

Optimizing Detection of Reentrancy attacks in

Solidity Smart Contracts

MSc Industrial Internship

MSc In Cybersecurity

Mayank Sharma

Student ID: 21156913

School of Computing

National College of Ireland

Supervisor: Prof. Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Mayank Sharma

Student ID:

21156913

Programme:

Msc. In Cybersecurity

Year:

2022-2023

Module:

Msc Industrial Internship

Supervisor:

Prof. Vikas Sahni

Submission Due

Date:

06-JAN-2023

Project Title:

Optimizing Detection of Reentrancy attacks in Solidity Smart

Contracts

Word Count:

6125 Page Count: 20

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Mayank Sharma

Date:

04-JAN-2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Optimizing Detection of Re-entrancy attacks in

Solidity Smart Contracts

Mayank Sharma

21156913

Abstract

Smart contracts, which are self-executing contracts with the terms of the agreement

between buyer and seller being directly written into lines of code, have the potential to

automate and improve efficiency in various industries such as supply chain management,

financial transactions, and legal agreements by storing the contract on a distributed ledger.

However, vulnerabilities in the code of smart contracts can be exploited by malicious

actors, leading to unauthorized access to funds or sensitive information, disruption of

contract execution, and other harmful effects. One type of attack on smart contracts is the

reentrancy attack, in which a contract function is repeatedly called before its execution is

complete, potentially allowing for the manipulation of data or draining of funds.

 The proposed solution combines manual testing with static code analysis and the use

of tools such as Hardhat and Slither to optimize and maximize the detection of reentrancy

attacks and other vulnerabilities in smart contracts. By following this approach, developers

can help to ensure the reliability and trustworthiness of their contracts and protect against

attacks. This research aims to provide a solution for detecting reentrancy attacks in smart

contracts that involve a combination of manual testing using the Hardhat test runner and

static analysis with the Slither tool. Initial evaluation of this approach has shown

promising results in efficiently detecting vulnerabilities and mitigating risks prior to

deployment. Further research is needed to fully assess the effectiveness of this solution

and explore potential improvements.

1 Introduction

One type of distributed ledger, a blockchain, is utilized to manage assets that are shared by

users. These assets are transferred according to the rules that are encoded in a smart contract.

The transfers take place within immutable transactions that are logged on the blockchain.

Ethereum is one of the most widely used blockchains that enables smart contracts. The market

value of Ethereum was approximately $130 billion in January 20211. On Ethereum, smart

contracts allow users and other contracts to interact with them by calling functions in the

contracts. An execution cost known as gas is required to carry out the transaction on a smart

contract. The cryptocurrency of Ethereum, ether (ETH), is used to pay for gas1.

1https://www.csc.kth.se/~dilian/Papers/ease21.pdf

2

Ethereum is a decentralized, open-source blockchain platform that enables the creation of smart

contracts. It allows developers to build and deploy decentralized applications, or dApps, on its

platform.

The most widely used tool for creating Ethereum smart contracts today is Solidity, which was

created by the Ethereum project's developers explained by (Kaleem, et al., 2020). Additionally

for writing high-level smart contracts, Solidity has been utilized vastly by the Developers.

However, smart contracts developed in Solidity have security flaws wherein different attacks

on Ethereum-based projects have been widely reported exploited described by (Chen, et al.,

2020).

The most well-known instance of a smart contract attack is the one on "The DAO

(decentralized autonomous organizations)" in June 2016 described in research by (Morrison,

et al., 2020). Reentrancy is a vulnerability that was exploited in the attack to steal more than

60 million US dollars worth of ether. Reentrancy occurs when the main contract calls an

external contract, which then contacts the calling contract once more in a single transaction.

Due to the transparency of the Ethereum blockchain, it is possible to continuously launch an

attack using the deployed contracts' flaws.

1.1 Research Objective and Question

The goal of this research is to the detection reentrancy attacks in solidity smart contracts.

The research objective of this study was to investigate and identify potential vulnerabilities and

security issues in smart contracts. The research question for this study was: What are the most

effective methods for detecting and mitigating vulnerabilities and security issues in smart

contracts?

1.2 Motivation

The motivation for researching the detection of reentrancy attacks in smart contracts stems

from the fact that these attacks can have significant consequences for the security and integrity

of blockchain systems. Reentrancy attacks involve a malicious contract calling an external

contract multiple times before the external contract has completed its execution, leading to a

state of infinite loop and potentially allowing the attacker to drain the victim contract of its

resources (Buterin, 2014).

Reentrancy attacks can have serious implications for the stability and security of blockchain

systems, as they can lead to the loss of funds or the disruption of critical services. For example,

the infamous DAO attack of 2016, in which a hacker exploited a reentrancy vulnerability to

drain the Ethereum-based Decentralized Autonomous Organization of millions of dollars, led

to a hard fork in the Ethereum network and highlighted the need for robust security measures

to prevent such attacks (Buterin, 2016). Another such attack lead by a group or individual

carried out two "reentrancy attacks" on the Uniswap and Lendf.me cryptocurrency platforms,

3

stealing more than $25 million. The attacks were made possible by a known vulnerability in

Uniswap's ERC777-token, which allows for repeated withdrawal of funds before the initial

transaction is approved or declined. Uniswap lost between $300,000 and $1.1 million in

imBTC tokens, while Lendf.Me lost more than $24 million.

Given the potential consequences of reentrancy attacks, it is important for developers to have

effective tools and methods for detecting and mitigating these vulnerabilities in smart contracts.

This motivation drives the research on the detection of reentrancy attacks and the development

of solutions such as the proposed combination of manual testing and static analysis.

1.3 Paper Outline

Figure 1: Paper structure

2 Related Work

A smart contract is a type of internet protocol that carries out scheduled tasks without the

requirement for supervision by a reliable third party. “Computer program stored in a distributed

ledger system wherein the outcome of any execution of the program is recorded on the distributed

ledger” are called smart contracts as defined by ISO2. In addition to facilitating wallet

functionality, voting, bidding, market forecasting, supply chain tracking, and other purposes,

smart contracts broadened the applicability of blockchain.

The Ethereum network, which uses the Solidity programming language, is frequently

threatened by reentrancy attacks. The attack occurred when an adversary uses an external call

of a smart contract to force the contract to execute more code by calling back to itself using a

fallback function before updating the final state of the contract addressed by (Alkhalifah, et al.,

2021).

2https://www.iso.org/obp/ui/fr/

4

Nick Szabo developed the concept of smart contracts in 1996 has been illustrated by (Kim &

Tai-hoon, 2016). It has been stated that smart contracts are lines of code that are implemented

on a blockchain network and automatically carry out transactions in a transparent and

decentralized method. It has been observed by (Huang, et al., 2017) a smart contract cannot be

changed once it has been deployed, and there are very few ways to deal with errors that occur

during contract execution.

Figure 2: Reentrancy attack

2.1 Smart contracts

Smart contracts, a technology in the field of blockchain that encodes the terms of an agreement

into code and stores it on a decentralized network, have been utilized to automate and

streamline various processes, including supply chain management, financial transactions, and

legal agreements. The automation and enforceability of contracts, made possible by smart

contracts, eliminate the need for intermediaries and reduce the risk of errors or fraud. However,

vulnerabilities in the code of smart contracts can be exploited by hackers and malicious actors,

leading to unauthorized access to funds or sensitive information, disruption of contract

execution, and other harmful effects. One type of attack on smart contracts is the reentrancy

attack, in which a contract function is repeatedly called before its execution is complete,

potentially allowing for the manipulation of data or draining of funds discussed by (Buterin,

2014). Other vulnerabilities that may be exploited include lack of input validation, race

conditions, and denial of service attacks.

The consequences of a successful attack on a smart contract can include financial loss,

reputation damage, and legal liability, and may be motivated by a desire to steal funds, disrupt

operations, or gain access to sensitive information.

5

2.1.1 Smart contract vulnerabilities

Several types of vulnerabilities can occur in smart contracts, and the most impactful ones can

have serious consequences for the contract and its stakeholders. Some common types of

vulnerabilities in smart contracts include:

• Reentrancy attacks: These attacks allow an attacker to repeatedly call a contract

function before it has completed execution, potentially allowing the attacker to drain

funds or manipulate data explained by (Buterin, 2014).

• Race conditions: These vulnerabilities occur when a contract has multiple concurrent

processes that are not properly synchronized, potentially allowing an attacker to exploit

the race condition to manipulate data or execute unintended actions.

• Denial of service attacks: These attacks involve overwhelming a contract with a large

number of requests or transactions, potentially causing it to malfunction or become

unavailable

• Unchecked call/send: If a contract does not properly check the return value of a call or

send operation, it may be vulnerable to attack through the injection of malicious code

Developers need to be aware of these and other vulnerabilities described by (Nguyen, et al.,

2021) and (Mense & Flatscher, 2018) to design and implement effective security measures to

prevent attacks. By thoroughly testing and analyzing smart contracts, developers can help to

ensure their reliability and trustworthiness and minimize the risk of vulnerabilities being

exploited.

2.2 Importance of Reentrancy attack

Reentrancy attacks are a type of vulnerability that allows an attacker to repeatedly call a

function in a smart contract before the initial transaction has been completed. This can allow

the attacker to drain funds from the contract or manipulate its state in ways that were not

intended by the developer. Reentrancy attacks are a major concern for smart contracts because

they can be difficult to detect and can have significant consequences for the contract and its

users. In the Decentralized Application Security Project (DASP) Top 10 of 2018, reentrancy

attacks were ranked as the second most common type of vulnerability in smart contracts,

highlighting the importance of addressing this issue. To mitigate the risk of reentrancy attacks,

developers need to follow best practices and security standards when coding and testing their

smart contracts, such as the OWASP Secure Coding Practice and Solidity Smart contract

security consideration. By carefully considering the potential vulnerabilities of their smart

contracts and taking steps to address them, developers can help ensure the security and

reliability of their applications.

6

2.3 Types of Reentrancy Attacks

When an external function invokes another insecure contract and gave an attacker control of

that insecure contract and opens a vulnerability. A reentrancy attack would be carried out by

the adversary by recursively calling the vulnerable function and consuming all ether until all

the gas is consumed and the adversary would exhaust all ether in the victim’s smart contract.

"gas" refers to the extra cost associated with completing a smart contract or transaction on the

blockchain network has been reported by (Atzei, et al., 2017).

2.3.1 Single Reentrancy Attacks

When the vulnerable function is identified by the attacker and the attacker keeps calling that

function recursively is known as a single reentrancy attack as described in the research by

(Samreen & Alalfi, 2020).

2.3.2 Cross-function Attacks

A cross-function reentrancy attack is achieved when an attacker exploited the state of a

vulnerable function that shares a state with another function. Hence, it is hard to detect as

described in the research (Samreen & Alalfi, 2020).

A hacker found a vulnerability in the DAO's code and was able to steal 3.6 million Ethereum

into his account, which caused the price of ether to plunge and discouraged investors in the

community reported by (Sayeed, et al., 2020). This is the famous reentrancy attack that was

carried out by adversaries in 2016. This research talks about the automating detection of

reentrancy attacks using slither modules and hardhat in solidity smart contracts.

2.4 Limitations

The various techniques used to guard against the reentrancy vulnerability in smart contracts

are described here. This includes using secure coding practices, such as properly handling input

validation, using secure libraries and frameworks, and implementing strict access controls. This

research is focused on automating the static analysis for detecting reentrancy vulnerabilities in

solidity smart contracts.

Additionally, the use of smart contract testing and analysis tools, such as Mythril and Oyente,

can help identify potential vulnerabilities in contract code and provide recommendations for

remediation.

2.4.1 Mythril

It offers a unique examination of smart contract vulnerabilities based on symbolic code

execution which is used to find security vulnerabilities with smart contracts. The accuracy of

Mythril and other analysis tools is limited by the quality and completeness of their vulnerability

detection database and ruleset. Smart contracts created for EVM-compatible blockchains like

Ethereum and Tron can be scanned by Mythril using EVM bytecode to find cybersecurity flaws

as mentioned in the research by (Sayeed, et al., 2020).

2.4.2 Oyente

A similar and better tool that works on symbolic execution, one which can identify security

flaws in smart contracts. The character of an execution path is symbolically represented by a

7

mathematical formula in the symbolic execution approach. It also determines whether the new

formula and formulae with common bugs can both be used simultaneously, Oyente compares

the two formulas as described by (Luu, et al., 2016)

2.4.3 SolidityCheck

It is another open-source tool based on regular expressions and program instrumentation. Smart

contract files with their Solidity source code are sent to SolidityCheck. The source code is first

prepared so that regular expressions may be accessed. Following that, the problem statement

is located by matching the bug statements with particular regular expressions. SolidityCheck

combines software instrumentation to guard against integer overflow flaws and reentrancy

flaws as described by (Zhang, et al., 2019) The fact that it only uses regular expressions means

that flaws like cross-reentrancy do not get recognized. These patterns are based on previous

attacks and known vulnerabilities, making them limited and difficult to generalize.

Figure 3: Tool comparison results

Figure 4: Tool comparison results

Based on the existing research Slither has been selected as the static analysis tool in this

research due to its demonstrated accuracy and efficiency in detecting vulnerabilities in smart

contracts. In comparison to other tools such as oyente, Mythril, and solidity-check, Slither has

consistently demonstrated superior performance in detecting a wide range of vulnerabilities,

including reentrancy attacks. In addition to its high accuracy, Slither also utilizes the SlithIR

technology, which allows for efficient analysis of smart contracts and reduces the number of

false positives that may be produced by other tools described by (Feist, et al., 2019). Hardhat,

a test runner tool, was also utilized in this research to run unit tests against the solidity smart

contract and effectively detect reentrancy attacks through the creation of specific test cases. To

address these vulnerabilities, the combination of static code analysis, manual testing, and the

use of tools such as Hardhat and Slither can be utilized by developers and security researchers

to detect and prevent attacks said by (Sklaroff, 2017) By taking a proactive approach to

security, the reliability and trustworthiness of smart contracts can be ensured and their potential

benefits maximized.

8

2.5 Research Niche

Table 1: Research Niche

Related Work Strength Limitation No. of

Citations

(Alkhalifah, et al., 2021) Comprehensive

combines static and

dynamic analysis

Relies on analysis

tools, does not detect

all vulnerabilities

9

(Atzei, et al., 2017) Provides a

comprehensive overview

of attacks on Ethereum

smart contracts

Does not cover all

types of attacks.

1457

(Buterin, 2014) Provides a flexible and

powerful platform for

building decentralized

applications

scalability issues,

vulnerable to certain

types of attacks.

3967

(Chen, et al., 2020) Covers three aspects of

Ethereum security

Not up to date. 274

(Chen, et al., 2020) Generic, efficient, easily

extendable, compatible

with multiple

blockchains

Requires deep

understanding of

blockchain internals to

develop new detection

apps

55

(Feist, et al., 2019) Checks for a wide range

of vulnerabilities, easy to

use.

Produce false positives

or false negatives.

211

(Huang, et al., 2017) Decentralized, provides

trust in IoT data

exchange, transparent,

auditable

Requires in-depth

knowledge of

applications in IoT

102

(Kaleem, et al., 2020) Comparison of security

vulnerabilities between

Solidity and Vyper

Not updated with new

attack vectors

24

(Kim & Tai-hoon, 2016) Convenient, fast, no

intermediaries or fees,

easily transferable across

borders

Subject to digital

security risks and not

widely accepted

29

(Koscher, et al., 2010) Demonstrates the

fragility of modern

automotive systems,

highlights potential risks

Not up to date. 2172

(Luu, et al., 2016) Identifies new security

problems

Not up to date. 1806

(Mense & Flatscher,

2018)

Compares code analysis

tools

Not up to date. 79

(Morrison, et al., 2020) Challenges of

governance in

blockchain-based

organizations

Not be applicable to all

blockchain-based

organizations

40

9

(Nguyen, et al., 2021) Can fix common

vulnerabilities in smart

contracts, proven to be

sound

Introduce minor

overhead with new

attack vectors

21

(Rodler, et al., 2018) Protects existing

contracts, accurate,

minimal overhead

Only protects against

reentrancy attacks.

158

(Salehi, et al., 2022) Upgradeability patterns

in smart contracts and a

measurement framework

to evaluate their use

Limited to the

Ethereum blockchain,

may not cover all

upgradeability patterns

0

(Samreen & Alalfi, 2020) Combines static and

dynamic analysis, high

performance, low false

positives

Lacks Manual testing 32

(Sayeed, et al., 2020) Comprehensive

overview of smart

contract vulnerabilities

and attacks

Not up to date 140

(Sharma, et al., 2022) Explores security

perceptions and practices

of smart contract

developers

A qualitative,

exploratory study with

a small sample size

3

(Sklaroff, 2017) Technologically

advanced integrates with

modern systems, and

offers a range of

operations.

Require human

intermediaries

331

(Zhang, et al., 2019) Efficient, effective,

classifies problems in

Solidity

Limited to Solidity,

may not detect all

problems

19

3 Research Methodology

During this research, the selection and use of relevant keywords were carefully considered in

order to effectively investigate the vulnerabilities and potential attack vectors of smart

contracts. These keywords included: "smart contracts," "Ethereum," "blockchain,"

"vulnerabilities," "security," "reentrancy attacks," "static code analysis," "manual testing,"

"Hardhat," and "Slither." By including these keywords in the research, a comprehensive

understanding of the topic was gained.

By using these and other relevant keywords, it is possible to locate a variety of research papers

and other resources that can provide valuable insights into the vulnerabilities and potential

attack vectors of smart contracts. By carefully reviewing the proposed solution in this research,

a developer can gain a better understanding of the various techniques and tools available for

detecting reentrancy attacks and other vulnerabilities in smart contracts. This can help the

developer design and implement effective testing and security measures for their smart

10

contracts before going on the Ethereum network. It is generally not possible to directly modify

or delete a smart contract once it has been deployed to a blockchain due to the permanent,

immutable nature of the blockchain addressed by (Buterin, 2014). However, vulnerabilities in

a deployed smart contract can be addressed by deploying a new contract that includes the

necessary fixes, a process known as contract upgrading or contract migration mentioned by

(Salehi, et al., 2022). While contract upgrading can be a viable solution, it is important to

carefully consider the costs and challenges involved, including fees for deploying the new

contract, coordination and communication with users, and potential confusion or mistrust

among users discussed by (Sklaroff, 2017).

3.1 Combined Approach mitigating reentrancy attack in solidity smart

contracts

3.1.1 Manual Unit Testing

Hardhat is a set of tools for Ethereum development that includes a test runner and a task runner.

The test runner can be used to detect reentrancy attacks by running tests on a smart contract to

ensure that it is resistant to such attacks discussed by (Sharma, et al., 2022). Chai and Mocha

testing frameworks provide a range of functions and assertions for verifying the behavior of a

contract and detecting potential vulnerabilities.

To detect a reentrancy attack, the test runner in Hardhat verifies that the smart contract correctly

handles reentrancy by checking for the presence of a guard condition. A guard condition is a

check that prevents the contract from being called again before the previous call has been

completed and is an important defense against reentrancy attacks mentioned by (Koscher, et

al., 2010). If a guard condition is not present, the test runner may flag the smart contract as

vulnerable to reentrancy attacks.

In addition to checking for the presence of a guard condition, the Hardhat test runner also uses

other techniques to detect reentrancy attacks, such as tracking the state of the contract or

monitoring the balance of external contract calls mentioned in research by (Sharma, et al.,

2022). By utilizing these and other techniques, the Hardhat test runner helps to ensure that a

smart contract is resistant to reentrancy attacks and secure against this type of attack.

3.1.2 Static Code Testing

Slither is a static code analyzer for Ethereum smart contracts that can be used to detect

vulnerabilities and security issues in the code. It achieves this by performing a thorough

analysis of the code using techniques such as taint analysis and control flow analysis, which

help to identify potential vulnerabilities and security flaws (Feist, et al., 2019).

Taint analysis is a technique that tracks the flow of data through a program and identifies

potentially sensitive or vulnerable data By tracking the flow of data, Slither can detect instances

where sensitive data may be at risk of being accessed or modified by an attacker.

11

Control flow analysis, on the other hand, is a technique that examines the flow of control

through a program and identifies potential vulnerabilities and security issues. By analyzing the

control flow of the program, Slither can identify instances where the program may be

vulnerable to attacks such as race conditions or denial of service attacks discussed in research

by (Feist, et al., 2019).

The proposed solution in this research utilizes a combination of manual testing with Hardhat

and static analysis with Slither to effectively detect and mitigate vulnerabilities in smart

contracts. By utilizing Hardhat to run unit tests against the solidity smart contract, developers

can efficiently identify and fix vulnerabilities through the creation of specific test cases. This

is followed by the use of Slither, a static analysis tool that utilizes SlithIR technology to

efficiently analyze smart contracts and reduce the number of false positives. By combining

these two approaches, developers can effectively detect and fix vulnerabilities in smart

contracts before deployment on the blockchain network. It is worth noting that Hardhat

operates on its network, allowing for the compilation and testing of contracts without the risk

of affecting the live blockchain network. This makes it a useful tool for detecting vulnerabilities

early in the development process.

4 Design Specification

Figure 5: Design pseudocode

12

In this research, a python script has been developed that utilizes the Hardhat test runner and

the Slither static code analyzer to detect reentrancy attacks and identify vulnerabilities and

security issues in a smart contract, respectively. The Hardhat test runner is used to verify the

resistance of the smart contract to reentrancy attacks by checking for the presence of a guard

condition. Slither, on the other hand, employs various techniques such as taint analysis and

control flow analysis to thoroughly analyze the code and identify potential vulnerabilities and

security flaws. The use of these tools is based on the creation of test cases specifically designed

for the given smart contract.

It has been recommended to combine static analysis with manual testing to increase the

likelihood of detecting all potential vulnerabilities and security issues in smart contracts

described by (Koscher, et al., 2010). Performing manual testing prior to static testing involves

the creation of test cases by a developer who has thoroughly analyzed the parameters and

functions in the contract and is designed to uncover potential vulnerabilities and security issues

that may not be detected through static analysis alone The proposed solution also utilizes the

Hardhat test runner, which is a set of tools for Ethereum development that includes a test

runner, to detect reentrancy attacks The test runner can verify the resistance of a smart contract

to reentrancy attacks by checking for the presence of a guard condition, which is a check that

prevents the contract from being called again before the previous call has completed. By

following this approach, the proposed solution aims to optimize and maximize the detection of

all potential reentrancy vulnerabilities in the solidity smart contract.

5 Implementation

Smart contracts have become increasingly popular and have garnered widespread attention as

a revolutionary technology in various industries. However, the immutability and transparency

of smart contracts also make them vulnerable to cyber attacks. Reentrancy attacks, in particular,

have been a major concern for developers and researchers, as they allow an attacker to

repeatedly call a contract's function and drain its funds highlighted by (Chen, et al., 2020).

To address this issue, the proposed solution in this research combines the use of manual testing

with Hardhat and static code analysis with Slither to effectively detect and mitigate

vulnerabilities in smart contracts. Hardhat is a tool for Ethereum development that includes a

test runner, allowing for the creation of specific test cases to identify vulnerabilities and

security issues. Slither, on the other hand, utilizes SlithIR technology to efficiently analyze

smart contracts and reduce the number of false positives as described by (Feist, et al., 2019).

By combining these two approaches through the implementation of a Python script, the

proposed solution aims to automate the testing process and provide a comprehensive and

efficient method for detecting and mitigating vulnerabilities in smart contracts before

deployment on the blockchain network.

The output of the above script will depend on the results of the reentrancy scans. If the manual

reentrancy scan or the static reentrancy scan detects a reentrancy vulnerability in the contract,

13

the script will print "Reentrancy vulnerabilities detected". If no vulnerabilities are detected, the

script will print "No reentrancy vulnerabilities detected".

The proposed solution for detecting and mitigating reentrancy attacks in Solidity smart

contracts was implemented through a combination of static analysis using the Slither code

analyzer and manual testing using the Hardhat test runner. Slither code analyzer was used to

perform a static analysis of the target smart contract. This involved running the slither

command followed by the path to the contract and the ‘--detect’ all kinds of reentrancy attacks,

which instructed Slither to specifically search for reentrancy vulnerabilities. If Slither detected

any vulnerabilities, they were reported in the output but it also results in a few false positives

as mentioned in related work. Therefore, it is important to carefully review the results of static

analysis and additional run another test for the validity of any reported vulnerabilities.

Hence, to cover this, the proposed solution includes manual testing using the Hardhat test

runner. The Hardhat test runner was used to detect reentrancy attacks in a Solidity smart

contract by creating a test case in a JavaScript file and running it using the hardhat test

command followed by the path to the contract. The proposed Javascript unit test was created

and run against the vulnerable contracts, which also does an additional check along with the

existing logic mentioned in this research that detects the reentrancy vulnerability in the smart

contract. The test runner reported success and printed a message indicating that the contract

passed the test. By using the Hardhat test runner in this way, the reentrancy vulnerabilities in

the smart contract were successfully detected and appropriate measures could be taken to

mitigate them. This helped to ensure the security and reliability of the contract on the

blockchain, mitigating the potential for costly and devastating consequences due to

vulnerabilities and security issues.

Overall, this script can be a useful tool for developers to detect and mitigate reentrancy attacks

in their smart contracts, thereby improving the security and reliability of their contracts on the

blockchain.

6 Evaluation

Four vulnerable contracts were created to evaluate the solution. Out of these four contracts,

one contract was used to create a custom test case that would run via hardhat and detect the

reentrancy attack based on the logic defined in the test case. The other three vulnerable

contracts were run against a static analyzer, which successfully detected all the reentrancy

attacks without fail.

The test results demonstrate that detecting vulnerabilities before deployment can be optimized

by adding manual testing to the process as described by (Sklaroff, 2017). This approach and

solution can be used by blockchain developers to test their smart contracts for reentrancy

attacks. According to the state-of-the-art discussed in related work, static testing approaches

come with false positives, and adding a manual testing approach can significantly reduce false

positives.

14

Table 2: Evaluation Summary

Vulnerable smart contract Reentrancy detected Unit Test Created

GasWallet.sol Yes Yes

vulnContract1.sol Yes No

vulnContract2.sol Yes No

vulnContract3.sol Yes No

The GasWallet contract was manually tested using a custom test case running in hardhat

specifically designed to detect reentrancy attacks. The test was successful in detecting the

vulnerability present in the contract. Additionally, three other contracts (vulnContract1,

vulnContract2, and vulnContract3) were evaluated using static analysis with the help of the

Slither tool and its built-in detectors. These evaluations were also successful in detecting the

reentrancy vulnerabilities present in the contracts.

6.1 Test 1

The process involves running the hardhat test followed by the slither static code analysis, which

enables the detection of reentrancy attacks in vulnerable smart contracts.

A custom test case was created to test for the presence of reentrancy vulnerabilities in

GasWallet.sol using the APT.sol attacker contract. The APT.sol contract, which serves as an

attacker, was also created and used in the test case to successfully test the reentrancy

vulnerability. The test case involved attempting to withdraw funds from the victim contract

over the hardhat network. The results of the test were used to determine whether the

GasWallet.sol contract was vulnerable to reentrancy attacks.

Figure 6: Reentrancy Vulnerability detected by Manual and Static testing

15

6.2 Test 2

Static analysis tool used to detect vulnerabilities of reentrancy attacks in vulnerable smart

contracts. The results of the analysis provided the specific line numbers where these

vulnerabilities were found in the contracts.

vulnContract3.sol is detected with reentrancy vulnerability successfully.

Figure 7: Reentrancy Vulnerability Detected

6.3 Test 3

vulnContract2.sol is detected with reentrancy vulnerability successfully.

Figure 8: Reentrancy Vulnerability Detected

16

6.4 Test 4

vulnContract1.sol is detected with reentrancy vulnerability successfully.

Figure 9: Reentrancy Vulnerability Detected

6.5 Discussion

The proposed solution for detecting reentrancy attacks in smart contracts involves a

combination of manual testing using the Hardhat test runner and static code analysis using the

Slither tool. By performing both manual testing and static analysis, the proposed solution aims

to increase the likelihood of detecting all potential reentrancy vulnerabilities and security issues

in smart contracts.

One potential limitation of the proposed solution is that manual testing can be time-consuming

and may not be feasible for large or complex contracts. Additionally, manual testing may not

be able to uncover all vulnerabilities, as it relies on the developer's ability to identify and build

test cases for potential attack vectors.

In order to enhance the security of smart contracts with complex architecture, it is

recommended to incorporate the enterprise version of Mythx. This version maintains a smart

contract security repository which is mapped to common weakness enumeration and provides

guidelines for the secure development of smart contracts using Solidity. One of the advantages

of Mythx is its ability to identify vulnerabilities that may not be detectable through static

analysis or manual testing. In addition, dynamic analysis techniques such as fuzz testing can

be utilized to expose potential vulnerabilities. These improvements can help to optimize and

maximize the detection of all potential vulnerabilities and security issues in smart contracts.

7 Conclusion and Future Work

The objectives were to identify and evaluate existing solutions for detecting and mitigating

reentrancy attacks and to propose a more effective solution that combines manual testing and

static analysis.

A comprehensive review of the literature was conducted to achieve these objectives, and two

tools, Hardhat and Slither, were selected for further evaluation. Hardhat was used to perform

manual testing through the creation of test cases, while Slither was used for static code analysis.

17

The proposed solution combined both approaches, with Hardhat being used to detect

reentrancy attacks through the creation of test cases, and Slither being used to further verify

the presence of vulnerabilities.

The key findings of this research were that the proposed solution was able to effectively detect

and mitigate reentrancy attacks in smart contracts. This was demonstrated through successfully

detecting vulnerabilities in a sample smart contract using Hardhat and Slither.

The implications of this research are significant for developers of smart contracts, as it provides

a reliable and efficient method for detecting and mitigating reentrancy attacks prior to

deployment. This can help to prevent losses due to attacks and increase the overall security of

smart contracts.

There are some limitations to this research, however. While the proposed solution was effective

in detecting reentrancy attacks, it is not applicable to other types of vulnerabilities.

Additionally, the sample size used in this study was small, and further testing with a larger

sample size would be necessary to confirm the efficacy of the proposed solution.

There are several potential avenues for future work in this area, including the integration of

dynamic analysis techniques such as fuzz testing, and the development of a commercial product

based on the proposed solution. Overall, this research represents a step forward in the detection

and mitigation of reentrancy attacks in smart contracts and has the potential to greatly improve

the security of these important tools.

References

Alkhalifah, Ayman, N. A., Watters, P. A. ,. & ASM, 2021. A mechanism to detect and prevent Ethereum
blockchain smart contract reentrancy attacks. Frontiers in Computer Science, 3(Frontiers Media SA), p. 598780.

Atzei, Bartoletti, N. a., Cimoli, M. a. & Tiziana, 2017. A survey of attacks on ethereum smart contracts (sok).
International conference on principles of security and trust, pp. 164-186.

Buterin, V., 2014. A next-generation smart contract and decentralized application platform. white paper,
Volume 3, pp. 2-1.

Chen, H., Pendleton, M., Njilla, L. & Xu, S., 2020. A survey on ethereum systems security: Vulnerabilities,
attacks, and defenses. ACM Computing Surveys (CSUR), Volume 53, pp. 1-43.

Chen, T. et al., 2020. SODA: A Generic Online Detection Framework for Smart Contracts.. NDSS.

Feist, J., Grieco, G. & Groce, A., 2019. Slither: A Static Analysis Framework for Smart Contracts. 2019 IEEE/ACM
2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Issue
10.1109/WETSEB.2019.00008, pp. 8-15.

Huang, et al., 2017. A decentralized solution for IoT data trusted exchange based-on blockchain. 2017 3rd IEEE
International Conference on Computer and Communications (ICCC), Issue IEEE, pp. 1180-1184.

Kaleem, M., Mavridou, A. & Laszka, A., 2020. Vyper: A security comparison with solidity based on common
vulnerabilities. 2020 2nd Conference on Blockchain Research \& Applications for Innovative Networks and
Services (BRAINS), Issue IEEE, pp. 107-11.

Kim & Tai-hoon, 2016. A study of digital currency cryptography for business marketing and finance security.

예술인문사회융합멀티미디어논문지, 6(인문사회과학기술융합학회), pp. 365-376.

18

Koscher, K. a. C. A. a. R. F. a. P. S. a. K. T. a. C. S. et al., 2010. Experimental security analysis of a modern
automobile. 2010 IEEE symposium on security and privacy, pp. 447-462.

Luu, L. et al., 2016. Making smart contracts smarter. Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pp. 254-269.

Mense, A. & Flatscher, M., 2018. Security vulnerabilities in ethereum smart contracts. Proceedings of the 20th
international conference on information integration and web-based applications \& services, pp. 375-380.

Morrison, R., Mazey, N. C. & Wingreen, S. C., 2020. The DAO controversy: the case for a new species of
corporate governance?. Frontiers in Blockchain, Volume 3, p. 25.

Nguyen, T. D., Pham, L. H. & Sun, J., 2021. SGUARD: towards fixing vulnerable smart contracts automatically.
2021 IEEE Symposium on Security and Privacy (SP)}, pp. 1215-1229.

Rodler, M., Li, W., Karame, G. O. & Davi, L., 2018. Sereum: Protecting existing smart contracts against re-
entrancy attacks. arXiv preprint arXiv:1812.05934.

Salehi, M., Clark, J. & Mannan, M., 2022. Not so immutable: Upgradeability of Smart Contracts on Ethereum.
arXiv preprint arXiv:2206.00716.

Samreen, N. F. & Alalfi, M. H., 2020. Reentrancy vulnerability identification in ethereum smart contracts. 2020
IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE), Issue IEEE, pp. 22-29.

Sayeed, S., Marco-Gisbert, H. & Caira, T., 2020. Smart contract: Attacks and protections. IEEE Access, Volume 8,
pp. 24416-24427.

Sharma, T., Zhou, Z., Miller, A. & Wang, Y., 2022. Exploring Security Practices of Smart Contract Developers.
arXiv preprint arXiv:2204.11193.

Sklaroff, J. M., 2017. Smart contracts and the cost of inflexibility. U. Pa. L. Rev., Volume 166, p. 263.
Zhang, P., Xiao, F. & Luo, X., 2019. SolidityCheck: Quickly detecting smart contract problems through regular
expressions. arXiv preprint arXiv:1911.09425.

