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Malware Detection in Executable files 

using XGBoost Algorithm 
Yashvardhan Pant 

X21132399 

Abstract 
Keeping up with the fast growth of modern technology has led to an increase in malware and 

harmful activities, which hackers are using to their advantage in stealing personal information 

and login passwords. Rising numbers of malicious software regularly attacking online 

systems now pose a significant risk. Due to the rapid growth of malware, manual heuristic 

inspection of samples is no longer regarded a viable method of analysis. The use of machine 

learning for automated, behavior-based malware detection and static approach with PE- 

header based malware detection information is thus seen as a powerful approach. In this 

study, examination of many Machine Learning Algorithms (such as XGBoost, KNN, and 

Random Forest) that may be used to detect malware by analyzing a large dataset. Here, 

measurement of how well things is doing utilizing a confusion matrix and a focus on 

Detection. XGBoost has the highest accuracy and precision of any method, with 98.292% and 

99.15%, without feature extraction and 98.33% and 99.01% with feature extraction 

respectively. 

 
Keywords: - Malware Detection, Machine Learning, Deep learning, Security, Algorithm, 

Dataset, XGBoost. 

1. INTRODUCTION 

Malware, which is short for "malicious software," is designed to do damage by destroying 

data that the user needs, compromising the security of the system by lurking there undetected, 

controlling the user's computer as if it were a robot and making the user a conduit for 

criminal activity, and so on. Researchers are working on several different methods for 

preventing and identifying malware. Automatic dynamic (behavior) malware analysis mixed 

with data mining activities, such as machine learning (classification) algorithms, is one 

recommended methodology (solution) for achieving efficacy and efficiency in identifying 

malware. 

For malware identification, several researchers [7] turned to static analysis while the others 

relied on dynamic analysis. Static analysis, also known as signature-based analysis, is an 

evaluation of source code that doesn't involve running the program. Malware may be detected 

through dynamic analysis by seeing how a program acts after being executed in a virtual 

environment. Due to the specialized nature of dynamic analyses, they are more expensive and 

need more resources to be carried out. Static analysis is preferable to dynamic analysis 

because it is more stable and secure. Computers have gotten increasingly complicated and 

advanced because of technological development. Malware has also evolved into a form that is 

difficult to detect. To combat the inherent false alarm rate of behavior-based detection, a new 

method called "feature detection" was developed. It seemingly recognizes certain attack 

patterns, this method involves monitoring program executions and detecting deviations from 



the defined in the behavior of the program. This method is quite like anomaly detection; 

however, rather of depending on machine learning approaches, it relies on characteristics that 

have been defined by humans to capture the behavior of the system. 

In this suggested model, static analysis is used. The model splits into four distinct stages: data 

collection and processing, model development and validation, model predictions, and model 

effectiveness. This work offers a simple, fast, and accurate malware detection method that 

utilizes information extracted from the PE header and Section table to categorize malware 

families [10]. The system may identify previously unnoticed malicious code in the 

executable. The PE file format is the primary format for Windows executable files. There are 

many applications for it. Sample collection, feature extraction, dataset partitioning, and 

executable file categorization are the four fundamental pillars of the model. It scans 

executable files for malicious code before they are run. Malware analysis makes use of a 

variety of classification techniques based on supervised machine learning to determine 

whether an executable file was created maliciously. Precision, recall, accuracy, true positive 

rate, and false positive rate are only few of the measures used to evaluate how well the 

suggested system performs. 

Below is the outline for the rest of the paper: In part 2, provision several works in progress 

and briefly review various malware detection methods that have been developed. Section 3 

explains the methodology behind the suggested model. The findings of the experiments and a 

comparison are reported in Section 4, followed by a discussion of the results in Section 5, and 

finally a conclusion is offered in Section 6. 

Research question: How can we leverage machine leaning algorithms to classify 

malignant and benign executable files  

2. LITERATURE REVIEW 

This research aims to propose a machine learning strategy for detecting malware. The 

executable files on Windows are the primary topic of this research. To keep up with the 

exponential proliferation of malicious software, there is a need to use a variety of automated 

methods for identifying infected files. This project will throw some light on utilization of a 

script that extracts information from PE-files so that machine learning training of algorithms 

on a dataset consisting of both infected and uninfected files. 

An in-depth literature assessment of other researchers' efforts in malware detection is 

explained in the connected text. The following section elaborates on the study's methodology, 

tactics, and technical considerations, as well as the researchers' findings and potential future 

applications. Researchers have previously suggested several different methodologies and 

frameworks for identifying malicious software on the PC platform. The suggested study takes 

their findings and any limitations in their studies into account. 

It was Schultz et al. [9] who first looked at the effectiveness of ML methods in identifying 

malicious software. To extract static characteristics, they used three distinct strategies. The 

first technique is called binary profiling, and it involves generating three distinct binary 

vectors for each binary, including a list of the Dynamically Linked Libraries (DLL) that the 

binary called, a list of the functions that have been called within each DLL, and the number 

of functions called within each DLL. Aside from byte sequence, the other two methods of 



feature extraction were strings. The binary profile features were used to train a RIPPER rule-

based learner, a Naive Bayes classifier was used to classify the binary strings, and an 

ensemble classifier was used to classify the binary byte sequences. The ensemble classifier 

had the greatest detection rate (97.76%) of the three learning methods evaluated, and its rate 

was twice that of conventional signature-based detection systems. 

Firdausi, et al., [2] researchers’ in-depth study on the use of machine learning for automated 

behavior-based malware detection has been completed, and the results are promising. 

Malware activity in an emulation environment may be automatically examined, leading to 

behavior reports. As many as 220 distinct pieces of malware were obtained. They applied 

several ML algorithms to the same collection of dynamic reports produced by Anubis 

Sandbox and incorporated in vector space models, and then compared their detection rates. k-

Nearest Neighbors (KNN), Naive Bayes (NB), J48 Decision Tree (J48DT), Support Vector 

Machine (SVM), and Multilayer Perceptron Neural Network (MLPNN) were the techniques 

used (MLPNN). When everything was said and done, the J48 decision Tree's 96.8% accuracy 

was highlighted as the best detection rate. Initially, these reports will be used to build sparse 

vector models for machine learning (classification). After doing tests on all 5 classifiers, J48 

decision tree came out on top in terms of recall (95.7 percent), false positive rate (2.4 

percent), precision (97.3 percent), and accuracy (96.8 percent). 

Malware detection using machine learning algorithms might be very efficient and effective. 

Using a static analysis method, Radwan et al. [8] presented a system for extracting 

characteristics of PE files. There were seven distinct categorization algorithms utilized. The 

dataset was broken down into its constituent parts: the raw features, which had 53 features, 

and the integrated features, which included both derived and enlarged features. There are 74 

of them in all. When compared to other algorithms on integrated feature datasets, random 

forest fared best with 93.23% accuracy on the 70/30 split and 97.56% accuracy on the raw 

dataset. Both the K-Nearest Neighbor (KNN) model and the Gradient Boosting (GB) tree 

fared well with tenfold cross-validation on the combined dataset, with an accuracy of 98.70% 

and 93.55%, respectively. 

Sandbox, feature extractor, and classifier were all built by Wang et al. [13]. Their process 

consisted of three distinct steps: collection, analysis, and classification. The collector has both 

a static analysis program and the PinFWSandbox module for dynamic execution. It took note 

of data changes in dynamic files and log files and sent those data on to the extractor phase. 

The extractor might extract features in a static, dynamic, or system call manner. The last 

component was a classifier. When the results of all classifiers were averaged together, it was 

discovered that the dynamic op-code classifier produced the highest F1-score (96%) of all 

classifiers. 

To identify PE-type malware in Windows, Catak et al. [1] leveraged the of operating system 

API calls, which is an interesting and potentially useful job. An official definition of this 

work is to execute malware in a sandbox, log API calls made by Windows, and then 

sequentially analyze the logs. First, the contents of the suspicious software are examined 

without running the software, and then the software is launched in an isolated environment, 

explored for DNS resolution requests, and the registry, file system, and API calls are 

recorded. They isolated 7107 pieces of dangerous software (viruses, backdoors, and trojans) 



in a sandbox environment and examined them, then converted their findings into a format 

that can be read by various categorization algorithms and techniques. 

The use of ML for Windows malware detection was the subject of a review that Naz et al. [7] 

Using a classifier to train the model on extracted features of the PE file, they introduced a 

static analysis method based on machine learning; however, the dataset used was relatively 

small, resulting in average accuracy; they achieved the highest accuracy (97.24 percent) with 

the random forest classifier. The best accuracy of 98.63 percent was attained by a random 

forest classifier when the model was trained and evaluated on a dataset consisting of 

extracted features from the file, the optional, and the section header. 

To accurately detect unknown malware, Darshan et al. [10] suggested a hybrid technique that 

combined static and dynamic aspects of PE files with a linear support vector classification 

strategy. Training the algorithm on a limited dataset hampered attempts to improve accuracy. 

Experimental findings using tenfold cross-validation show that the proposed HF-MDS is 

effective at accurately identifying malware and benign PE files, with a detection accuracy of 

99.743% achieved using a hybrid features-based sequential minimum optimization classifier.  

Galal et al. [3] developed a model of behavioral traits to characterize the malicious behavior 

of malware. The suggested approach is derived from dynamic analysis of a recent malware 

dataset conducted in a simulated, controlled environment to collect traces of API calls made 

by malicious programs. Once the traces are collected, they are aggregated into more abstract 

characteristics call actions. Multiple categorization techniques, including the decision tree, 

random forests, and support vector machine, are used to evaluate the efficacy of potential 

courses of action. When compared to API n-gram based approaches, the semantic value of 

describing dangerous activities via actions is much higher. Malware analysts may also put 

their technical expertise to use by extending the current set of heuristic methods to extract 

new behaviors. The suggested feature model achieved an accuracy of 97.19% with Decision 

Tree and a lower accuracy of 95% using SVM. 

Kolter et al. [6] detecting and classifying malware in production environments. The author 

asserts that 2,012 training samples were employed, including 1,971 clean files and 1,651 

malicious executables encoded using n-gram characteristics. After selecting the features, the 

authors claim to have utilized a variety of evaluation methods such as Naive Bayes, Decision 

trees, Support vector machines, and boosting. The authors observed their technique 

classifying programs according to payload and found it to be scalable to a large number of 

executables. All the files were in the window PE format; the clean files came from the home 

directories of PCs running Windows XP and Windows 2000, while the malicious files were 

all caught on the network. The executables were "hex dumped," or converted to hexadecimal 

code using the ISO-8859-1 character set, so that computers could read them. After then, the 

famed n-grams were created by stringing together each four-byte sequence into a single 

phrase. Experiments show that a boosted decision tree can accurately identify harmful files 

98% of the time, with only 6% of false positives for dangerous files. While this may seem 

like a major issue to some, the author argues that if the reader is ready to tolerate a false 

positive rate of 0.1, then the detection rate will be 100%. The author concludes that boosted 

J48 is the most effective algorithm based on its ROC curve of 0.996, outperforming the 

others assessed. 



Fewer studies have examined the XGBoost classifier as a Machine Learning Algorithm, 

despite the fact that researchers are consistently striving to improve the accuracy and 

precision of their datasets by employing various static methods, such as PE header 

information, or behavioral ones, such as API, files deleted, rekeys etc. of the executables 

during their running time. J48, KNN, SVM, and RF are the common methods used in study. 

Researchers also use Deep Neural networks to determine if a file contains cancerous cells or 

not. When comparing several algorithms, XGBoost machine learning models provide the 

most optimal trade-off between prediction accuracy and speed. Feature extraction has an 

impact on the accuracy and precision of the models used for executable categorization; this 

study compares XGBoost to other machine learning techniques and examines this impact. 

3. METHODOLOGY 

Sample collection, feature extraction, and classification are the three main pillars of this 

research methodology. Various samples of executable applications from different files are 

collected and labeled before their runtime behavior is generated in the Cuckoo sandbox and 

features are extracted from there. 

 

Figure 1: CRISP-DM Model 

 

During the research utilization of CRISP-DM (Common Industry Data Mining Process) is 

both implement and assessed in the model [4]. It's a procedure for data mining that can be 

used to any business, and it offers a great framework for organizing your data mining project. 



The Data Science team at various companies has found remarkable success with this 

technique, which has its origins at IBM and was designed for Data Mining. The phases 

involved in the CRISP-DM technique are outlined below the graphic, which depicts the 

process of the CRISP-DM approach. 

3.1 Business Requirement: 

There is a growing security risk due to the proliferation of malicious software that exploits 

online systems every day. Due to the ever-increasing volume of malware, traditional malware 

analysis methods, such as manual heuristic scanning, are no longer deemed dependable or 

efficient. That is why it is so important to implement automated, behavior-based malware 

detection utilizing machine learning approaches. Because malware is becoming more 

sophisticated at the same rate as technological advancements, the conflict between security 

experts and its creators will continue indefinitely. Due to its capacity to keep up with 

malware progress, machine learning approaches are now the focus of innovative malware 

detection research.  

Unlike prior approaches, this one can unearth even well-hidden virus. While malware 

detection has previously relied on a few classic machine learning techniques, research found 

that XGBoost learning provided far more accurate findings. 

3.2 Data Acquisition: 

The first step is to collect some data for use in training algorithms, which is necessary before 

the research can get down to work. The data set comprises of malware data set and benign 

instance data set. The malicious and benign samples are both stored as Windows Portable 

Executable (PE) files. There are a total of 10540 samples, 6999 of which are dangerous (the 

"malicious data ") and 3450 of which are benign (the benign data"). Information such as 

Name, MD5, Hardware, SizeOfOptionalHeader, Features, Major/Minor Linker Version, 

Code Size, and Line Length etc. 

3.3  Preparation of the data set 

Initially, Executable files containing malware were acquired from "https:// virusshare.com" 

and used to compile the dataset. Since there were not too many clean executables available, 

the Dataset was built from a large collection of files found inside Windows, particularly.dll 

files. The dataset was constructed from the JSON output files that were uploaded to the 

cuckoo sandbox and thereafter subjected to a real-time analysis. 

Data sets to be utilized and documented are selected in this step. Malware analysis from 

cuckoo sandbox reports is stored in JSON files, and for machine learning models to work on 

these data variables, there is a need to convert the variables to an integer readable format 

before extracting the variables in a CSV. When it comes to data quality, missing numbers are 

a big cause for alarm. Mean, mode, and median may be used instead of some of the other 

approaches, depending on the qualities in question. If there's a significant chance of data loss, 

then deleting rows and columns is a must. 

There are a total of 10540 files in our combined collection, 6999 of which are dangerous and 

3540 of which are safe. Since all of the files were already in. json format, no further work 

was necessary to transform them into.csv format for usage with the python and pandas 



package. The file contained several columns, including Size, size of code, DLL 

characteristics, MD5 values, SHA-a values, etc., but there is only need for a subset of those 

columns—DLL characteristics, Entropy, ImageBase, Size of initialized data, Size of 

uninitialized data, and Size—because they describe the most crucial aspects of malware's 

potential impact on a system.  

It's important to format data correctly and to re-format it if required. It is possible to execute 

mathematical operations on string values that hold numbers by converting them to numeric 

values. 

4. DESIGN SPECIFICATION 

 

 

 

Figure 2 Implementation Design 

One way to measure how well a classifier or classification algorithm is doing its job is with 

the use of a table called a confusion matrix. Building such a database allows one to keep track 

of the number of properly and erroneously labeled examples, which can subsequently be 

utilized in future. Accuracy, precision, and recall are the primary indicators of a 

categorization model's effectiveness.  

Each machine learning algorithm/model was then updated to make use of our newly acquired 

dataset. Depending on several characteristics, the call may be classified as Malware or 

Goodware and return one of two possible outcomes. The dataset is used to deploy several 

machine learning classification algorithms and then compare how well each one handles the 

high dimensionality of the dataset. Nonetheless, with the help of data pre-processing, picking 

the right machine learning model may boost model efficiency. 

5. IMPLEMENTATION 

5.1 KNN Model 



The KNN model comes in handy since it sorts information by using the most similar 

information. Its purpose is to discover all the nearest neighbors surrounding a new unknown 

data point to figure out what class it belongs to. Specifically, it is a distance-based method.

 
Figure 3 KNN Machine Learning code 

5.2 Random Forest 

Each tree in a random forest uses a subset of features to make classifications and provide 

outputs. Several different approaches were tried before settling on 50 estimates as the optimal 

number for this task, with the second parameter being the Function for evaluating the 

division's quality [12]. Using a random sampling method, random forest constructs a decision 

tree and then takes an average of the results. 

 

Figure 4 Random Forest Classifier Code 

5.3 XGBoost 

As part of the Distributed Machine Learning Community's bigger set of open-source libraries, 

XGBoost was created by Tianqi Chen (DMLC). The XGBoost algorithm is a fast and 

efficient implementation of gradient boosted decision trees. The maximum depth (max 

depth), the learning rate (learning rate), and the number of estimations is the Algorithm's 

parameters (n estimators). Due to its focus on model performance and computational speed, 

XGBoost is a scalable and accurate implementation of gradient boosting machines. It has 

been shown to push the boundaries of processing power for boosted tree methods. 



 

Figure 5 XGBoost Algorithm Code 

6. EVALUATION 

The purpose of this study was to statistically evaluate how well existing binary categorization 

(malign or benign) tests work. True positive rate (sensitivity, recall, hit rate), false positive 

rate (fall-out), positive predictive value (precision), and accuracy are the statistical 

measurements [9]. Metrics are calculated in machine learning with the use of a confusion 

matrix included in the sklearn metrics package. It is possible to see the model's computed 

precision, accuracy, recall, and F score, as well as the findings provided in the model's 

Confusion matrix. 

 

Figure 6 Confusion Matrix Model 

 

 

• Number of samples that were accurately identified as positive (true positive, or TP). 

• Number of samples that were successfully identified as negative (true negative, TN). 

• Number of false-positive results (FP) indicates the percentage of negative samples 

that were mistakenly interpreted as positive. 

• False-negative (FN) rate is the proportion of true-positive samples that were wrongly 

classified as negative. 



The other parameters can be calculated as follows: 

• The effectiveness of the categorization algorithm will also be measured by the 

following criteria 

 
• The ratio of accurate to wrong classifications is calculated using the formula:  

 

 
• Number of accurate classifications minus penalty for number of missing elements  

 

 
• An efficient metric based on the harmonic mean of precision and recall is the F-score, 

which is calculated as follows:  

 

This Research concludes that the XGBoost method achieves a higher rate of accuracy than 

competing algorithms based on the assessment and the outcomes from the models that were 

studied. Our algorithm can identify and categorize a wide variety of malicious and safe files. 

6.1 RESULTS 

The dataset was then used to train a model or algorithm, and the resulting data was collected. 

Accuracy, Precision, Recall, and F1-score were calculated by solving the confusion matrix 

for each model. 

6.1.2 Results without Feature extraction 
a) KNN 

 

Figure 8 KNN Confusion Matrix without feature 
selection 

 

Figure 7 Nearest Neighbour Graph 

 



 

We will use CrossValidation (a statistical technique for evaluating the quality of machine 

learning models) to determine the best value of K. The technique relies on the user providing 

a value for K that stands for the total number of neighbors. The method may be performed 

with a variety of different values for K to see which one works best for the given situation.  

The optimal number of neighbors is 3. The model gives out 96.774 % accuracy with 97.388% 

of precision. 

b) Random Forest 

The confusion matrix below shows the accuracy and the precision 

 

Figure 9 RF Confusion Matrix without feature selection 

This model has an accuracy of 98.197% and a precision of 99.223%, which is a significant 

improvement over the KNN model. 

c) XGBoost 

 

Figure 10 XGB Confusion Matrix without feature selection 



The Overall accuracy and the precision for this model is the best among all the machine 

learning classifiers. The precision and the accuracy increased by not much though but overall, 

an increase is seen. The Accuracy of this model comes out to be 98.292% and the precision 

for this model is 99.153%. 

6.1.3 Results with Feature Extraction 

The purpose of feature selection is to reduce our 54-feature dataset to the most relevant 

features that may be utilized to identify benign from malicious files. A plan to apply Tree-

based feature selection to investigate whether it enhances the accuracy and performance of 

the algorithms is made.  

The "sklearn model" import "train test split" in Python causes a split to occur. Because it's 

more efficient to use just a subset of the data to training, the dataset is often divided in half, 

with 80% used for training and 20% used for testing. Below, a detailed explanation of each 

model, including the KNN model, the SVM model, the [] model, and the XGBoost model is 

given. The purpose of feature selection is to reduce our 54-feature dataset to just the most 

relevant features that may be utilized to identify benign from malicious files. To determine 

whether or if this strategy enhances accuracy and algorithms, Usage of Tree-based feature 

selection is chosen. This algorithm only picked 9 out of 54 necessary attributes. 

a) KNN 

For this model the optimal number of neighbors is 6. As compared to the previous model 

without feature extraction, the accuracy and the precision slightly increased to 97.438% and 

98.023% respectively which is 0.68% increase in accuracy and 0.65% increase in precision 

 

 

Figure 12 KNN Confusion Matrix with feature selection 

b) Random Forest  

After the feature extraction procedure, the random forest model's classifier is less successful, 

as shown by the fact that it achieves an accuracy of 97.67% and a precision of 98.08% in its 

classifications. 

 

Figure 11 Nearest Neighbour KNN 

 



 

Figure 13 RF Confusion Matrix with feature selection 

c) XGBoost 

Among the models that make use of feature selection, the XGBoost model produces the best 

outcomes, with an accuracy of 97.67% and a precision of 98.23%. 

 

Figure 14 XGBoost Confusion Matrix with feature selection 

The Accuracy, precision, recall, and F1-score are calculated using the confusion matrix for 

each model and the data represented in the above diagrams. There is an increase in the 

accuracy level of data with feature selection. 



6.2 DISCUSSION  

Most of the work done on malware detection have used various datasets and some have used 

different algorithms. In this research the focus is given on the Latest machine learning 

algorithms XGBoost and how its analysis the data and classifies out input to either benign or 

malign executables 

The dataset utilized in this work is around typical in size when compared to those used by 

other researchers [3][6]. An accuracy of 97% or higher is achieved, which is fine since this is 

a dataset of medium size. Since the dataset is unbalanced, this research was unable to do 

thorough analyses. Consistently high levels of accuracy and precision have been found in 

related studies. Furthermore, the accuracy and precision in this study demonstrates that 

XGBoost has the upper hand amongst other classifiers, since previous studies using the same 

features and other datasets have only achieved an accuracy of 95% with SVM [2][3], while 

the accuracy with XGBoost is nearly 98.3% in all situations. 

Although after the feature selection is implemented, the values of the precision and accuracy 

increased in the KNN model but decreased by 0.63% in both Random Forest and XGBoost 

cases. The accuracy and the precision remain almost same for XGBoost with and without 

feature selection as there is a very slight increase in accuracy of model with feature selection. 

7. CONCLUSION AND FUTURE WORK 

This research shows how the malicious executables can be found out in the wild with the help 

of machine learning. In the initial part of the process, data of both malicious and 

benign executables are employed to build our data collection, and a Python script is used to 

extract the information needed. It is necessary to get the data set ready for training machine 

learning algorithms once it has been created. After implementation of the model, the model 

got an accuracy of 98.29% in the XGB model followed by 98.19% of Random Forest, and 

second-highest accuracy by KNN which is 96.77%. The research expected that the XGBoost 

will give more accuracy and it do so with an increase of 0.065 % from Random Forest 

algorithm and 1.54 % increase from KNN algorithm in accuracy. The Recall and F1 scores 

are the best achieved by XGBoost with feature selection where recall is 98.52% an F1 score 

is coming out to be 98.76% Overall, the best results are given with feature extraction and the 

best accuracy is given by XGBoost algorithm. 

 

Table 1 Summarised Results 

 

*= Models with Feature Selection 



 

Figure 155 Graphical Representation of Summarised Results 

Although when the features were selected in XGBoost, the accuracy increased a bit for 

(0.043%), but the precision decreased by 0.142%. If after feature selection accuracy or 

precision falls, it means that all the variables are important for the model when we are 

minimising the false positives. As the precison of the algorithm XBoost The Graphical 

representation shows the efficacy of all the models with respect to each other 

7.1 LIMITATIONS: 

Due to time constraints, the study was unable to demonstrate the behavior of executables by 

extracting the API call sequence for each file, analysing, or seeing the behavior of the files 

through the numerous API calls made by each file, and conducting detection appropriately. 

Despite the study's success in improving accuracy, it would have been much more effective if 

it had been used to a much larger dataset, where file behavior may have yielded more precise 

findings. Although malicious and safe files were identified thanks to this study, the 

effectiveness of the model classification might be improved with the help of behavior 

statistics. 

7.2 FUTURE WORK 

The future work can classify files in the future based on the actions of executables by 

extracting APIStats variables from Cuckoo Sandbox data and improving the model [11]. 

They may train machine learning models based on the API calls of the files, evaluating the 

behavior of malware kinds, and attempting to identify the malware in real time if they 

compile the API calls of malicious and benign files into a phrase or frequency dictionary. By 

compiling the dataset, there may be a possibility of getting higher accuracy and precision 

results. 
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