

Configuration Manual

MSc Research Project Cyber Security

Harsh Dharmendra Patel Student ID: X21141932

School of Computing National College of Ireland

Supervisor: Prof. Jawad Salahuddin

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Harsh Dharmendra Patel				
Student ID:	X21141932				
Programme:	MSC in Cybersecurity	Year:	2022-2023		
Module:	Research Project				
Lecturer:	Mr. Jawad Salahuddin				
Date:	1 st February 2023				
Project Title:	A Hybrid IDS using Machine Learning and Semantic Rules for Power System to Detect Cyber-Attacks.				

Word Count:1138 Page Count: 11

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Harsh Dharmendra Patel

Date: 31st January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Harsh Dharmendra Patel Student ID: x21141932

1 Introduction

The configuration manual is a report which helps us to understand the steps used for this project. It includes a guide for the development, implementation, installation, and for the deployment of the project "A Hybrid IDS using Machine Learning and Semantic Rules for Modern Power System to detect cyber-attacks" presented in this report. The main motive of this manual is to help and support at every stage of the process to achieve the final output and results, which are in this report. The manual consists of all the information about hardware, software, and procedures that are used to implement this project.

@ 2.90 GHz

2 System Specification

The specification of the system is as follows,

- AMD Ryzen 7 4800H with Radeon Graphics
- GPU; Nvidia Geforce RTX 3050
- RAM; 24 GB
- SSD; 1TB + 500 Gb
- System Type: 64-bit Operating Systems
- Operating System: Windows 11

3 Software Specifications

In this section, we will discuss the software specification used to implement this model. The Anaconda prompt is used for this project and python is used as a programming language. There are some other libraries and packages installed to get proper and systematic results.

- Anaconda Prompt
- Python 3.9.12
- Sublime text 3.0
- Pandas
- Pickle
- Tkinter
- NumPy
- Anaconda Navigator
- Matplotlib
- Joblib
- Kali linux
- Ubuntu 18.04
- Virtual Box

4 Steps for Configuration of Machine Learning

- 1. To download and install Anaconda3 (Anconda, 2022)
- 2. extract the 'ml_env.rar' folder and paste it to the anaconda3's envs folder
- 3. Extract the 'HIDS_Fullcode 1' folder
- 4. Run the Anaconda Navigator
- 5. Open in the anaconda3 prompt and in prompt used the command cd/d to change the directory to HIDS Fullcode 1.
- 6. (cd) Navigate to 'HIDS_Fullcode 1' folder.
- 7. Now run command: conda activate ml_env
- 8. Run command: python output_nsl_kdd.py
- 9. Run command : python output edge_iiot.py

Home	Applications on have (reat)	Channels					
Enuireements	Applications on						
invirgninents	¢	*	*	* •	°	¢	
earning			ŇO.	lab	Jupyter		
ommunitu	CMD.exe Prompt	DataLore	IBM Watson Studio Cloud	JupyterLab	Notebook	Powershell Prompt	
on municy	0.1.1 Run a cmd.exe terminal with your current environment from Navigator activated	Online Data Analysis Tool with smart coding assistance by JetBrains. Edit and run your Python notebooks in the cloud and share them with your team.	IBM Watson Studio Cloud provides you the tools to analyze and visualize data, to cleanse and shape data, to create and train machine learning models. Prepare data and build models, using open source data	An extensible environment for interactive and reproducible computing, based on the Jupyter Notebook and Architecture.	7 640 Web-based, interactive computing notebook environment. Edit and run human-readable docs while describing the data analysis.	0.0.1 Run a Powershell terminal with your current environment from Navigator activated	
	Launch	Launth	science tools or visual modeling.	Launth	Launch	Lausch	
	¢ IP(y):	*	×	, Î	° 🦁	°	
	Qt Console	Spyder	VS Code	Glueviz	Orange 3	PyCharm Professional	
conda ebooks d notebooks with reds of packages	PyQt GUI that supports inline figures, proper multiline editing with syntax highlighting, graphical calltips, and more.	Scientific PYthon Development Envikonment, Powerful Python IDE with advanced editing, interactive testing, debugging and introspection features	1.73.1 Streamlined code editor with support for development operations like debugging, task running and version control.	1.2.4 Multidimensional data visualization across files. Explore relationships within and among related datasets.	3.32.0 Component based data mining framework. Data visualization and data analysis for novice and expert. Interactive workflows with a large toolbox.	A full-fledged IDE by JetBrains for both Scientific and Web Python development. Supports HTML, JS, and SQL.	
y to code. Learn More	Launch	Launch	Launch	Install	Install	Install	
full Python IDE	•						
ocumentation	R						

Figure 1 : Anaconda Navigator

lome	Search Environments	٩	Installed	Channels Update index	ackages
Invironments	base (root)		Name	Y T Description	Version
	ml env	0	absl-py	This repository is a collection of pythan library code for building python applications, the code is collected from google's own python code base, and has been extensively tested and used in production.	0.1
.earning			🧹 aiodhs	🕐 Simple dns resolver for asyncio	3.0
ommunity			aiohttp	🕐 Async http://erver.framework.(aryncio)	3.
			aiohttp-socks	•	0
			iosignal 🗹	🕐 Aliosignal: a list of registered asynchronous callbacks	1
			Mandroguard	•	3
			antlr4-python3- runtime	•	
			appdirs	🕐 A small python module for determining appropriate platform-specific dirs.	1
			🕻 🗹 argcomplete	🥐 Bash tab completion for argparse	1
			🜌 asn1crypto	📌 Python asn. 1 library with a focus on performance and a pythonic api	
conda 🔫			🖌 astor	💑 Read, rewrite, and write python asts nicely	0
ebooks I notebooks with			🗹 astunparse	🥐 An ust unparser for python.	1
to code.			async-timeout	🥐 Timeout context manager for asyncio programs	
Learn More			✓ asynctest	🥐 Enhance the standard unittest package with features for testing asyncio libraries	0
all Python IDE actly from the			domicwrites	🐣 Atomic File writes	1
cumentation			dttrdict	•	2
naconda Blog			dtrs	餋 Attrs is the python package that will bring back the joy of writing classes by relieving you from the drudgery of implementing object protocols (aka dunder methods).	2
			M understand		

Figure 2: ml_env

5 Steps for Configuration of Virtual Machines and Custom rules for Snort

- 1. Download and Install VirtualBox (Virtual Box, 2022).
- 2. Set up an environment.
- 3. Download Kali Linux and install select the network as a host-only adapter.
- 4. Download and install Ubuntu 18.04 and select the network as a host-only adapter (Ubuntu, n.d.).
- 5. Here Kali Linux is attacking the machine and Ubuntu is the victim machine.
- 6. Then in the Ubuntu terminal type sudo apt-get install snort -y
- 7. Install the snort packages and select Ok.
- 8. Then in another terminal check the interface name and Ip address of the victim machine using "ifconfig"
- 9. Then Open snort configuration file and then type sudo nano /etc/snort/snort.conf
- 10. 'ipvar HOME_NET any' change to 'ipvar HOME_NET ip address'. In this write the address of the victim machine.
- 11. To view snort rules, use ls or cd/etc/snort/rules/
- 12. If we change any rules, we need to test the configuration file using the command.
- 13. sudo snort -T -c /etc/snort/snort.conf
- 14. The snort will start listening to the network packets using the command.
- 15. sudo snort -A console -c /etc/snort/snort.conf
- 16. Then copy the IP address of the victim machine (Ubuntu) and the Open terminal in kali linux.
- 17. nmap of this Ip provided in kali linux terminal to "Scan Ubuntu System".
- 18. Then type the nmap address in kali and we can see that snort will be detecting information leak in Ubuntu system.
- 19. Then we can send ping to Ubuntu system, and we can see that snort is detecting ICMP ping.
- 20. To perform DDOS attack use command
- 21. sudo apt install hping3 -y
- 22. sudo hping3 -S -p 80 --flood --rand-source 192.168.56.101 in this we can see that multiple botnets are used to create network traffic at the victim IP address.
- 23. Now we can see that Snort is detecting DDOS attack.
- 24. For FTP Brute Force attack
- 25. ftp and the IP address of the victim machine.
- 26. For SSH Brute Force attack.
- 27. ssh and the IP address of the victim machine.
- 28. For example- ssh 192.168.56.101

6 Procedure for Machine Learning

6.1 Pre-Processing the data

- Loading the Edge-IIoT dataset and removing the unwanted columns, duplicate rows, null values and removing other attack categories.
- Loading the NSL-KDD dataset setting up the column plus data and creating a new csv file.

27	
	data_nd_read_csv("Data/EDGE_TIOT/dataset_csv")
29	neint/data head())
	print(detented())
22	
	npint/data[/Attack_type/] value_counts())
	princulara Actack_type 1.value_counts())
24	
סכ דר	Anemove (unwanted columnis, Note values, uppintated rows), Nan values)
	"whated columns = [trans.time; jp.src.nost; jp.ust_nost; arp.src.proto_jpv4; arp.ust.proto_ipv4;
	"http://ie_gala_, http://equest.tuii_uri, icmp.transmir_timestamp ,
	nttp.request.uri.query , ttp.options , ttp.hayioad , ttp.srcport , ttp.ustport , uup.port , mqtt.msg , Attack_laber]
40	
41	data.orop(unwanted_columns, oxts=1, inplace=1rue)
42	data.oropna(oxis=0, now='any', inplace=Irue)
43	data.drop_dupiicates(subset=None, keep="first", inplace=irue)
44	
	print(len(data.columns))
47	
	data.drop(data.index[data['Attack_type'] == 'Ransomware'], <i>inplace</i> =True)
	data.drop(data.index[data['Attack_type'] == 'Uploading'],
	data.drop(data.index[data['Attack_type'] == 'Backdoor'],
	data.drop(data.index[data['Attack_type'] == 'Vulnerability_scanner'],
	data.drop(data.index[data['Attack_type'] == 'Port_Scanning'],
	<pre>data.drop(data.index[data['Attack_type'] == 'XSS'], inplace=True)</pre>
	data.drop(data.index[data['Attack_type'] == 'Password'],
	data.drop(data.index[data['Attack_type'] == 'Fingerprinting'],

Figure 4: Pre- Processing NSL-KDD dataset

6.2 Feature selection

Figure 5: Best 14 features are selected from Edge-IIoT dataset

Figure 6: Best 15 features are selected from NSL-KDD dataset

Figure 7: Feature selection function using the Annova classifier

6.3 Training and Testing of models

Figure 8: Training and testing of Edge-IIoT dataset and using smote for standardization.

Figure 9: Training and testing of NSL-KDD dataset and using smote for standardization.

6.4 Results

Cyber Attack Detector				-	×
	Pr	edict Here	Refresh		
dns_qry_name_len :	٥	tcp_checksum :	0		
dns_qry_qu :	0	Prediction X	0		
udp_time_delta :	255	i MITM Attack Detected	0		
tcp_flags_ack :	[0	n_fin : ок	0		
tcp_flags :	0	icmp_checksum :	0		
tcp_len :	65228	tcp_seq :	0		
tcp_ack_raw :	D	http_response :	0		
		Predict			

Figure 10: MiTM attack is detected in Edge-IIoT dataset

Cyber Attack Detector					-	×
	Р	redict He	ere	Refresh		
	105		6e.e.	6		
det bost erv count :	26		neg.	123		
det host same en rate :	01		Prediction X	245		
logged in :	pe.1	DDoS Attack Detected	DDoS Attack Detected	48		
det boet erv serror rate :						
det hoet serror rate :	1		erc butes :	0		
estor rete :			det butes :	0		
serior_rate .			usi_bytes :	,-		
arv_serior_rate .						
		Predict				

Figure 11: DDOS attack is detected for NSI-KDD dataset

7 Procedure for Virtual Box

Package configuration

Configuring snort

This value is usually "eth0", but this may be inappropriate in some network environments; for a dialup connection "ppp0" might be more appropriate (see the output of "/sbin/ifconfig").

Typically, this is the same interface as the "default route" is on. You can determine which interface is used for this by running "/sbin/route -n" (look for "0.0.0.0").

It is also not uncommon to use an interface with no IP address configured in promiscuous mode. For such cases, select the interface in this system that is physically connected to the network that should be inspected, enable promiscuous mode later on and make sure that the network traffic is sent to this interface (either connected to a "port mirroring/spanning" port in a switch, to a hub, or to a tap).

You can configure multiple interfaces, just by adding more than one interface name separated by spaces. Each interface can have its own specific configuration.

<0k>

Figure 12: Snort configuration

flemingdenni@flemingdenni:/etc	/snort\$ cd rules				
flemingdenni@flemingdenni:/etc	/snort/rules\$ ls				
attack-responses.rules	community-web-dos.rules	policy.rules			
backdoor.rules	community-web-iis.rules	pop2.rules			
bad-traffic.rules	community-web-misc.rules	pop3.rules			
chat.rules	community-web-php.rules	porn.rules			
community-bot.rules	ddos.rules	rpc.rules			
community-deleted.rules	deleted.rules	rservices.rules			
community-dos.rules	dns.rules	scan.rules			
community-exploit.rules	dos.rules	shellcode.rules			
community-ftp.rules	experimental.rules	smtp.rules			
community-game.rules	exploit.rules	snmp.rules			
community-icmp.rules	finger.rules	sql.rules			
community-imap.rules	ftp.rules	telnet.rules			
community-inappropriate.rules	icmp-info.rules	tftp.rules			
community-mail-client.rules	icmp.rules	virus.rules			
community-misc.rules	imap.rules	web-attacks.rules			
community-nntp.rules	info.rules	web-cgi.rules			
community-oracle.rules	local.rules	web-client.rules			
community-policy.rules	misc.rules	web-coldfusion.rules			
community-sip.rules	multimedia.rules	web-frontpage.rules			
community-smtp.rules	mysql.rules	web-iis.rules			
community-sql-injection.rules	netbios.rules	web-misc.rules			
community-virus.rules	nntp.rules	web-php.rules			
community-web-attacks.rules	oracle.rules	x11.rules			
community-web-cgi.rules	community-web-cgi.rules other-ids.rules				
community-web-client.rules	p2p.rules				

Figure 13: Snort rules

Figure 14: Custom rules for Snort

8 References

Anconda, 2022. Anaconda. [Online] Available at: <u>https://www.anaconda.com/products/distribution</u> Ubuntu, n.d. *Ubuntu download.* [Online] Available at: <u>https://releases.ubuntu.com/18.04/</u> [Accessed 13 December 2022]. Virtual Box, 2022. [Online] Available at: <u>https://www.virtualbox.org/wiki/Downloads</u>