\ National
Collegeof

[reland

Configuration Manual

MSc Research Project
Cyber Security

Shubham Karodimal Parakh
Student ID:; X21154376

School of Computing
National College of Ireland

Supervisor: Dr. Rohit Verma

‘—-
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Student Name: Shubham Karodimal Parakh
Student ID: X21154376
Programme: MSc in Cyber Security Year: 2022-2023
Module: MSc Internship Project
Lecturer: Rohit Verma

Submission Due 15/12/2022

Date:

Project Title: Securing passwords storage using image steganography by
implementing AES encryption and Argon2 hashing

Word Count: 470 Page Count: 7

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Y Te [1= 1 U] o= U ST PR TRRR

Date: 14/12/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Shubham Karodimal Parakh
X21154376

1 Introduction

This handbook includes information on the setup and prerequisites for the suggested model,
including specifics libraries and required software. The setup manual also provides
instructions on how to use the algorithms required to create the suggested model.

2 System Configurations

The suggested model employs a number of methods, including LSB image steganography,
argon2 hashing, and AES-256 encryption. These methods make use of power
efficient Python packages and layers. We need a system with strong configurations in order
to swiftly execute the complete procedure. Hence, we utilized a very powerful laptop to
match the needs of the model for the same reason.

2.1 Device Specification

2.2 Device 1:

Processor Intel(R) Core (TM) 15-8250U CPU @ 1.60GHz 1.80 GHz
Installed RAM | 16.0 GB (15.9 GB usable)

System Type 64-bit operating system, x64-based processor

SSD 446 GB SSD

Graphics card | NVIDIA GeForce RTX 3050

2.3 Device 2:

Processor Intel(R) Core (TM) 15-8250U CPU @ 1.60GHz 1.80 GHz
Installed RAM | 8.0 GB (7.9 GB usable)

System Type | 64-bit operating system, x64-based processor

SSD 512 GB SSD

Graphics card | NVIDIA GeForce MX130

2.4 Software and tools

Operating System: Windows 11 Home Single Language
Python: Python 3.10.9

Visual Studio Code

numpy version: 1.23.4

3 Implementation

This start by importing libraries that are required to run the proposed model which uses
different techniques like hashing, encryption and steganography

' main.py > ...
import
import
import
from random import

from pprint import

import aes
from os import urandom
from ar import Arg Hash

import stegno
import timeit

avalancheEffect

from import

from

from

Figure-1 Libraries

Once the libraries are imported we start by performing argon2 hashing on the lists of
passwords as shown in figure-2

arg hash(self,password):
return self.ph.hash(password)

arg ver(self,key,password):
~eturn self.ph.verify(key, password)

Figure-2 Argon2 hashing (Schlawack, n.d.)

In Stage-2 we perform AES-256 encryption on the hashed password by calculating the block
size and then add padding to the password as per the block size as shown in figure-3

in
fr
from Crypto.Cipher import AES

ss AESCipher(object):

f __init_ (self, key):
self.bs = AES.block size
self.key = key

f encrypt(self, raw):
raw = self. pad(raw)
iv = Random.new().read(AES.block size)
= AES.new(self.key, AES.MODE CBC, iv)
return base64.b64encode(iv + cipher.encrypt(raw.encode()))

- decrypt(self, enc):
enc = base64.b64adecode(enc)
iv = enc[:AES.block size]
cipher = AES.new(self.key, AES.MODE CBC, iv)
return self. unpad(cipher.decrypt(enc[AES.block size:])).decode('utf-8")

f pad(self, s):
return s + (self.bs - len(s) % self.bs) * chr(self.bs - len(s) % self.bs)

@staticmethod
_unpad(s):
return s[:-ord(s[len(s)-1:])]

Figure-3 Performing AES-256 Encryption (Zia, 2022)

In Stage-3 we store the encrypted hash password inside an image using LSB-image
steganography which increase the security of our proposed model even further. As the data is
converted into binary format before storing it inside the image in LSB steganography we add
$$ sign to distinguish between the cipher text and the text of the image. So while decoding
the image it becomes more easy to perform the operations. The code for the conversion and
hiding of the cipher text is shown in figure-4 below

- data2binary(data):
if type(data) == str:
p = "'.join([format(ord(i), "e8b’')for i in data])
elif type(data) == bytes or type(data) == np.ndarray:
= [format(i, 'e8b’')for i in data]

f hidedata(img, data):
data += "$3%"
d index = ©
b _data = data2binary(data)
len _data = len(b_data)

~ value in img:
for pix in value:

r, g, b = datazbinary(pix)

if d _index < len data:
pix[@] = int(r[:-1] + b _data[d index])
d index += 1

if d index < len data:
pix[1] = int(g[:-1] + b _data[d_index])
d index += 1

if d _index < len data:
pix[2] = int(b[:-1] + b data[d index])
d index += 1

if d_index >= len_data:
break

return img

Figure-4 Data conversion and hiding

This encrypted hash password is then store inside image using encoding techniques shown in
figure-5

encode(data):

img name = 'bright.png’

image 2.imread({img_name)

img = age.open(img_name,

w, h = img.size

if len(data) == @:

enc_img = 'bright encry.png
enc_data = hidedata(image, data)

cv2.imwrite(enc_img, enc_data)
imgl = Image.open(enc_img, 'r")
imgl = imgl.resize((w, h),Image.ANTIALTAS)

if w I= h:
imgl.save(enc_img, optimize= » quality=65)
else:

imgl.save(enc_img)

Figure-5 Encoding of cipher text inside image

In last and final stage-4 we start the extraction of the cipher text from image by first using
decoding technique of image steganography as shown in figure-6

lef find data(img):
bin data = ""
for value in img:
for pix in value:

r, g, b = data2binary(pix)
bin data += r[-1]
bin data += g[-1]
bin data += b[-1]

all bytes = [bin data[i: i + 8] for i in range(®, len(bin_data), 8)]

readable data = ""
for x in all bytes:
readable data += chr(int(x, 2))
if readable data[-2:] == "$$":
break
return readable data[:-2]

decode():

img name = 'bright encry.png’
image = cv2.imread(img name)
img=Image.open(img name, 'r")
msg = find data(image)

return msg

Figure-6 Decoding of Cipher text inside image (pranjalkalal, 2022)
Then we perform AES-256 decryption on the extracted cipher text to obtain the hash value

which is compared with the original hash.

We also calculate password size, encryption time, decryption time, execution time,
throughput and avalanche effect which is shown in figure-7

» avalancheEffect.py > & comp_count
- getAEffect():
p t = 'karodimalpruthviraj@parakh’
b t="'.join(format(ord(i), '02b') for i in p_t)
print(b_t)
if b tf-1] == ‘@°:
b =b t[-1].replace("0","1")
else:

b=b_t[-1].replace("1","0")
bin data = b t[@:1len(b t)-1]+b

-~ BinaryToDecimal(binary):
string = int(binary, 2)

return string
print(bin_data)
str _data ="'
for i in range(®, len(bin data), 7):
temp _data = bin data[i:i + 7]
decimal data = BinaryToDecimal(temp data)
str _data = str _data + chr(decimal data)
print(str_data)

return p_t,str_data

- comp_count(pi,p2):

print('\n\nFirst Encrypted Password:',p1)

print('\n\n 7 :

s1="".join(format(ord(i),
"'.join(format(ord(i),

print(len(s1))

Figure-7 Calculation of avalanche effect

Finally, the original password its size, encryption and decryption time, execution time,
throughput is stored inside an CSV file as shown in figure-8

d']= userPass[i]
ize userPass
me']=aes_encTotalTime
"|=aes_decTotalTime
e']=executionTime

from csv import

field names = ['Password’, 'PassSize’, 'En nTime", ‘De onTIme', 'ExectuionTime’, 'Throug

print(csvData)

with open('data.csv', 'w') as csvfile:

writer = csv.DictWriter(csvfile, fieldnames = field names)

writer.writeheader()

writer.writerows(csvData)

Figure-8 Storing of Results in CSV file

References

pranjalkalal, 2022. Image-stegnography.

Avilable at: https://github.com/pranjalkalal/Image-stegnography

Schlawack, H., n.d. argon2-cffi: The secure Argon2 password hashing algorithm.
Avilable at: https://pypi.org/project/argon2-cffi/

Zia, M.A., 2022. Python-File-Encryptor.

Avilable at: https://github.com/the-javapocalypse/Python-File-Encryptor

