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Abstract 

Smart contracts, which are self-executing contracts with the terms of the agreement 

between buyer and seller being directly written into lines of code, have the potential to 

automate and improve efficiency in various industries such as supply chain management, 

financial transactions, and legal agreements by storing the contract on a distributed ledger. 

However, vulnerabilities in the code of smart contracts can be exploited by malicious 

actors, leading to unauthorized access to funds or sensitive information, disruption of 

contract execution, and other harmful effects. One type of attack on smart contracts is the 

reentrancy attack, in which a contract function is repeatedly called before its execution is 

complete, potentially allowing for the manipulation of data or draining of funds. 

 

 The proposed solution combines manual testing with static code analysis and the use 

of tools such as Hardhat and Slither to optimize and maximize the detection of reentrancy 

attacks and other vulnerabilities in smart contracts. By following this approach, developers 

can help to ensure the reliability and trustworthiness of their contracts and protect against 

attacks. This research aims to provide a solution for detecting reentrancy attacks in smart 

contracts that involve a combination of manual testing using the Hardhat test runner and 

static analysis with the Slither tool. Initial evaluation of this approach has shown 

promising results in efficiently detecting vulnerabilities and mitigating risks prior to 

deployment. Further research is needed to fully assess the effectiveness of this solution 

and explore potential improvements. 

 

 

 

1 Introduction 
 

One type of distributed ledger, a blockchain, is utilized to manage assets that are shared by 

users. These assets are transferred according to the rules that are encoded in a smart contract. 

The transfers take place within immutable transactions that are logged on the blockchain.  

 

Ethereum is one of the most widely used blockchains that enables smart contracts. The market 

value of Ethereum was approximately $130 billion in January 20211. On Ethereum, smart 

contracts allow users and other contracts to interact with them by calling functions in the 

contracts.   An execution cost known as gas is required to carry out the transaction on a smart 

contract. The cryptocurrency of Ethereum, ether (ETH), is used to pay for gas1.  

 
1https://www.csc.kth.se/~dilian/Papers/ease21.pdf 



2 
 

 

Ethereum is a decentralized, open-source blockchain platform that enables the creation of smart 

contracts. It allows developers to build and deploy decentralized applications, or dApps, on its 

platform. 

 

The most widely used tool for creating Ethereum smart contracts today is Solidity, which was 

created by the Ethereum project's developers explained by (Kaleem, et al., 2020). Additionally 

for writing high-level smart contracts, Solidity has been utilized vastly by the Developers. 

However, smart contracts developed in Solidity have security flaws wherein different attacks 

on Ethereum-based projects have been widely reported exploited described by (Chen, et al., 

2020).  

 

The most well-known instance of a smart contract attack is the one on "The DAO 

(decentralized autonomous organizations)" in June 2016 described in research by (Morrison, 

et al., 2020). Reentrancy is a vulnerability that was exploited in the attack to steal more than 

60 million US dollars worth of ether. Reentrancy occurs when the main contract calls an 

external contract, which then contacts the calling contract once more in a single transaction. 

Due to the transparency of the Ethereum blockchain, it is possible to continuously launch an 

attack using the deployed contracts' flaws. 

1.1 Research Objective and Question 

 

The goal of this research is to the detection reentrancy attacks in solidity smart contracts. 

 

The research objective of this study was to investigate and identify potential vulnerabilities and 

security issues in smart contracts. The research question for this study was: What are the most 

effective methods for detecting and mitigating vulnerabilities and security issues in smart 

contracts? 

1.2 Motivation 

 

The motivation for researching the detection of reentrancy attacks in smart contracts stems 

from the fact that these attacks can have significant consequences for the security and integrity 

of blockchain systems. Reentrancy attacks involve a malicious contract calling an external 

contract multiple times before the external contract has completed its execution, leading to a 

state of infinite loop and potentially allowing the attacker to drain the victim contract of its 

resources (Buterin, 2014). 

 

Reentrancy attacks can have serious implications for the stability and security of blockchain 

systems, as they can lead to the loss of funds or the disruption of critical services. For example, 

the infamous DAO attack of 2016, in which a hacker exploited a reentrancy vulnerability to 

drain the Ethereum-based Decentralized Autonomous Organization of millions of dollars, led 

to a hard fork in the Ethereum network and highlighted the need for robust security measures 

to prevent such attacks (Buterin, 2016). Another such attack lead by a group or individual 

carried out two "reentrancy attacks" on the Uniswap and Lendf.me cryptocurrency platforms, 
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stealing more than $25 million. The attacks were made possible by a known vulnerability in 

Uniswap's ERC777-token, which allows for repeated withdrawal of funds before the initial 

transaction is approved or declined. Uniswap lost between $300,000 and $1.1 million in 

imBTC tokens, while Lendf.Me lost more than $24 million. 

 

Given the potential consequences of reentrancy attacks, it is important for developers to have 

effective tools and methods for detecting and mitigating these vulnerabilities in smart contracts. 

This motivation drives the research on the detection of reentrancy attacks and the development 

of solutions such as the proposed combination of manual testing and static analysis. 

1.3  Paper Outline 

 

 

Figure 1: Paper structure 

 

2 Related Work 
 

A smart contract is a type of internet protocol that carries out scheduled tasks without the 

requirement for supervision by a reliable third party. “Computer program stored in a distributed 

ledger system wherein the outcome of any execution of the program is recorded on the distributed 

ledger” are called smart contracts as defined by ISO2. In addition to facilitating wallet 

functionality, voting, bidding, market forecasting, supply chain tracking, and other purposes, 

smart contracts broadened the applicability of blockchain. 

 

The Ethereum network, which uses the Solidity programming language, is frequently 

threatened by reentrancy attacks. The attack occurred when an adversary uses an external call 

of a smart contract to force the contract to execute more code by calling back to itself using a 

fallback function before updating the final state of the contract addressed by (Alkhalifah, et al., 

2021). 

 

 

 

 

 
2https://www.iso.org/obp/ui/fr/ 



4 
 

 

Nick Szabo developed the concept of smart contracts in 1996 has been illustrated by (Kim & 

Tai-hoon, 2016). It has been stated that smart contracts are lines of code that are implemented 

on a blockchain network and automatically carry out transactions in a transparent and 

decentralized method. It has been observed by (Huang, et al., 2017) a smart contract cannot be 

changed once it has been deployed, and there are very few ways to deal with errors that occur 

during contract execution. 

 

 

Figure 2: Reentrancy attack 

2.1 Smart contracts 

 

Smart contracts, a technology in the field of blockchain that encodes the terms of an agreement 

into code and stores it on a decentralized network, have been utilized to automate and 

streamline various processes, including supply chain management, financial transactions, and 

legal agreements. The automation and enforceability of contracts, made possible by smart 

contracts, eliminate the need for intermediaries and reduce the risk of errors or fraud. However, 

vulnerabilities in the code of smart contracts can be exploited by hackers and malicious actors, 

leading to unauthorized access to funds or sensitive information, disruption of contract 

execution, and other harmful effects. One type of attack on smart contracts is the reentrancy 

attack, in which a contract function is repeatedly called before its execution is complete, 

potentially allowing for the manipulation of data or draining of funds discussed by (Buterin, 

2014). Other vulnerabilities that may be exploited include lack of input validation, race 

conditions, and denial of service attacks.  

 

The consequences of a successful attack on a smart contract can include financial loss, 

reputation damage, and legal liability, and may be motivated by a desire to steal funds, disrupt 

operations, or gain access to sensitive information.  
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2.1.1 Smart contract vulnerabilities 

 

Several types of vulnerabilities can occur in smart contracts, and the most impactful ones can 

have serious consequences for the contract and its stakeholders. Some common types of 

vulnerabilities in smart contracts include: 

 

• Reentrancy attacks: These attacks allow an attacker to repeatedly call a contract 

function before it has completed execution, potentially allowing the attacker to drain 

funds or manipulate data explained by (Buterin, 2014). 

 

• Race conditions: These vulnerabilities occur when a contract has multiple concurrent 

processes that are not properly synchronized, potentially allowing an attacker to exploit 

the race condition to manipulate data or execute unintended actions. 

 

• Denial of service attacks: These attacks involve overwhelming a contract with a large 

number of requests or transactions, potentially causing it to malfunction or become 

unavailable  

 

• Unchecked call/send: If a contract does not properly check the return value of a call or 

send operation, it may be vulnerable to attack through the injection of malicious code  

 

Developers need to be aware of these and other vulnerabilities described by (Nguyen, et al., 

2021) and (Mense & Flatscher, 2018) to design and implement effective security measures to 

prevent attacks. By thoroughly testing and analyzing smart contracts, developers can help to 

ensure their reliability and trustworthiness and minimize the risk of vulnerabilities being 

exploited. 

2.2 Importance of Reentrancy attack 

 

Reentrancy attacks are a type of vulnerability that allows an attacker to repeatedly call a 

function in a smart contract before the initial transaction has been completed. This can allow 

the attacker to drain funds from the contract or manipulate its state in ways that were not 

intended by the developer. Reentrancy attacks are a major concern for smart contracts because 

they can be difficult to detect and can have significant consequences for the contract and its 

users. In the Decentralized Application Security Project (DASP) Top 10 of 2018, reentrancy 

attacks were ranked as the second most common type of vulnerability in smart contracts, 

highlighting the importance of addressing this issue. To mitigate the risk of reentrancy attacks, 

developers need to follow best practices and security standards when coding and testing their 

smart contracts, such as the OWASP Secure Coding Practice and Solidity Smart contract 

security consideration. By carefully considering the potential vulnerabilities of their smart 

contracts and taking steps to address them, developers can help ensure the security and 

reliability of their applications. 
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2.3 Types of Reentrancy Attacks 

When an external function invokes another insecure contract and gave an attacker control of 

that insecure contract and opens a vulnerability. A reentrancy attack would be carried out by 

the adversary by recursively calling the vulnerable function and consuming all ether until all 

the gas is consumed and the adversary would exhaust all ether in the victim’s smart contract. 

"gas" refers to the extra cost associated with completing a smart contract or transaction on the 

blockchain network has been reported by (Atzei, et al., 2017). 

2.3.1 Single Reentrancy Attacks 

When the vulnerable function is identified by the attacker and the attacker keeps calling that 

function recursively is known as a single reentrancy attack as described in the research by 

(Samreen & Alalfi, 2020).  

2.3.2 Cross-function Attacks 

A cross-function reentrancy attack is achieved when an attacker exploited the state of a 

vulnerable function that shares a state with another function. Hence, it is hard to detect as 

described in the research (Samreen & Alalfi, 2020).  

 

A hacker found a vulnerability in the DAO's code and was able to steal 3.6 million Ethereum 

into his account, which caused the price of ether to plunge and discouraged investors in the 

community reported by (Sayeed, et al., 2020). This is the famous reentrancy attack that was 

carried out by adversaries in 2016. This research talks about the automating detection of 

reentrancy attacks using slither modules and hardhat in solidity smart contracts. 

2.4 Limitations 
 
The various techniques used to guard against the reentrancy vulnerability in smart contracts 

are described here. This includes using secure coding practices, such as properly handling input 

validation, using secure libraries and frameworks, and implementing strict access controls. This 

research is focused on automating the static analysis for detecting reentrancy vulnerabilities in 

solidity smart contracts. 

 

Additionally, the use of smart contract testing and analysis tools, such as Mythril and Oyente, 

can help identify potential vulnerabilities in contract code and provide recommendations for 

remediation. 

2.4.1 Mythril 

It offers a unique examination of smart contract vulnerabilities based on symbolic code 

execution which is used to find security vulnerabilities with smart contracts. The accuracy of 

Mythril and other analysis tools is limited by the quality and completeness of their vulnerability 

detection database and ruleset. Smart contracts created for EVM-compatible blockchains like 

Ethereum and Tron can be scanned by Mythril using EVM bytecode to find cybersecurity flaws 

as mentioned in the research by (Sayeed, et al., 2020). 

2.4.2 Oyente 

A similar and better tool that works on symbolic execution, one which can identify security 

flaws in smart contracts. The character of an execution path is symbolically represented by a 
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mathematical formula in the symbolic execution approach. It also determines whether the new 

formula and formulae with common bugs can both be used simultaneously, Oyente compares 

the two formulas as described by (Luu, et al., 2016) 

2.4.3 SolidityCheck 

It is another open-source tool based on regular expressions and program instrumentation. Smart 

contract files with their Solidity source code are sent to SolidityCheck. The source code is first 

prepared so that regular expressions may be accessed. Following that, the problem statement 

is located by matching the bug statements with particular regular expressions. SolidityCheck 

combines software instrumentation to guard against integer overflow flaws and reentrancy 

flaws as described by (Zhang, et al., 2019) The fact that it only uses regular expressions means 

that flaws like cross-reentrancy do not get recognized. These patterns are based on previous 

attacks and known vulnerabilities, making them limited and difficult to generalize. 

 

 

Figure 3: Tool comparison results 

 

Figure 4: Tool comparison results 

Based on the existing research Slither has been selected as the static analysis tool in this 

research due to its demonstrated accuracy and efficiency in detecting vulnerabilities in smart 

contracts. In comparison to other tools such as oyente, Mythril, and solidity-check, Slither has 

consistently demonstrated superior performance in detecting a wide range of vulnerabilities, 

including reentrancy attacks. In addition to its high accuracy, Slither also utilizes the SlithIR 

technology, which allows for efficient analysis of smart contracts and reduces the number of 

false positives that may be produced by other tools described by (Feist, et al., 2019). Hardhat, 

a test runner tool, was also utilized in this research to run unit tests against the solidity smart 

contract and effectively detect reentrancy attacks through the creation of specific test cases. To 

address these vulnerabilities, the combination of static code analysis, manual testing, and the 

use of tools such as Hardhat and Slither can be utilized by developers and security researchers 

to detect and prevent attacks said by (Sklaroff, 2017) By taking a proactive approach to 

security, the reliability and trustworthiness of smart contracts can be ensured and their potential 

benefits maximized. 
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2.5 Research Niche 
 

Table 1: Research Niche 

Related Work Strength Limitation No. of 

Citations 

(Alkhalifah, et al., 2021) Comprehensive 

combines static and 

dynamic analysis 

Relies on analysis 

tools, does not detect 

all vulnerabilities 

9 

(Atzei, et al., 2017) Provides a 

comprehensive overview 

of attacks on Ethereum 

smart contracts 

Does not cover all 

types of attacks. 

1457 

(Buterin, 2014) Provides a flexible and 

powerful platform for 

building decentralized 

applications 

scalability issues, 

vulnerable to certain 

types of attacks. 

3967 

(Chen, et al., 2020) Covers three aspects of 

Ethereum security 

Not up to date. 274 

(Chen, et al., 2020) Generic, efficient, easily 

extendable, compatible 

with multiple 

blockchains 

Requires deep 

understanding of 

blockchain internals to 

develop new detection 

apps 

55 

(Feist, et al., 2019) Checks for a wide range 

of vulnerabilities, easy to 

use. 

Produce false positives 

or false negatives. 

211 

(Huang, et al., 2017) Decentralized, provides 

trust in IoT data 

exchange, transparent, 

auditable 

Requires in-depth 

knowledge of 

applications in IoT 

102 

(Kaleem, et al., 2020) Comparison of security 

vulnerabilities between 

Solidity and Vyper 

Not updated with new 

attack vectors 

24 

(Kim & Tai-hoon, 2016) Convenient, fast, no 

intermediaries or fees, 

easily transferable across 

borders 

Subject to digital 

security risks and not 

widely accepted 

29 

(Koscher, et al., 2010) Demonstrates the 

fragility of modern 

automotive systems, 

highlights potential risks 

Not up to date. 2172 

(Luu, et al., 2016) Identifies new security 

problems 

Not up to date. 1806 

(Mense & Flatscher, 

2018) 

Compares code analysis 

tools 

Not up to date. 79 

(Morrison, et al., 2020) Challenges of 

governance in 

blockchain-based 

organizations 

Not be applicable to all 

blockchain-based 

organizations 

40 
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(Nguyen, et al., 2021) Can fix common 

vulnerabilities in smart 

contracts, proven to be 

sound 

Introduce minor 

overhead with new 

attack vectors 

21 

(Rodler, et al., 2018) Protects existing 

contracts, accurate, 

minimal overhead 

Only protects against 

reentrancy attacks. 

158 

(Salehi, et al., 2022) Upgradeability patterns 

in smart contracts and a 

measurement framework 

to evaluate their use 

Limited to the 

Ethereum blockchain, 

may not cover all 

upgradeability patterns 

0 

(Samreen & Alalfi, 2020) Combines static and 

dynamic analysis, high 

performance, low false 

positives 

Lacks Manual testing 32 

(Sayeed, et al., 2020) Comprehensive 

overview of smart 

contract vulnerabilities 

and attacks 

Not up to date 140 

(Sharma, et al., 2022) Explores security 

perceptions and practices 

of smart contract 

developers 

A qualitative, 

exploratory study with 

a small sample size 

3 

(Sklaroff, 2017) Technologically 

advanced integrates with 

modern systems, and 

offers a range of 

operations. 

Require human 

intermediaries 

 

 

 

331 

(Zhang, et al., 2019) Efficient, effective, 

classifies problems in 

Solidity 

Limited to Solidity, 

may not detect all 

problems 

19 

 

 

3 Research Methodology 
 

During this research, the selection and use of relevant keywords were carefully considered in 

order to effectively investigate the vulnerabilities and potential attack vectors of smart 

contracts. These keywords included: "smart contracts," "Ethereum," "blockchain," 

"vulnerabilities," "security," "reentrancy attacks," "static code analysis," "manual testing," 

"Hardhat," and "Slither." By including these keywords in the research, a comprehensive 

understanding of the topic was gained. 

 

By using these and other relevant keywords, it is possible to locate a variety of research papers 

and other resources that can provide valuable insights into the vulnerabilities and potential 

attack vectors of smart contracts. By carefully reviewing the proposed solution in this research, 

a developer can gain a better understanding of the various techniques and tools available for 

detecting reentrancy attacks and other vulnerabilities in smart contracts. This can help the 

developer design and implement effective testing and security measures for their smart 
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contracts before going on the Ethereum network. It is generally not possible to directly modify 

or delete a smart contract once it has been deployed to a blockchain due to the permanent, 

immutable nature of the blockchain addressed by (Buterin, 2014). However, vulnerabilities in 

a deployed smart contract can be addressed by deploying a new contract that includes the 

necessary fixes, a process known as contract upgrading or contract migration mentioned by 

(Salehi, et al., 2022). While contract upgrading can be a viable solution, it is important to 

carefully consider the costs and challenges involved, including fees for deploying the new 

contract, coordination and communication with users, and potential confusion or mistrust 

among users discussed by (Sklaroff, 2017). 

3.1 Combined Approach mitigating reentrancy attack in solidity smart 

contracts 

3.1.1 Manual Unit Testing 

 

Hardhat is a set of tools for Ethereum development that includes a test runner and a task runner. 

The test runner can be used to detect reentrancy attacks by running tests on a smart contract to 

ensure that it is resistant to such attacks discussed by (Sharma, et al., 2022). Chai and Mocha 

testing frameworks provide a range of functions and assertions for verifying the behavior of a 

contract and detecting potential vulnerabilities. 

 

To detect a reentrancy attack, the test runner in Hardhat verifies that the smart contract correctly 

handles reentrancy by checking for the presence of a guard condition. A guard condition is a 

check that prevents the contract from being called again before the previous call has been 

completed and is an important defense against reentrancy attacks mentioned by (Koscher, et 

al., 2010). If a guard condition is not present, the test runner may flag the smart contract as 

vulnerable to reentrancy attacks. 

 

In addition to checking for the presence of a guard condition, the Hardhat test runner also uses 

other techniques to detect reentrancy attacks, such as tracking the state of the contract or 

monitoring the balance of external contract calls mentioned in research by (Sharma, et al., 

2022). By utilizing these and other techniques, the Hardhat test runner helps to ensure that a 

smart contract is resistant to reentrancy attacks and secure against this type of attack. 

3.1.2 Static Code Testing 

 

Slither is a static code analyzer for Ethereum smart contracts that can be used to detect 

vulnerabilities and security issues in the code. It achieves this by performing a thorough 

analysis of the code using techniques such as taint analysis and control flow analysis, which 

help to identify potential vulnerabilities and security flaws (Feist, et al., 2019). 

 

Taint analysis is a technique that tracks the flow of data through a program and identifies 

potentially sensitive or vulnerable data By tracking the flow of data, Slither can detect instances 

where sensitive data may be at risk of being accessed or modified by an attacker. 
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Control flow analysis, on the other hand, is a technique that examines the flow of control 

through a program and identifies potential vulnerabilities and security issues. By analyzing the 

control flow of the program, Slither can identify instances where the program may be 

vulnerable to attacks such as race conditions or denial of service attacks discussed in research 

by (Feist, et al., 2019). 

 

The proposed solution in this research utilizes a combination of manual testing with Hardhat 

and static analysis with Slither to effectively detect and mitigate vulnerabilities in smart 

contracts. By utilizing Hardhat to run unit tests against the solidity smart contract, developers 

can efficiently identify and fix vulnerabilities through the creation of specific test cases. This 

is followed by the use of Slither, a static analysis tool that utilizes SlithIR technology to 

efficiently analyze smart contracts and reduce the number of false positives. By combining 

these two approaches, developers can effectively detect and fix vulnerabilities in smart 

contracts before deployment on the blockchain network. It is worth noting that Hardhat 

operates on its network, allowing for the compilation and testing of contracts without the risk 

of affecting the live blockchain network. This makes it a useful tool for detecting vulnerabilities 

early in the development process. 

 

4 Design Specification 
 
 

 

Figure 5: Design pseudocode 
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In this research, a python script has been developed that utilizes the Hardhat test runner and 

the Slither static code analyzer to detect reentrancy attacks and identify vulnerabilities and 

security issues in a smart contract, respectively. The Hardhat test runner is used to verify the 

resistance of the smart contract to reentrancy attacks by checking for the presence of a guard 

condition. Slither, on the other hand, employs various techniques such as taint analysis and 

control flow analysis to thoroughly analyze the code and identify potential vulnerabilities and 

security flaws. The use of these tools is based on the creation of test cases specifically designed 

for the given smart contract. 

 

It has been recommended to combine static analysis with manual testing to increase the 

likelihood of detecting all potential vulnerabilities and security issues in smart contracts 

described by (Koscher, et al., 2010). Performing manual testing prior to static testing involves 

the creation of test cases by a developer who has thoroughly analyzed the parameters and 

functions in the contract and is designed to uncover potential vulnerabilities and security issues 

that may not be detected through static analysis alone The proposed solution also utilizes the 

Hardhat test runner, which is a set of tools for Ethereum development that includes a test 

runner, to detect reentrancy attacks The test runner can verify the resistance of a smart contract 

to reentrancy attacks by checking for the presence of a guard condition, which is a check that 

prevents the contract from being called again before the previous call has completed. By 

following this approach, the proposed solution aims to optimize and maximize the detection of 

all potential reentrancy vulnerabilities in the solidity smart contract. 

  

5 Implementation 
 

Smart contracts have become increasingly popular and have garnered widespread attention as 

a revolutionary technology in various industries. However, the immutability and transparency 

of smart contracts also make them vulnerable to cyber attacks. Reentrancy attacks, in particular, 

have been a major concern for developers and researchers, as they allow an attacker to 

repeatedly call a contract's function and drain its funds highlighted by (Chen, et al., 2020). 

 

To address this issue, the proposed solution in this research combines the use of manual testing 

with Hardhat and static code analysis with Slither to effectively detect and mitigate 

vulnerabilities in smart contracts. Hardhat is a tool for Ethereum development that includes a 

test runner, allowing for the creation of specific test cases to identify vulnerabilities and 

security issues. Slither, on the other hand, utilizes SlithIR technology to efficiently analyze 

smart contracts and reduce the number of false positives as described by (Feist, et al., 2019). 

By combining these two approaches through the implementation of a Python script, the 

proposed solution aims to automate the testing process and provide a comprehensive and 

efficient method for detecting and mitigating vulnerabilities in smart contracts before 

deployment on the blockchain network. 

 

The output of the above script will depend on the results of the reentrancy scans. If the manual 

reentrancy scan or the static reentrancy scan detects a reentrancy vulnerability in the contract, 
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the script will print "Reentrancy vulnerabilities detected". If no vulnerabilities are detected, the 

script will print "No reentrancy vulnerabilities detected". 

 

The proposed solution for detecting and mitigating reentrancy attacks in Solidity smart 

contracts was implemented through a combination of static analysis using the Slither code 

analyzer and manual testing using the Hardhat test runner. Slither code analyzer was used to 

perform a static analysis of the target smart contract. This involved running the slither 

command followed by the path to the contract and the ‘--detect’ all kinds of reentrancy attacks, 

which instructed Slither to specifically search for reentrancy vulnerabilities. If Slither detected 

any vulnerabilities, they were reported in the output but it also results in a few false positives 

as mentioned in related work. Therefore, it is important to carefully review the results of static 

analysis and additional run another test for the validity of any reported vulnerabilities.  

 

Hence, to cover this, the proposed solution includes manual testing using the Hardhat test 

runner. The Hardhat test runner was used to detect reentrancy attacks in a Solidity smart 

contract by creating a test case in a JavaScript file and running it using the hardhat test 

command followed by the path to the contract. The proposed Javascript unit test was created 

and run against the vulnerable contracts, which also does an additional check along with the 

existing logic mentioned in this research that detects the reentrancy vulnerability in the smart 

contract. The test runner reported success and printed a message indicating that the contract 

passed the test. By using the Hardhat test runner in this way, the reentrancy vulnerabilities in 

the smart contract were successfully detected and appropriate measures could be taken to 

mitigate them. This helped to ensure the security and reliability of the contract on the 

blockchain, mitigating the potential for costly and devastating consequences due to 

vulnerabilities and security issues. 

 

Overall, this script can be a useful tool for developers to detect and mitigate reentrancy attacks 

in their smart contracts, thereby improving the security and reliability of their contracts on the 

blockchain. 

 

6 Evaluation 
 

Four vulnerable contracts were created to evaluate the solution. Out of these four contracts, 

one contract was used to create a custom test case that would run via hardhat and detect the 

reentrancy attack based on the logic defined in the test case. The other three vulnerable 

contracts were run against a static analyzer, which successfully detected all the reentrancy 

attacks without fail. 

 

The test results demonstrate that detecting vulnerabilities before deployment can be optimized 

by adding manual testing to the process as described by (Sklaroff, 2017). This approach and 

solution can be used by blockchain developers to test their smart contracts for reentrancy 

attacks. According to the state-of-the-art discussed in related work, static testing approaches 

come with false positives, and adding a manual testing approach can significantly reduce false 

positives. 
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Table 2: Evaluation Summary 

Vulnerable smart contract Reentrancy detected Unit Test Created 

GasWallet.sol Yes Yes 

vulnContract1.sol Yes No 

vulnContract2.sol Yes No 

vulnContract3.sol Yes No 

 

The GasWallet contract was manually tested using a custom test case running in hardhat 

specifically designed to detect reentrancy attacks. The test was successful in detecting the 

vulnerability present in the contract. Additionally, three other contracts (vulnContract1, 

vulnContract2, and vulnContract3) were evaluated using static analysis with the help of the 

Slither tool and its built-in detectors. These evaluations were also successful in detecting the 

reentrancy vulnerabilities present in the contracts. 

6.1 Test 1 

 

The process involves running the hardhat test followed by the slither static code analysis, which 

enables the detection of reentrancy attacks in vulnerable smart contracts. 

 

A custom test case was created to test for the presence of reentrancy vulnerabilities in 

GasWallet.sol using the APT.sol attacker contract.  The APT.sol contract, which serves as an 

attacker, was also created and used in the test case to successfully test the reentrancy 

vulnerability. The test case involved attempting to withdraw funds from the victim contract 

over the hardhat network. The results of the test were used to determine whether the 

GasWallet.sol contract was vulnerable to reentrancy attacks. 

 

 

Figure 6: Reentrancy Vulnerability detected by Manual and Static testing 
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6.2 Test 2 
 

Static analysis tool used to detect vulnerabilities of reentrancy attacks in vulnerable smart 

contracts. The results of the analysis provided the specific line numbers where these 

vulnerabilities were found in the contracts. 

 

vulnContract3.sol is detected with reentrancy vulnerability successfully. 
 

 

Figure 7: Reentrancy Vulnerability Detected 

6.3 Test 3 
 

vulnContract2.sol is detected with reentrancy vulnerability successfully. 
 

 

Figure 8: Reentrancy Vulnerability Detected 
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6.4 Test 4 
 

vulnContract1.sol is detected with reentrancy vulnerability successfully. 
 

 

Figure 9: Reentrancy Vulnerability Detected 

6.5 Discussion 
 

The proposed solution for detecting reentrancy attacks in smart contracts involves a 

combination of manual testing using the Hardhat test runner and static code analysis using the 

Slither tool. By performing both manual testing and static analysis, the proposed solution aims 

to increase the likelihood of detecting all potential reentrancy vulnerabilities and security issues 

in smart contracts. 

 

One potential limitation of the proposed solution is that manual testing can be time-consuming 

and may not be feasible for large or complex contracts. Additionally, manual testing may not 

be able to uncover all vulnerabilities, as it relies on the developer's ability to identify and build 

test cases for potential attack vectors. 

 

In order to enhance the security of smart contracts with complex architecture, it is 

recommended to incorporate the enterprise version of Mythx. This version maintains a smart 

contract security repository which is mapped to common weakness enumeration and provides 

guidelines for the secure development of smart contracts using Solidity. One of the advantages 

of Mythx is its ability to identify vulnerabilities that may not be detectable through static 

analysis or manual testing. In addition, dynamic analysis techniques such as fuzz testing can 

be utilized to expose potential vulnerabilities. These improvements can help to optimize and 

maximize the detection of all potential vulnerabilities and security issues in smart contracts. 
 

7 Conclusion and Future Work 
 

The objectives were to identify and evaluate existing solutions for detecting and mitigating 

reentrancy attacks and to propose a more effective solution that combines manual testing and 

static analysis. 

 

A comprehensive review of the literature was conducted to achieve these objectives, and two 

tools, Hardhat and Slither, were selected for further evaluation. Hardhat was used to perform 

manual testing through the creation of test cases, while Slither was used for static code analysis. 
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The proposed solution combined both approaches, with Hardhat being used to detect 

reentrancy attacks through the creation of test cases, and Slither being used to further verify 

the presence of vulnerabilities. 

 

The key findings of this research were that the proposed solution was able to effectively detect 

and mitigate reentrancy attacks in smart contracts. This was demonstrated through successfully 

detecting vulnerabilities in a sample smart contract using Hardhat and Slither. 

 

The implications of this research are significant for developers of smart contracts, as it provides 

a reliable and efficient method for detecting and mitigating reentrancy attacks prior to 

deployment. This can help to prevent losses due to attacks and increase the overall security of 

smart contracts. 

 

There are some limitations to this research, however. While the proposed solution was effective 

in detecting reentrancy attacks, it is not applicable to other types of vulnerabilities. 

Additionally, the sample size used in this study was small, and further testing with a larger 

sample size would be necessary to confirm the efficacy of the proposed solution. 

 

There are several potential avenues for future work in this area, including the integration of 

dynamic analysis techniques such as fuzz testing, and the development of a commercial product 

based on the proposed solution. Overall, this research represents a step forward in the detection 

and mitigation of reentrancy attacks in smart contracts and has the potential to greatly improve 

the security of these important tools. 
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