ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Cyber Security

Harsh Dharmendra Patel
Student ID: X21141932

School of Computing
National College of Ireland

Supervisor: Prof. Jawad Salahuddin

‘-—
National College of Ireland \ National

MSc Project Submission Sheet COHegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Harsh Dharmendra Patel
Student ID: X21141932
Programme: MSC in Cybersecurity Year: 2022-2023
Module: Research Project
Lecturer: Mr. Jawad Salahuddin
Submission Due
Date: 1st February 2023
Project Title: A Hybrid IDS using Machine Learning and Semantic Rules for

Power System to Detect Cyber-Attacks.
Word Count:1138 Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Harsh Dharmendra Patel

Date: 31st January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project o
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Harsh Dharmendra Patel
Student ID; x21141932

1 Introduction

The configuration manual is a report which helps us to understand the steps used for this
project. It includes a guide for the development, implementation, installation, and for the
deployment of the project ” A Hybrid IDS using Machine Learning and Semantic Rules for
Modern Power System to detect cyber-attacks” presented in this report. The main motive of
this manual is to help and support at every stage of the process to achieve the final output and
results, which are in this report. The manual consists of all the information about hardware,
software, and procedures that are used to implement this project.

2 System Specification

The specification of the system is as follows,

AMD Ryzen 7 4800H with Radeon Graphics @ 2.90 GHz
GPU; Nvidia Geforce RTX 3050

RAM; 24 GB

SSD; 1TB + 500 Gb

System Type: 64-bit Operating Systems

Operating System: Windows 11

3 Software Specifications
In this section, we will discuss the software specification used to implement this model. The
Anaconda prompt is used for this project and python is used as a programming language.
There are some other libraries and packages installed to get proper and systematic results.
« Anaconda Prompt
Python 3.9.12
Sublime text 3.0
Pandas
Pickle
TKinter
NumPy
Anaconda Navigator
Matplotlib
Joblib
Kali linux
Ubuntu 18.04
Virtual Box

4 Steps for Configuration of Machine Learning

1. Todownload and install Anaconda3 (Anconda, 2022)

2. extract the ‘ml _env.rar’ folder and paste it to the anaconda3’s envs folder

3. Extract the ‘HIDS Fullcode 1’ folder

4. Run the Anaconda Navigator

5. Open in the anaconda3 prompt and in prompt used the command cd/d to change the

directory to HIDS Fullcode 1.

6. (cd) Navigate to ‘HIDS_Fullcode 1’ folder.

7. Now run command: conda activate ml_env

8. Run command: python output_nsl_kdd.py

9. Run command : python output edge_iiot.py
) ANACONDA NAVIGATOR o <<
Ll Aoplications on [bwegoad 3 (o IS
@ Envionments o o o] o o
e D & 5 e & 0

Notebooks

Figure 1 : Anaconda Navigator

) ANACONDA NAVIGATOR] <D

& Home

(<<}

<]

Notebooks

<]

(<]

<]
H

e is the python packsge that will bring back the joy of writing classes by el f implementing ohiect p (ks dunder methads)

I T T T A W Y S S T T T T T S T T R
E ror 203 & & £

Figure 2: ml_env

5 Steps for Configuration of Virtual Machines and Custom
rules for Snort

PonbRE

NG

11.
12.
13.
14.
15.
16.

17.
18.

19.

20.
21.
22.

23.
24,
25.
26.
27.
28.

Download and Install VirtualBox (Virtual Box, 2022).

Set up an environment.

Download Kali Linux and install select the network as a host-only adapter.
Download and install Ubuntu 18.04 and select the network as a host-only adapter
(Ubuntu, n.d.).

Here Kali Linux is attacking the machine and Ubuntu is the victim machine.
Then in the Ubuntu terminal type sudo apt-get install snort -y

Install the snort packages and select Ok.

Then in another terminal check the interface name and Ip address of the victim
machine using “ifconfig”

Then Open snort configuration file and then type sudo nano /etc/snort/snort.conf

.'ipvar HOME_NET any' change to 'ipvar HOME_NET ip address'. In this write the

address of the victim machine.

To view snort rules, use Is or cd/etc/snort/rules/

If we change any rules, we need to test the configuration file using the command.
sudo snort -T -c /etc/snort/snort.conf

The snort will start listening to the network packets using the command.

sudo snort -A console -c /etc/snort/snort.conf

Then copy the IP address of the victim machine (Ubuntu) and the Open terminal in
kali linux.

nmap of this Ip provided in kali linux terminal to "Scan Ubuntu System”.

Then type the nmap address in kali and we can see that snort will be detecting
information leak in Ubuntu system.

Then we can send ping to Ubuntu system, and we can see that snort is detecting ICMP
ping.

To perform DDOS attack use command

sudo apt install hping3 -y

sudo hping3 -S -p 80 --flood --rand-source 192.168.56.101 in this we can see that
multiple botnets are used to create network traffic at the victim IP address.

Now we can see that Snort is detecting DDOS attack.

For FTP Brute Force attack

ftp and the IP address of the victim machine.

For SSH Brute Force attack.

ssh and the IP address of the victim machine.

For example- ssh 192.168.56.101

6 Procedure for Machine Learning

6.1 Pre-Processing the data

>

>

Loading the Edge-I10T dataset and removing the unwanted columns, duplicate rows,
null values and removing other attack categories.

Loading the NSL-KDD dataset setting up the column plus data and creating a new
csv file.

data-pd.read_csv("Data/EDGE_IIOT/dataset.csv™)
print(data.head())
print(len(data.columns))

print(data["Attack _type'].value counts())

unwanted_columns ["frame.time", "ip _| » "ip.dst_host™, "arp.src.proto_ipv4","arp.dst.proto_ipv4",
"http.file_data","http i icmp.transmit_timestam,
s","tcp.payload”, "tcp.srcport”, "tep.dstport™, "udp.port”, " t.msg", "Attack label™]

data.drop(unwanted_columns,
data.dropna(axis=@, hou
data.drop_duplicates(

print(len(data.columns))

data.drop(data.index[data['Attack_type’] ‘Ransomware'],
data.drop(data.index[data['Attack_type'] "Uploading®], inp
data.drop(data.index[data['Attack_type'] "Backdoor'], inpla
data.drop(data.index[data['Attack_type'] *Vulnerability scanne
data.drop(data.index[data['Attack_type'] rt_Scanning®
data.drop(data.index[data['Attack_type'] pla
data.drop(data.index[data['Attack_type'] "Password'], inplace=Tru
data.drop(data.index[data['Attack_type'] "Fingerprinting'], i

data-pd.read_. "Data/NSL_KDD/dataset.csv™)
print(data.head())
print(data.columns)

data.set_axis(['duration’, *protocol_type®, *service’, flag"," _bytes',*dst_bytes®,"land’, "wrong_fragment',*urgent’, "hot", 'num failed logins"
root_shell” u_attempted’, 'num_r ', 'num_file_creations®, "num_shells’', "num_access_files",
is_host_login®, 'is_guest login’, count’,'srv_count’, "serror_rate’,"’ rror_rate’, ‘rerror_rate’,

v_rate’, 'di'F'F: te®, "srv_diff host_rate’, 'dst host_count®,dst_| v_count®, "dst_host_same_srv_rate”,
dst_host_same_src_port_rate’, "dst_host_srv_diff host "dst_host_serror_rate', 'dst_host_srv_serror_rate’,

rv_rerror_rate’, "attack"’, 'level'],

print(data['attack’].value counts())

get_attack_category - data.attack.map(lambda x: @ ‘normal’
da get_attack category

data.drop(["attack™, "level™], a
print(data.head())
print(data.columns)

Figure 4: Pre- Processing NSL-KDD dataset

6.2 Feature selection

fs - select_features(x, y)

column_names-|[]

col x.columns:
column_names.append(col)

feature_list-[]

i range(len(fs.scores_)):
print(Feature % ' % (i, fs.scores_[i]))
feature list.append(fs.scores [i])

dictionary - dict(zip(column_names, feature list))

clean_dict {k: dictionary[k] k dictionary pd.isna(dictionary[k])}
sorted_d - di rted(clean_dict.items(), key-operator.itemgetter(1),re Tr
print(sorted_d)

my_data-data[["dn name.len’, ‘dns.qry.qu”, "udp.time_delta’, "tcp.flags.ac tcp.flags”,

“tcp.len’, 'tep.ack_r tcp.checksum®, *icmp.seq le', 'udp.stream’, 'tcp.conn .fin", "icmp.checksum', "tcp.seq’, "http.response', 'Attack_type’
print(my_data.head())

print(my_data.columns)

Figure 5: Best 14 features are selected from Edge-110T dataset

fs = select_features(x, y)

column_names-[]

col X.columns:
column_names.append(col)

feature_list=[]

i range(len(fs.scores_)):
print('Feature 1 (i, fs.scores_[i]))
feature_list.append(fs.scores_[i])

dictionary - dict(zip(column_names, feature list))
sorted d = dict(ed(dictionary.items(), key-operator.itemgetter(1l),re
print(sorted_d)

my_data=pre_data[[‘same_srv_rate’, "dst_host_srv_count’, *dst_host_same_srv_rate®, "logged_in", ‘dst_host_srv_serror_rate’,
‘dst_host_se r serror_rate’ 1 r_rate','flag’, ‘count”’, "dst_host_count’, "service', 'protocol_type',
‘src_bytes', "dst_bytes', 'Category']]

print(my_data.head())

print(my_data.columns)

Figure 6: Best 15 features are selected from NSL-KDD dataset

f classif, k="all™)

Figure 7: Feature selection function using the Annova classifier

6.3 Training and Testing of models

x_train, x_test, y train, y test in_test split(x_final, y final, test s
print("\nTraining set")

print(x_train.shape)

print(y_train.shape)

print("\nTesting set™)

print(x_test.shape)

print(y_test.shape)

counter - Counter(y_train)
print(“"Before Balancing :", counter)

smt = SMOTE(k ne r5=1)
x_train_sm, y train_sm - smt.fit resample(x_train, y train)

counter - Counter(y_train_sm)
print("After Balancing : ", counter)

scaler = StandardScaler()

x_train_sm = scaler.fit transform(x_train_sm)

x_test - scaler.transform(x_test)

print(x_train_sm.shape, y_train_sm.shape, x_test.shape, y_test.shape)
pickle.dump(scaler,open(Trained Model/EDGE_IIOT/scaler edgeiiot.pkl’, 'wb'))

Figure 8: Training and testing of Edge-110T dataset and using smote for standardization.

x_train, x test, y train, y test in test split(x final, y final, te
print("\nTraining set")

print(x_train.shape)

print(y train.shape)

print("\nTesting set™)

print(x_test.shape)

print(y test.shape)

counter = Counter(y_train)
print(“Before Balancing :", counter)

smt = SMOTE(k_neighbors=1)

x train sm, y train sm - smt.fit resample(x train, y train)

counter = Counter(y_train_sm)
print("After Balancing : ", counter)

scaler = StandardScaler()

x_train_sm = scaler.fit_transform(x_train_sm)

x test - scaler.transform(x test)

print(x_train_sm.shape, y_train_sm.shape, x_test.shape, y test.shape)
pickle.dump(scaler,open(' Trained Model/NSL KDD/scaler nsl.pkl’, 'wb'})

Figure 9: Training and testing of NSL-KDD dataset and using smote for standardization.

6.4 Results

¢ Cyber Attack Detector = O X

¢ Prediction X

o MITM Attack Detected

Figure 10: MiTM attack is detected in Edge-110T dataset

W Cyer Antack Detecios - o =

Figure 11: DDOS attack is detected for NSI-KDD dataset

7 Procedure for Virtual Box

Package configuration

-n" (look for "0.0.0.0").

specific configuration.

Configuring snort |

This value is usually "ethe", but this may be inappropriate in some
network environments; for a dialup connection "ppp@" might be more
appropriate (see the output of "/sbin/ifconfig").

Typically, this is the same interface as the "default route” is on. You
can determine which interface is used for this by running "/sbin/route

It is also not uncommon to use an interface with no IP address
configured in promiscuous mode. For such cases, select the interface in
this system that is physically connected to the network that should be
inspected, enable promiscuous mode later on and make sure that the
network traffic is sent to this interface (either connected to a "port
mirroring/spanning” port in a switch, to a hub, or to a tap).

You can configure multiple interfaces, just by adding more than one
interface name separated by spaces. Each interface can have its own

Figure 12: Snort configuration

flemingdenni@flemingdenni: /etc/snortS$S cd rules
flemingdenni@flemingdenni: /etc/snort/rulesS$ 1s

attack-responses.rules
backdoor.rules
bad-traffic.rules
chat.rules
community-bot.rules
community-deleted.rules
community-dos.rules
community-exploit.rules
community-ftp.rules
community-game.rules
community-icmp.rules
community-imap.rules
community-inappropriate.rules
community-mail-client.rules
community-misc.rules
community-nntp.rules
community-oracle.rules
community-policy.rules
community-sip.rules
community-smtp.rules
community-sql-injection.rules
community-virus.rules
community-web-attacks.rules
community-web-cgi.rules
community-web-client.rules

Figure 13: Snort rules

community-web-dos.rules
community-web-iis.rules
community-web-misc.rules
community-web-php.rules
ddos.rules
deleted.rules

dns.rules

dos.rules
experimental.rules
exploit.rules
finger.rules

ftp.rules
icmp-info.rules
icmp.rules

imap.rules

info.rules

local.rules

misc.rules
multimedia.rules
mysql.rules
netbios.rules
nntp.rules

oracle.rules
other-ids.rules
p2p.rules

policy.rules
pop2.rules
pop3.rules
porn.rules
rpc.rules
rservices.rules
scan.rules
shellcode.rules
smtp.rules
snmp.rules
sql.rules
telnet.rules
tftp.rules
virus.rules
web-attacks.rules
web-cgi.rules
web-client.rules
web-coldfusion.rules
web-frontpage.rules
web-iis.rules
web-misc.rules
web-php.rules
x11l.rules

Activities [E] Terminal ~ wed 13:18
harsh@harsh-VirtualBox: fetc/snort/rules

File Edit View h Terminal Help
GNU nano 2.9.3 local.rules

LED
enp

alert icmp SEXTERNAL NET any -> S$HOME_NET any (msg:"attack detecte
alert tcp any any OME_N s H Authentication attempt
alert tcp any any OME_NET 21 (m "FTP ATTEMPTED"; 16000

[Read 9 lines]
§fl cet Help Write Out W% Where Is W Cut Text @8 Justify
& Exit Read File W Replace WY Uncut Text @il To Spell

hars $

Figure 14: Custom rules for Snort

8 References

Anconda, 2022. Anaconda. [Online]

Available at: https://www.anaconda.com/products/distribution
Ubuntu, n.d. Ubuntu download. [Online]

Available at: https://releases.ubuntu.com/18.04/

[Accessed 13 December 2022].

Virtual Box, 2022. [Online]

Available at: https://www.virtualbox.org/wiki/Downloads

