. This extension safeguards the user’s privacy and

contributes towards making the internet safer place.

This approach has some weaknesses as well. The Browser Fingerprint Defender detects

fingerprinting scripts based on our pre-defined criteria. which must focus on specific types of

fingerprints to prevent over-blocking, have some limitations.

i) First, they could skip fingerprinting scripts that do not fit their current detection

criteria.

ii) Second, to identify new or updated fingerprinting scripts, the detection criteria must

be continuously maintained.

iii) Third, if every time users change the values of a parameter, this pattern becomes

identical enough for the website to recognize that a user is changing the parameter

values.

2 Related Work

A browser fingerprint is more than just a collection of information specific to a certain

device. It represents the actual computer component and its exact details. Attackers can find

possible security loopholes by analysing and comparing the user system components with the

vulnerable component database, such as Common Vulnerabilities and Exposures (CVE) [16].

The primary purpose of browser fingerprinting is to validate the identity of a user without any

of this interaction. At the start of computer networking, a user can be traced by the IP address

of their machine. but now in browser fingerprinting, it includes the IP address as well as

several aspects of the user's system [17]. As we can see in this research paper about how to

protect from browser fingerprinting with the help of other methods designed to avoid

fingerprint tracking.

A. Using Multiple Browsers:

The browsing technology sets up the communication between the browser and the web server

very efficiently but fails to restrict the user's sensitive data. In an attempt at browser

fingerprinting, the webpages ask the browser for various system details, including hardware

configuration and software versions of the system. Being a default functionality of the

browser, it forwards all requested system information under the name of compatibility

improvement of website.

One of the most basic and easy ways to protect ourselves from fingerprinting is to use

multiple browsers. Using different browsers for different purposes gives their individual

fingerprint to trackers. But in spite of that, researcher Károly Boda shows in his research

about cross-browser fingerprinting. According to that, if a user changes his browser, still

some of his system components like screen resolution, time zone remain the same and that is

4

sufficient to spot the user from crowds[18]. By collecting sufficient data of OS-like plugins,

list of fonts, and the scripts which identify the system details after bypassing the browser as

this system information is static and won’t change even after changing the browser. One of

the methods identified by researcher Yinzhi Cao is identifying the user very accurately

(90.84% to 99.24% across multiple browsers) with the help of the WebGL API [19].

B. Blocking extensions:

According to many researchers and reports, another robust way to prevent browser

fingerprinting is by blocking all the scripts before their execution in the browser [20]. To

prevent execution of scripts, there are multiple well-known extensions available in the market

like Disconnect, Ghostery, and NoScript [21] which perform very well while blocking all the

scripts. Despite that, in order to perform their full proof, Woking this extension first requires

a list of all fingerprinting scripts that we need to block. As there is a continued development

in browsing technology, it is very challenging to keep track of newly evolved fingerprinting

scripts. Also, as we discussed in the introduction to this report, some websites won’t work

properly when a browser is blocking the scripts that are required for loading their CSS

content [5].

C. Tor Browser:

There are multiple browsers in the market which have similar functionality like TOR

browsers and they have inbuilt protection against browser fingerprinting by blocking all

Canvas APIs [14]. The TOR browser is the upgraded version of Firefox browser, and which

is particularly developed for TOR network. As mentioned in the design document of TOR, it

defends users against "Reimplementation or Subsystem Modification", "Value spoofing",

"Functionality or Feature Removal", "Site Permissions" and makes browser fingerprints as

unique as possible [22]. Although this approach has various problems when dealing with real

words, First, the fingerprint generated by TOR browser is very specific and it is duck soup

for advertisers to identify that user is using TOR browser. Second, users have to compromise

the GUI of the website while using it because it blocks all graphic API calls. Third, the

proposed protection is so weak that small changes in browsers make huge changes in

fingerprints. Fourth, remaining personalization effectiveness and customizability are heavily

impacted due to its mono-configuration.

D. Spoofing extensions:

Another effective way to prevent browser fingerprinting is by using the spoofing extension

technique. This method is more effective than the above three fingerprinting prevention

methods. This extension sends dummy information in response to trackers. This type of

browser extension is widely available on the market and very effectively works on the

Google Chrome browser. With its very easy configuration, the Google Chrome browser can

easily pretend to be Firefox, Opera, or Safari, as shown in the research paper published by

Nick Nikiforakis [23]. But the drawback of this method is that the JavaScript property will

reveal a different value from what the user agent says, and it will be identical to a tracker that

the browser intentionally modified its default values. To solve this issue, researcher Christof

Ferreira Torres developed one browser extension called FP-Block, which does the separation

of web identities [24]. The idea behind fingerprint generation in FP-Block is to generate

fingerprints for every website opened by a user, but whenever a browser reconnects or opens

the same website, it’ll reuse the previously generated identity. Although this concept is good

5

for defences against fingerprinting, the implementation part suffers from the same issues as

the previous extensions. Also, the generated fingerprint is inconsistent, and it is very easy for

advertisers to find hidden information or modified information.

After reviewing all the above research papers from previous researchers, we come to the

conclusion that there are various ways to prevent browser fingerprinting. But all solutions are

temporary and don't offer much protection against advanced and modern fingerprinting

attacks [25] [26]. The already existing browser prevention technique did not work as

expected. In modern browsers, Google Chrome is the most used and most vulnerable

browser, which makes it easier to steal browser fingerprints. But there are some modern

browsers, such as Brave and TOR, that protect users' privacy by blocking browser

fingerprinting attempts from all websites. In study of Brave and TOR browser we found that

how can we randomize the requested browser fingerprinting parameters. We develop an

extension that helps users protect their identity and prevents them from being tracked. We

have developed a Google Chrome browser extension because, as we mentioned previously,

Google Chrome is the most vulnerable browser of all. We name our browser extension

"Browser Fingerprint Defender." This extension can modify the values of parameters used to

fingerprint the user but won’t affect the user's browsing performance.

3 Research Methodology

This section of the report will describe the approaches used to detect the attack of

browser fingerprinting and contain a prevention technique against browser fingerprinting.

The action plan for implementation as well as the follow-up procedure will be covered in the

report section below. Also in Figure 1: the workflow diagram of Browser Fingerprint

Defender describes the detailed steps from data collection to final results. This overall

process has fourteen stages and partitions them into three stages: identifying the problem,

Conducting, Preliminary Experiments and Evaluating Countermeasures. Will see every stage

one by one in the below section.

6

Figure 1: The workflow diagram of Browser Fingerprint Defender

A. Identifying Problem:

1. Literature Review: This section is the first stage where we identified the problem of

every Internet user being monitored by the browser fingerprinting technique, and we

observe that it’s a major threat to the privacy of the user.

2. Observation: In this section, we studied and critically analyzed the multiple research

papers, then observed the solutions proposed by other researchers to prevent browser

fingerprinting.

3. Identify Problem: We observe the overall research procedure, different techniques,

and scenarios presented by different authors, and after that, we identify if the user is

aware of browser fingerprinting, but there is still no full proof solution to prevent a

fingerprinting attack.

4. Propose Solution: After identifying the problem in the time following, we started

finding a solution that protects the users' privacy and won't impact their performance.

So, we started working and came up with a user friendly, lightweight browser

extension called "Browser Fingerprinting Defender."

B. Conducting Preliminary Experiments (solution design)

5. Study how fingerprints work: To develop the "Browser Fingerprint Extension," we

first need to understand how the fingerprinting method works, which are the different

7

methods of fingerprinting, which parameters are used to generate fingerprints, and

which are the important parameters in fingerprinting. This is all we learn while

studying the workings of fingerprints.

6. Set up Experiments: To test the workings of fingerprinting, we have used websites

like browserleaks.com [27], which have experimental setups. On this website, there

are several different fingerprint scripts implemented that fetch system parameters and

generate the fingerprint.

7. Observe Results: After testing our browser in the experimental setup, we got to know

that these websites are collecting too much information about our system when we

only visit once, and we have no idea about it..

8. Validate Countermeasures: To solve the answer to this question, we have planned

some countermeasures that change the parameters of the system while sending

responses to the website and won’t affect the performance of the website.

9. Propose Countermeasures: To implement the validated countermeasures, we designed

a structure in such a way that a Chrome user can pretend to be a user of Firefox, Edge,

or Safari and hide his actual identity successfully.

10. Coding: After all the experiments and successful planning of countermeasures, we

developed a frontend for Browser Fingerprint Defender using HTML and a backend

using JavaScript.

C. Evaluating Countermeasure

11. Experimental setup: As we don’t have our own setup to test our extension, that’s why

we tested it on browserleaks.com. This proposed countermeasure setup for

fingerprints validates the efficacy of fingerprint prevention, user experience, This

proposed countermeasure setup for fingerprints validates the efficacy of fingerprint

prevention, user experience, overhead performance, and information paradox of the

planned fingerprint countermeasure.

12. Evaluate the efficiency of fingerprinting prevention: Here we had a successfully

developed extension, and after enabling it, we tested it on browserleaks.com. After

testing, we got a very successful result. When we were using Google Chrome browser

but after enabling Browser Fingerprint Defender, out fingerprint showed different

every time as Firefox, Edge, and Safari.

13. Conduct a survey: After successfully testing the effectiveness of our extension, we

tested it on a different system. Before enabling the extension, our fingerprint was 27%

unique, and after enabling the extension, it shows as 99.52% unique.

14. Evaluate the user experience: As we tested this extension on 5 to 10 different systems,

we didn’t face any issues while accessing any website. The experience of browsing

the web while enabling extensions is as similar as browsing the web without any

extensions.

8

15. Evaluate browser’s performance and information paradox: According to the overall

result of this phase, the proposed fingerprint countermeasure must be able to solve the

issues with the current countermeasure. The overall performance of the extension

meets the requirement and successfully protects the privacy of users over the internet.

4 Design Specification

To develop this extension, we used some basic programming languages, such as

JavaScript and HTML. It is essential for the extension to communicate easily with the

browser. So, at the start, we developed a simple extension that can easily connect with a

browser and run smoothly over it. Then we start developing code to extract data from the

browser. After successfully running the extension, we started fetching system attributed

information such as browser information, system information, and OS information. In the

randomizing script, we can’t randomize all system attributes because randomizing all

attributes might impact browser performance and stability, and sometimes it might crash the

browser. To avoid this issue, we develop a list of selected attributes which can be changed,

and which can’t be changed during the process of randomizing the parameters. When

browser shares the system information for randomizing, we modify the value of parameters,

and to change those attribute values, we have created a list of dummy values that look similar

to real parameter values. So, whenever a browser asks for system parameters, our extension

will give the dummy values from this list. We have multiple values for a single parameter, so

our extension picks any random value from the list and submits it to the browser.

A. Workflow diagram of Browser Fingerprint Defender

9

Figure 2: Workflow diagram of Browser Fingerprint Defender

The above Figure 2 shows the workflow diagram of the browser fingerprint defender and

gives an overview of the internal functionality of the extension. This extension intercepts

browser requests and checks for fingerprinting scripts, then reports the dummy values to the

website. To understand the design and workflow of Browser Fingerprint Defender, I will

divide the extension into three parts, then explain each one by one as follows:

i. User visits the website:

After enabling the browser extension, the user visits any random website on the internet.

Then all website data gets passed through the extension.

ii. Browser Fingerprint Defender intercepts the request:

After visiting the website, our extension starts intercepting each and every JavaScript

from the website backend for fingerprinting scripts. If it is successful in finding the

fingerprinting script, go to the third point; if not, execute the webpage normally without

making any modifications in response.

iii. Modifies the values in the response:

When our extension found the fingerprinting script, it immediately changed its

parameters and sent a response to the website with dummy values. This modification

process is very fast, and it won’t impact the speed of the website. After sending this

modified data, the Browser Fingerprint Extension loads the website successfully into the

browser.

10

B. Backend Architecture of Browser Fingerprint Defender

Figure 3: Overall Backend Architecture of Browser Fingerprint Defender

The above Figure 3 shows the programming architecture of our extension. This extension is

divided into six sections, which you will see one by one below:

i. manifest.json

This is a JSON file in the browser extension which tell the browser regarding which

components need to pick up from which place. Any browser needs a manifest file for the

purpose of displaying the extension icon on the Home Screen prompt. The name of

extension, all of their logos, and other information regarding our extension is provided by

JSON file to the browser. The manifest.json file contains some important information

about extensions, such as the name of the extension, which icon should be used for which

purpose, which URL or file should be opened after running the extension, and a number

of other specific details.

ii. Background Page:

The Background scripts are one of the high secure sections of the any Google Chrome

Extension environment when there is a case of logging in and connecting to the API or

serve. Background scripts are totally dependent on plugins, and the reason behind that is

that if the plugin is installed, then scripts can be run in the background very easily.

iii. Content Scripts:

The Content-scripts.js type of files is most probably used to put additional functionality

into browser extensions. If we need to add some extra features to the extension, then it is

not possible to add everything in the bagroud.js file; that’s why the content-scripts.js file

is used. If we need to add some extra functions to the extension, then we can create

multiple content-scripts.js files, but then we just need to mention those files in the

11

manifest.json file with the link. It’s useful for When we add those URLs to the

manifest.json file, then connecting with a page’s DOM becomes very easy in every way.

iv. popup.html / popup.js

The popup.html page is the graphical user interface (GUI) that appears when we click on

the browser extension icon that appears in the extension menu. This popup shows all

available functionality of extension and make it easy to control at single place, rather

controlling from options.html.

v. Browser Action:

The Browser action section contains JavaScript files, which are utilized for randomizing

the popup attributes. The browser action section is also mentioned as vendor.js in our

extension source code. This section of JavaScript also ensures the integrity of extensions.

The source code for this is implanted inside the "script" tag and located on the first page

of the extension, prior to all HTML tags. This section also contains actionable icons of

extensions; for example, when an extension is active, it shows in green, and it shows in

gray when it is in inactive mode. Whichever icons are shown in extension bar, those got

loaded from this section. This section is also linked to the popup.js file, which handles the

frontend GUI of the extension.

vi. Page Action:

This section having the setting page icons and JavaScript ’s for the popup windows menu.

Any menu pops up after clicking on extension icon that all scripts are written here. Also,

the icons required for all extension menu pages will also get called from here.

vii. Option Page:

This option page has two files, options.html and options.js, which show the extra setting

menu for extensions. When user opens option page then there are lot of extension

configuration options available. The options.html file contains a GUI for the option menu,

and the option.js file contains the scripts required for the option page.

5 Implementation

The Browser Fingerprint Defender extension was implemented for the Google Chrome

browser to protect users' privacy when they are surfing the internet. In the above Figure 2 and

Figure 3 we saw the overall functionality as well as backend architecture of Browser

Fingerprint Defender. With its help, we understand the workflow and implementation of the

extension. Now we will see the actual implementation part of our extension with the help of

the following diagrams and source code.

A. Dummy Parameter Generation:

As we can see in Figure 4: Dummy Firefox parameters are generated by Browser Fingerprint

Defender. The extension is active, and in the browser selection section, we have selected

Firefox only, although all other options are deselected. That’s why, as we can see in the first

highlighted area, our extension generates dummy parameters for Firefox. In this case every

time when page gets refreshed or user clicked on "Get new agent" button then our extension

will only give the parameters of Firefox, until and unless user change it by their own. When

this extension is enabled, a dummy fingerprint will be sent to every website that tries to

fingerprint the user.

12

Figure 4: Dummy Firefox parameters is generated by Browser Fingerprint Defender

B. Use fingerprints of multiple browsers:

i. Selecting multiple browser fingerprints from GUI:

Browser fingerprint defender provides the user with the functionality of using multiple

browser fingerprints after every page refresh. These multi browser fingerprints provide an

extra layer of protection to your privacy and make it almost impossible for a tracker to

understand browser patterns. As we can see in Figure 5, in the highlighted area on the right

side, which shows the active browsers for dummy parameters, Also, if we click on "open

settings menu," we’ll get the Generator settings page, which also shows the menu to enable

or disable the specific browsers. All these options give concrete uniqueness to the user's

fingerprints.

Figure 5: Manually configuring the of Browser Fingerprint Defender

ii. Backend working Architecture of Browser Fingerprint Defender

To implement multiple browser fingerprint models, we have designed the backend

architecture for manipulation of values, which is shown below in Figure 6: Random Agent

Assigning Workflow for Browser Fingerprint Defender When the user selects a browser for

fingerprinting or chooses multiple browsers like Opera, Firefox, Edge, or Safari for a dummy

13

fingerprint, the workflow will go as follows: As we saw in Figure 4, users have selected

Firefox, as we can see in Figure 6. To create a dummy fingerprint for Firefox, have four

different operating systems available (Linux, Mac, Windows, and Android), as seen in Figure

7. Our code is designed in such a way that it will randomly choose any operating system from

a selection. After selecting an operating system, it randomly fetches data from two tables,

Random Profile, and System Configuration, which are relevant to the selected operating

system. In this Random Profile table, we have added basic system details like date, language,

screen resolution, etc. that are necessary for every request of browser. Secondly, in the

System Configuration table, it has operating system parameters. If we have selected Linux in

the first place, then the System Configuration method automatically fetches a different value

for every parameter.

Figure 6: Random Agent Assigning workflow of Browser Fingerprint Defender

iii. Source code for manually selecting required fingerprints of browsers.

Figure 7: Source code for manually selecting required fingerprints of browsers.

14

As you can see in Figure 7. We have implemented the code for automatically selecting the

fingerprint list of devices. That’s why we created a devices list and its exact configuration.

C. Change the fingerprint after specific period

Figure 8: GUI and Source code for generating unique fingerprint after specific time.

The best way to stay anonymous from the trackers is to change your identity after a specific

period. As we can see in Figure 8 of the GUI, we have provided the option to automatically

change the identity after a decided time. Similarly, we can see the code for assigning the

time.

6 Evaluation

A. Extension result on different websites.

15

Figure 9: Extension result on different websites

On multiple platforms, we tested the performance of our Browser Fingerprint Defender

extension and found that it worked excellently with every website. In the above Figure 9:

Extension results on different websites, we can see the comparison between different

websites like deviceinfo.me, amiunique.org, and hidester.com. We have carefully analyzed

and noted the results before and after enabling the extension, as you can see in Figure 9,

which shows the three different results from different domains. In the table we can see list of

attributes then result got on different domains for attribute. We can observe in the below

figure that every website has their own different method for fingerprinting, but still, system

attributes on every domain are changed. After analyzing the results of all domains, we can

confidently say that the Browser Fingerprint Defender extension is working correctly and

providing protection against online trackers.

The negative side of the extension result is that some of the important parameters, such as

device memory and hardware concurrency, remain the same every time. If a user uses the

16

fingerprint of the same browser for a long time, for example, only Firefox or only Chrome,

then the advertisers can identify the pattern of data and can identify you. To avoid this chance

of getting spotted, a user has to change his dummy fingerprinting browser after a specific

period of time. For example, a user must change dummy data from the Chrome browser to

Firefox and vice versa. This method can make the tracker difficult to identify the user.

B. Checking the efficiency of Browser Fingerprint Defender

Figure 10: Efficiency of Browser Fingerprint Defender

To check the efficiency of our extension, first we completely disable the extension then open

the https://browserleaks.com/canvas [27] to check the original fingerprint of browser. As we

can see in Figure 10, we have merged the two images. On the left side of the image, the

browser extension is disabled, and we get the uniqueness of our fingerprint as 287463 of

901701 user agents have the same signature as us, and our signature is 68.12% unique. which

is easily identifiable. Then as we can see on the right side of the image, browser extension is

enabled, and we got uniqueness of our fingerprint as 4365 of 901701 user agent have same

signature as us and our signature is 99.52% unique. which is not easily identifiable. We can

easily spot the result. When the extension is off, we are 68.12% unique, and after enabling the

extension, we become 99.52% unique. Hence, it is proven that after enabling the extension,

we get a unique as well as unidentifiable fingerprint, and our privacy is successfully

protected.

C. Performance Testing:

We have implemented many features in Browser Fingerprint Defender like automatically

change the user agent after specific time, protect against detection by JavaScript, auto start on

browser start up and as we can see in right side highlighted area, we have enabled all types of

devices fingerprint, keep automatic user agent time 60 seconds and many more. The reason

behind enabling all possible features is to do performance testing.

17

Figure 11: Performance Testing

As we can see in the above figure 11, there are two sections. In the top section, we can see

that we have enabled all parameters, which will force extension to perform under pressure

and determine extension capacity. Many times, when we increase the load on the extension, it

won’t work properly and reveal the user's identity. As we can see in the bottom figure, we

have continuously clicked on "Get a new agent," which forces Extension to use its full

capability. After the continued load on extension, we observe that it is giving accurate results,

as we can see in the bottom of figure 11. As a conclusion, our extension won’t reveal user

identity while working under pressure.

7 Conclusion and Future Work

The research reported in this paper was inspired by the increasing privacy risk posed by

browser fingerprinting. As we studied previous research papers on browser fingerprint, we

understand that user don’t have direct control over the browser fingerprinting and even if user

aware about browser fingerprint still he can’t do much to protect himself, because there is no

full proof solution available in the market. We found that because consumers have no direct

control over it, it represented the biggest risk to consumer privacy than cookie-based user

tracking.

Additionally, we have observed that this user tracking method is rapidly being used for online

user monitoring, even in the absence of a static IP address or cookie, by online advertising

companies. To overcome this issue, we developed the "Browser Fingerprint Defender"

extension, which takes full control by identifying fingerprinting attempts and protecting

18

users' privacy from online tracking websites. The primary goal of the extension was to

educate browser users about the existence of browser fingerprinting and to provide them with

some level of protection against it.

Browser Fingerprint Defender intercepts the JavaScript request which contains the call of

system parameters for fingerprinting and replaces those values with dummy parameters. On

every fingerprinting request, Browser Fingerprint Defender does not modify any other parts

of JavaScript or HTML but provides dynamic values to make fingerprints more unique. This

parameter modification method removes the uniqueness of the user and pretends to be

someone else. After enabling this extension, the fingerprint of the user is totally different

from the real one, and it won't have any effect on the performance of the browser. This

extension defends the user’s privacy and makes browsing more private.

In our research, we measured only the passive fingerprinting and JavaScript-based object

fingerprinting performed by tracking websites. Despite that, there are a variety of distinct

fingerprinting methods available in the market that we haven’t resolved in our research, like

audio fingerprinting and media device fingerprinting. Due to a lack of resources and time, it

was not feasible to address each of these fingerprinting methods in a single research project.

The majority of the values or parameters we have used in our extension are taken from online

fingerprint detection sites like deviceinfo.me, amiunique.org, hidester.com, or

browserleaks.com. We considered those parameters because we only saw them on individual

sites. However, there is a chance that tracking websites are using more advanced techniques

and using parameters that we don’t know.

Furthermore, there are some parameters which we are aware about, but still, we are unable to

include them into the user agent. Case-in-point, parameters like Hardware Concurrency,

Device Memory and time zone will make fingerprint extremely unique. We have tried to

implement those into this extension, but due to extreme technicality and time constraints, we

are unable to do so.

8 References
[1] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the Beast: Diverting Modern Web Browsers to

Build Unique Browser Fingerprints,” in 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA,
May 2016, pp. 878–894. doi: 10.1109/SP.2016.57.

[2] G. Pugliese, C. Riess, F. Gassmann, and Z. Benenson, “Long-Term Observation on Browser Fingerprinting:
Users’ Trackability and Perspective,” Proc. Priv. Enhancing Technol., vol. 2020, pp. 558–577, May 2020,
doi: 10.2478/popets-2020-0041.

[3] T. Hupperich, D. Tatang, N. Wilkop, and T. Holz, “An Empirical Study on Online Price Differentiation,” in
Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, New York, NY,
USA, Mar. 2018, pp. 76–83. doi: 10.1145/3176258.3176338.

[4] W. Jiang, X. Wang, X. Song, Q. Liu, and X. Liu, “Tracking your browser with high-performance browser
fingerprint recognition model,” China Commun., vol. 17, no. 3, pp. 168–175, Mar. 2020, doi:
10.23919/JCC.2020.03.014.

[5] Krishna. V. Nair and E. RoseLalson, “The Unique Id’s you Can’t Delete: Browser Fingerprints,” in 2018
International Conference on Emerging Trends and Innovations In Engineering And Technological
Research (ICETIETR), Jul. 2018, pp. 1–5. doi: 10.1109/ICETIETR.2018.8529040.

[6] P. N. Bahrami, U. Iqbal, and Z. Shafiq, “FP-Radar: Longitudinal Measurement and Early Detection of
Browser Fingerprinting.” arXiv, Dec. 14, 2021. Accessed: Aug. 01, 2022. [Online]. Available:
http://arxiv.org/abs/2112.01662

[7] S. Luangmaneerote, E. Zaluska, and L. Carr, “Inhibiting Browser Fingerprinting and Tracking,” in 2017
ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international

19

conference on high performance and smart computing (hpsc), and ieee international conference on
intelligent data and security (ids), May 2017, pp. 63–68. doi: 10.1109/BigDataSecurity.2017.40.

[8] “What is Browser Fingerprinting & How Does it Work?,” SEON, May 11, 2020.
https://seon.io/resources/browser-fingerprinting/ (accessed Jul. 29, 2022).

[9] N. Kaur, S. Azam, K. Kannoorpatti, K. C. Yeo, and B. Shanmugam, “Browser Fingerprinting as user tracking
technology,” in 2017 11th International Conference on Intelligent Systems and Control (ISCO), Jan. 2017,
pp. 103–111. doi: 10.1109/ISCO.2017.7855963.

[10] O. Starov and N. Nikiforakis, “XHOUND: Quantifying the Fingerprintability of Browser Extensions,” in
2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, May 2017, pp. 941–956. doi:
10.1109/SP.2017.18.

[11] J. P. Johnson, “Targeted advertising and advertising avoidance,” RAND J. Econ., vol. 44, no. 1, pp. 128–
144, 2013, doi: 10.1111/1756-2171.12014.

[12] N. M. Al-Fannah and C. Mitchell, “Too little too late: can we control browser fingerprinting?,” J. Intellect.
Cap., vol. 21, no. 2, pp. 165–180, Jan. 2020, doi: 10.1108/JIC-04-2019-0067.

[13] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the Fingerprinters: Learning to Detect Browser
Fingerprinting Behaviors,” presented at the 2021 IEEE Symposium on Security and Privacy (SP), May
2021, pp. 1143–1161. doi: 10.1109/SP40001.2021.00017.

[14] “Mitigating Browser Fingerprinting in Web Specifications.” https://w3c.github.io/fingerprinting-
guidance/ (accessed Jul. 30, 2022).

[15] A. Rasool, Z. Jalil, and R. J. O. Computing, “A Review of Web Browser Forensic Analysis Tools and
Techniques,” pp. 15–21, Jun. 2020, doi: 10.1111/RpJC.2020.DOI.

[16] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine, “Browser Fingerprinting: A Survey,” ACM Trans. Web,
vol. 14, no. 2, pp. 1–33, Apr. 2020, doi: 10.1145/3386040.

[17] G. Gulyás, R. Schulcz, and S. Imre, “Comprehensive Analysis of Web Privacy and Anonymous Web
Browsers: Are Next Generation Services Based on Collaborative Filtering?,” p. 15.

[18] K. Boda, Á. M. Földes, G. G. Gulyás, and S. Imre, “User Tracking on the Web via Cross-Browser
Fingerprinting,” in Information Security Technology for Applications, Berlin, Heidelberg, 2012, pp. 31–46.
doi: 10.1007/978-3-642-29615-4_4.

[19] Y. Cao, S. Li, and E. Wijmans, “(Cross-)Browser Fingerprinting via OS and Hardware Level Features,” in
Proceedings 2017 Network and Distributed System Security Symposium, San Diego, CA, 2017. doi:
10.14722/ndss.2017.23152.

[20] S. Englehardt and A. Narayanan, “Online Tracking: A 1-million-site Measurement and Analysis,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, New York,
NY, USA, Oct. 2016, pp. 1388–1401. doi: 10.1145/2976749.2978313.

[21] “What is it? - NoScript: Own Your Browser!” https://noscript.net/ (accessed Dec. 13, 2022).
[22] “The Design and Implementation of the Tor Browser [DRAFT].”

https://2019.www.torproject.org/projects/torbrowser/design/#fingerprinting-linkability (accessed Dec.
13, 2022).

[23] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna, “Cookieless Monster:
Exploring the Ecosystem of Web-Based Device Fingerprinting,” in 2013 IEEE Symposium on Security and
Privacy, May 2013, pp. 541–555. doi: 10.1109/SP.2013.43.

[24] C. F. Torres, H. Jonker, and S. Mauw, “FP-Block: Usable Web Privacy by Controlling Browser
Fingerprinting,” in Computer Security -- ESORICS 2015, Cham, 2015, pp. 3–19. doi: 10.1007/978-3-319-
24177-7_1.

[25] P. LLC, “PsyberAnalytix LLC,” PsyberAnalytix LLC. https://psyberanalytix.com/cybersecurity (accessed
Nov. 08, 2022).

[26] “Bodleian Libraries | ORA.” https://ora.ox.ac.uk/objects/uuid:b80bf744-65a4-4b48-bf0e-1b159e029df8
(accessed Nov. 08, 2022).

[27] “Canvas Fingerprinting,” BrowserLeaks. https://browserleaks.com/canvas (accessed Aug. 02, 2022).

