

Malware Detection in Executable files

using XGBoost Algorithm

MSc Academic

Cybersecurity

Yashvardhan Pant

Student ID: -

x21132399

School of Computing

National College of

Ireland

Supervisor: - Prof. Imran Khan

National College of

Ireland MSc Project

Submission Sheet

School of Computing

Student Name: Yashvardhan Pant

Student ID: 21132399

Programme: MSc in Cyber Security Year: 2022-2023

Module: MSc Research Project

Supervisor: Mr. Imran Khan

Submission Due
Date:

15/12/2022

Project Title: Malware Detection in Executable files using XGBoost Algorithm

Word Count: Count 5615 Page 19

I hereby certify that the information contained in this (my submission) is

information pertaining to research I conducted for this project. All information

other than my own contribution will be fully referenced and listed in the relevant

bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students

are required to use the Referencing Standard specified in the report template. To

use other author's written or electronic work is illegal (plagiarism) and may

result in disciplinary action.

I agree to an electronic copy of my thesis being made publicly available on

NORMA the National College of Ireland’s Institutional Repository for consultation.

Signature: Yashvardhan

Pant

Date: 15/12/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into
the assignment box located outside the office.
Office Use Only
Signature:

Date:

Penalty Applied (if applicable):

Malware Detection in Executable files

using XGBoost Algorithm
Yashvardhan Pant

X21132399

Abstract
Keeping up with the fast growth of modern technology has led to an increase in malware and

harmful activities, which hackers are using to their advantage in stealing personal information

and login passwords. Rising numbers of malicious software regularly attacking online

systems now pose a significant risk. Due to the rapid growth of malware, manual heuristic

inspection of samples is no longer regarded a viable method of analysis. The use of machine

learning for automated, behavior-based malware detection and static approach with PE-

header based malware detection information is thus seen as a powerful approach. In this

study, examination of many Machine Learning Algorithms (such as XGBoost, KNN, and

Random Forest) that may be used to detect malware by analyzing a large dataset. Here,

measurement of how well things is doing utilizing a confusion matrix and a focus on

Detection. XGBoost has the highest accuracy and precision of any method, with 98.292% and

99.15%, without feature extraction and 98.33% and 99.01% with feature extraction

respectively.

Keywords: - Malware Detection, Machine Learning, Deep learning, Security, Algorithm,

Dataset, XGBoost.

1. INTRODUCTION

Malware, which is short for "malicious software," is designed to do damage by destroying

data that the user needs, compromising the security of the system by lurking there undetected,

controlling the user's computer as if it were a robot and making the user a conduit for

criminal activity, and so on. Researchers are working on several different methods for

preventing and identifying malware. Automatic dynamic (behavior) malware analysis mixed

with data mining activities, such as machine learning (classification) algorithms, is one

recommended methodology (solution) for achieving efficacy and efficiency in identifying

malware.

For malware identification, several researchers [7] turned to static analysis while the others

relied on dynamic analysis. Static analysis, also known as signature-based analysis, is an

evaluation of source code that doesn't involve running the program. Malware may be detected

through dynamic analysis by seeing how a program acts after being executed in a virtual

environment. Due to the specialized nature of dynamic analyses, they are more expensive and

need more resources to be carried out. Static analysis is preferable to dynamic analysis

because it is more stable and secure. Computers have gotten increasingly complicated and

advanced because of technological development. Malware has also evolved into a form that is

difficult to detect. To combat the inherent false alarm rate of behavior-based detection, a new

method called "feature detection" was developed. It seemingly recognizes certain attack

patterns, this method involves monitoring program executions and detecting deviations from

the defined in the behavior of the program. This method is quite like anomaly detection;

however, rather of depending on machine learning approaches, it relies on characteristics that

have been defined by humans to capture the behavior of the system.

In this suggested model, static analysis is used. The model splits into four distinct stages: data

collection and processing, model development and validation, model predictions, and model

effectiveness. This work offers a simple, fast, and accurate malware detection method that

utilizes information extracted from the PE header and Section table to categorize malware

families [10]. The system may identify previously unnoticed malicious code in the

executable. The PE file format is the primary format for Windows executable files. There are

many applications for it. Sample collection, feature extraction, dataset partitioning, and

executable file categorization are the four fundamental pillars of the model. It scans

executable files for malicious code before they are run. Malware analysis makes use of a

variety of classification techniques based on supervised machine learning to determine

whether an executable file was created maliciously. Precision, recall, accuracy, true positive

rate, and false positive rate are only few of the measures used to evaluate how well the

suggested system performs.

Below is the outline for the rest of the paper: In part 2, provision several works in progress

and briefly review various malware detection methods that have been developed. Section 3

explains the methodology behind the suggested model. The findings of the experiments and a

comparison are reported in Section 4, followed by a discussion of the results in Section 5, and

finally a conclusion is offered in Section 6.

Research question: How can we leverage machine leaning algorithms to classify

malignant and benign executable files

2. LITERATURE REVIEW

This research aims to propose a machine learning strategy for detecting malware. The

executable files on Windows are the primary topic of this research. To keep up with the

exponential proliferation of malicious software, there is a need to use a variety of automated

methods for identifying infected files. This project will throw some light on utilization of a

script that extracts information from PE-files so that machine learning training of algorithms

on a dataset consisting of both infected and uninfected files.

An in-depth literature assessment of other researchers' efforts in malware detection is

explained in the connected text. The following section elaborates on the study's methodology,

tactics, and technical considerations, as well as the researchers' findings and potential future

applications. Researchers have previously suggested several different methodologies and

frameworks for identifying malicious software on the PC platform. The suggested study takes

their findings and any limitations in their studies into account.

It was Schultz et al. [9] who first looked at the effectiveness of ML methods in identifying

malicious software. To extract static characteristics, they used three distinct strategies. The

first technique is called binary profiling, and it involves generating three distinct binary

vectors for each binary, including a list of the Dynamically Linked Libraries (DLL) that the

binary called, a list of the functions that have been called within each DLL, and the number

of functions called within each DLL. Aside from byte sequence, the other two methods of

feature extraction were strings. The binary profile features were used to train a RIPPER rule-

based learner, a Naive Bayes classifier was used to classify the binary strings, and an

ensemble classifier was used to classify the binary byte sequences. The ensemble classifier

had the greatest detection rate (97.76%) of the three learning methods evaluated, and its rate

was twice that of conventional signature-based detection systems.

Firdausi, et al., [2] researchers’ in-depth study on the use of machine learning for automated

behavior-based malware detection has been completed, and the results are promising.

Malware activity in an emulation environment may be automatically examined, leading to

behavior reports. As many as 220 distinct pieces of malware were obtained. They applied

several ML algorithms to the same collection of dynamic reports produced by Anubis

Sandbox and incorporated in vector space models, and then compared their detection rates. k-

Nearest Neighbors (KNN), Naive Bayes (NB), J48 Decision Tree (J48DT), Support Vector

Machine (SVM), and Multilayer Perceptron Neural Network (MLPNN) were the techniques

used (MLPNN). When everything was said and done, the J48 decision Tree's 96.8% accuracy

was highlighted as the best detection rate. Initially, these reports will be used to build sparse

vector models for machine learning (classification). After doing tests on all 5 classifiers, J48

decision tree came out on top in terms of recall (95.7 percent), false positive rate (2.4

percent), precision (97.3 percent), and accuracy (96.8 percent).

Malware detection using machine learning algorithms might be very efficient and effective.

Using a static analysis method, Radwan et al. [8] presented a system for extracting

characteristics of PE files. There were seven distinct categorization algorithms utilized. The

dataset was broken down into its constituent parts: the raw features, which had 53 features,

and the integrated features, which included both derived and enlarged features. There are 74

of them in all. When compared to other algorithms on integrated feature datasets, random

forest fared best with 93.23% accuracy on the 70/30 split and 97.56% accuracy on the raw

dataset. Both the K-Nearest Neighbor (KNN) model and the Gradient Boosting (GB) tree

fared well with tenfold cross-validation on the combined dataset, with an accuracy of 98.70%

and 93.55%, respectively.

Sandbox, feature extractor, and classifier were all built by Wang et al. [13]. Their process

consisted of three distinct steps: collection, analysis, and classification. The collector has both

a static analysis program and the PinFWSandbox module for dynamic execution. It took note

of data changes in dynamic files and log files and sent those data on to the extractor phase.

The extractor might extract features in a static, dynamic, or system call manner. The last

component was a classifier. When the results of all classifiers were averaged together, it was

discovered that the dynamic op-code classifier produced the highest F1-score (96%) of all

classifiers.

To identify PE-type malware in Windows, Catak et al. [1] leveraged the of operating system

API calls, which is an interesting and potentially useful job. An official definition of this

work is to execute malware in a sandbox, log API calls made by Windows, and then

sequentially analyze the logs. First, the contents of the suspicious software are examined

without running the software, and then the software is launched in an isolated environment,

explored for DNS resolution requests, and the registry, file system, and API calls are

recorded. They isolated 7107 pieces of dangerous software (viruses, backdoors, and trojans)

in a sandbox environment and examined them, then converted their findings into a format

that can be read by various categorization algorithms and techniques.

The use of ML for Windows malware detection was the subject of a review that Naz et al. [7]

Using a classifier to train the model on extracted features of the PE file, they introduced a

static analysis method based on machine learning; however, the dataset used was relatively

small, resulting in average accuracy; they achieved the highest accuracy (97.24 percent) with

the random forest classifier. The best accuracy of 98.63 percent was attained by a random

forest classifier when the model was trained and evaluated on a dataset consisting of

extracted features from the file, the optional, and the section header.

To accurately detect unknown malware, Darshan et al. [10] suggested a hybrid technique that

combined static and dynamic aspects of PE files with a linear support vector classification

strategy. Training the algorithm on a limited dataset hampered attempts to improve accuracy.

Experimental findings using tenfold cross-validation show that the proposed HF-MDS is

effective at accurately identifying malware and benign PE files, with a detection accuracy of

99.743% achieved using a hybrid features-based sequential minimum optimization classifier.

Galal et al. [3] developed a model of behavioral traits to characterize the malicious behavior

of malware. The suggested approach is derived from dynamic analysis of a recent malware

dataset conducted in a simulated, controlled environment to collect traces of API calls made

by malicious programs. Once the traces are collected, they are aggregated into more abstract

characteristics call actions. Multiple categorization techniques, including the decision tree,

random forests, and support vector machine, are used to evaluate the efficacy of potential

courses of action. When compared to API n-gram based approaches, the semantic value of

describing dangerous activities via actions is much higher. Malware analysts may also put

their technical expertise to use by extending the current set of heuristic methods to extract

new behaviors. The suggested feature model achieved an accuracy of 97.19% with Decision

Tree and a lower accuracy of 95% using SVM.

Kolter et al. [6] detecting and classifying malware in production environments. The author

asserts that 2,012 training samples were employed, including 1,971 clean files and 1,651

malicious executables encoded using n-gram characteristics. After selecting the features, the

authors claim to have utilized a variety of evaluation methods such as Naive Bayes, Decision

trees, Support vector machines, and boosting. The authors observed their technique

classifying programs according to payload and found it to be scalable to a large number of

executables. All the files were in the window PE format; the clean files came from the home

directories of PCs running Windows XP and Windows 2000, while the malicious files were

all caught on the network. The executables were "hex dumped," or converted to hexadecimal

code using the ISO-8859-1 character set, so that computers could read them. After then, the

famed n-grams were created by stringing together each four-byte sequence into a single

phrase. Experiments show that a boosted decision tree can accurately identify harmful files

98% of the time, with only 6% of false positives for dangerous files. While this may seem

like a major issue to some, the author argues that if the reader is ready to tolerate a false

positive rate of 0.1, then the detection rate will be 100%. The author concludes that boosted

J48 is the most effective algorithm based on its ROC curve of 0.996, outperforming the

others assessed.

Fewer studies have examined the XGBoost classifier as a Machine Learning Algorithm,

despite the fact that researchers are consistently striving to improve the accuracy and

precision of their datasets by employing various static methods, such as PE header

information, or behavioral ones, such as API, files deleted, rekeys etc. of the executables

during their running time. J48, KNN, SVM, and RF are the common methods used in study.

Researchers also use Deep Neural networks to determine if a file contains cancerous cells or

not. When comparing several algorithms, XGBoost machine learning models provide the

most optimal trade-off between prediction accuracy and speed. Feature extraction has an

impact on the accuracy and precision of the models used for executable categorization; this

study compares XGBoost to other machine learning techniques and examines this impact.

3. METHODOLOGY

Sample collection, feature extraction, and classification are the three main pillars of this

research methodology. Various samples of executable applications from different files are

collected and labeled before their runtime behavior is generated in the Cuckoo sandbox and

features are extracted from there.

Figure 1: CRISP-DM Model

During the research utilization of CRISP-DM (Common Industry Data Mining Process) is

both implement and assessed in the model [4]. It's a procedure for data mining that can be

used to any business, and it offers a great framework for organizing your data mining project.

The Data Science team at various companies has found remarkable success with this

technique, which has its origins at IBM and was designed for Data Mining. The phases

involved in the CRISP-DM technique are outlined below the graphic, which depicts the

process of the CRISP-DM approach.

3.1 Business Requirement:

There is a growing security risk due to the proliferation of malicious software that exploits

online systems every day. Due to the ever-increasing volume of malware, traditional malware

analysis methods, such as manual heuristic scanning, are no longer deemed dependable or

efficient. That is why it is so important to implement automated, behavior-based malware

detection utilizing machine learning approaches. Because malware is becoming more

sophisticated at the same rate as technological advancements, the conflict between security

experts and its creators will continue indefinitely. Due to its capacity to keep up with

malware progress, machine learning approaches are now the focus of innovative malware

detection research.

Unlike prior approaches, this one can unearth even well-hidden virus. While malware

detection has previously relied on a few classic machine learning techniques, research found

that XGBoost learning provided far more accurate findings.

3.2 Data Acquisition:

The first step is to collect some data for use in training algorithms, which is necessary before

the research can get down to work. The data set comprises of malware data set and benign

instance data set. The malicious and benign samples are both stored as Windows Portable

Executable (PE) files. There are a total of 10540 samples, 6999 of which are dangerous (the

"malicious data ") and 3450 of which are benign (the benign data"). Information such as

Name, MD5, Hardware, SizeOfOptionalHeader, Features, Major/Minor Linker Version,

Code Size, and Line Length etc.

3.3 Preparation of the data set

Initially, Executable files containing malware were acquired from "https:// virusshare.com"

and used to compile the dataset. Since there were not too many clean executables available,

the Dataset was built from a large collection of files found inside Windows, particularly.dll

files. The dataset was constructed from the JSON output files that were uploaded to the

cuckoo sandbox and thereafter subjected to a real-time analysis.

Data sets to be utilized and documented are selected in this step. Malware analysis from

cuckoo sandbox reports is stored in JSON files, and for machine learning models to work on

these data variables, there is a need to convert the variables to an integer readable format

before extracting the variables in a CSV. When it comes to data quality, missing numbers are

a big cause for alarm. Mean, mode, and median may be used instead of some of the other

approaches, depending on the qualities in question. If there's a significant chance of data loss,

then deleting rows and columns is a must.

There are a total of 10540 files in our combined collection, 6999 of which are dangerous and

3540 of which are safe. Since all of the files were already in. json format, no further work

was necessary to transform them into.csv format for usage with the python and pandas

package. The file contained several columns, including Size, size of code, DLL

characteristics, MD5 values, SHA-a values, etc., but there is only need for a subset of those

columns—DLL characteristics, Entropy, ImageBase, Size of initialized data, Size of

uninitialized data, and Size—because they describe the most crucial aspects of malware's

potential impact on a system.

It's important to format data correctly and to re-format it if required. It is possible to execute

mathematical operations on string values that hold numbers by converting them to numeric

values.

4. DESIGN SPECIFICATION

Figure 2 Implementation Design

One way to measure how well a classifier or classification algorithm is doing its job is with

the use of a table called a confusion matrix. Building such a database allows one to keep track

of the number of properly and erroneously labeled examples, which can subsequently be

utilized in future. Accuracy, precision, and recall are the primary indicators of a

categorization model's effectiveness.

Each machine learning algorithm/model was then updated to make use of our newly acquired

dataset. Depending on several characteristics, the call may be classified as Malware or

Goodware and return one of two possible outcomes. The dataset is used to deploy several

machine learning classification algorithms and then compare how well each one handles the

high dimensionality of the dataset. Nonetheless, with the help of data pre-processing, picking

the right machine learning model may boost model efficiency.

5. IMPLEMENTATION

5.1 KNN Model

The KNN model comes in handy since it sorts information by using the most similar

information. Its purpose is to discover all the nearest neighbors surrounding a new unknown

data point to figure out what class it belongs to. Specifically, it is a distance-based method.

Figure 3 KNN Machine Learning code

5.2 Random Forest

Each tree in a random forest uses a subset of features to make classifications and provide

outputs. Several different approaches were tried before settling on 50 estimates as the optimal

number for this task, with the second parameter being the Function for evaluating the

division's quality [12]. Using a random sampling method, random forest constructs a decision

tree and then takes an average of the results.

Figure 4 Random Forest Classifier Code

5.3 XGBoost

As part of the Distributed Machine Learning Community's bigger set of open-source libraries,

XGBoost was created by Tianqi Chen (DMLC). The XGBoost algorithm is a fast and

efficient implementation of gradient boosted decision trees. The maximum depth (max

depth), the learning rate (learning rate), and the number of estimations is the Algorithm's

parameters (n estimators). Due to its focus on model performance and computational speed,

XGBoost is a scalable and accurate implementation of gradient boosting machines. It has

been shown to push the boundaries of processing power for boosted tree methods.

Figure 5 XGBoost Algorithm Code

6. EVALUATION

The purpose of this study was to statistically evaluate how well existing binary categorization

(malign or benign) tests work. True positive rate (sensitivity, recall, hit rate), false positive

rate (fall-out), positive predictive value (precision), and accuracy are the statistical

measurements [9]. Metrics are calculated in machine learning with the use of a confusion

matrix included in the sklearn metrics package. It is possible to see the model's computed

precision, accuracy, recall, and F score, as well as the findings provided in the model's

Confusion matrix.

Figure 6 Confusion Matrix Model

• Number of samples that were accurately identified as positive (true positive, or TP).

• Number of samples that were successfully identified as negative (true negative, TN).

• Number of false-positive results (FP) indicates the percentage of negative samples

that were mistakenly interpreted as positive.

• False-negative (FN) rate is the proportion of true-positive samples that were wrongly

classified as negative.

The other parameters can be calculated as follows:

• The effectiveness of the categorization algorithm will also be measured by the

following criteria

• The ratio of accurate to wrong classifications is calculated using the formula:

• Number of accurate classifications minus penalty for number of missing elements

• An efficient metric based on the harmonic mean of precision and recall is the F-score,

which is calculated as follows:

This Research concludes that the XGBoost method achieves a higher rate of accuracy than

competing algorithms based on the assessment and the outcomes from the models that were

studied. Our algorithm can identify and categorize a wide variety of malicious and safe files.

6.1 RESULTS

The dataset was then used to train a model or algorithm, and the resulting data was collected.

Accuracy, Precision, Recall, and F1-score were calculated by solving the confusion matrix

for each model.

6.1.2 Results without Feature extraction
a) KNN

Figure 8 KNN Confusion Matrix without feature
selection

Figure 7 Nearest Neighbour Graph

We will use CrossValidation (a statistical technique for evaluating the quality of machine

learning models) to determine the best value of K. The technique relies on the user providing

a value for K that stands for the total number of neighbors. The method may be performed

with a variety of different values for K to see which one works best for the given situation.

The optimal number of neighbors is 3. The model gives out 96.774 % accuracy with 97.388%

of precision.

b) Random Forest

The confusion matrix below shows the accuracy and the precision

Figure 9 RF Confusion Matrix without feature selection

This model has an accuracy of 98.197% and a precision of 99.223%, which is a significant

improvement over the KNN model.

c) XGBoost

Figure 10 XGB Confusion Matrix without feature selection

The Overall accuracy and the precision for this model is the best among all the machine

learning classifiers. The precision and the accuracy increased by not much though but overall,

an increase is seen. The Accuracy of this model comes out to be 98.292% and the precision

for this model is 99.153%.

6.1.3 Results with Feature Extraction

The purpose of feature selection is to reduce our 54-feature dataset to the most relevant

features that may be utilized to identify benign from malicious files. A plan to apply Tree-

based feature selection to investigate whether it enhances the accuracy and performance of

the algorithms is made.

The "sklearn model" import "train test split" in Python causes a split to occur. Because it's

more efficient to use just a subset of the data to training, the dataset is often divided in half,

with 80% used for training and 20% used for testing. Below, a detailed explanation of each

model, including the KNN model, the SVM model, the [] model, and the XGBoost model is

given. The purpose of feature selection is to reduce our 54-feature dataset to just the most

relevant features that may be utilized to identify benign from malicious files. To determine

whether or if this strategy enhances accuracy and algorithms, Usage of Tree-based feature

selection is chosen. This algorithm only picked 9 out of 54 necessary attributes.

a) KNN

For this model the optimal number of neighbors is 6. As compared to the previous model

without feature extraction, the accuracy and the precision slightly increased to 97.438% and

98.023% respectively which is 0.68% increase in accuracy and 0.65% increase in precision

Figure 12 KNN Confusion Matrix with feature selection

b) Random Forest

After the feature extraction procedure, the random forest model's classifier is less successful,

as shown by the fact that it achieves an accuracy of 97.67% and a precision of 98.08% in its

classifications.

Figure 11 Nearest Neighbour KNN

Figure 13 RF Confusion Matrix with feature selection

c) XGBoost

Among the models that make use of feature selection, the XGBoost model produces the best

outcomes, with an accuracy of 97.67% and a precision of 98.23%.

Figure 14 XGBoost Confusion Matrix with feature selection

The Accuracy, precision, recall, and F1-score are calculated using the confusion matrix for

each model and the data represented in the above diagrams. There is an increase in the

accuracy level of data with feature selection.

6.2 DISCUSSION

Most of the work done on malware detection have used various datasets and some have used

different algorithms. In this research the focus is given on the Latest machine learning

algorithms XGBoost and how its analysis the data and classifies out input to either benign or

malign executables

The dataset utilized in this work is around typical in size when compared to those used by

other researchers [3][6]. An accuracy of 97% or higher is achieved, which is fine since this is

a dataset of medium size. Since the dataset is unbalanced, this research was unable to do

thorough analyses. Consistently high levels of accuracy and precision have been found in

related studies. Furthermore, the accuracy and precision in this study demonstrates that

XGBoost has the upper hand amongst other classifiers, since previous studies using the same

features and other datasets have only achieved an accuracy of 95% with SVM [2][3], while

the accuracy with XGBoost is nearly 98.3% in all situations.

Although after the feature selection is implemented, the values of the precision and accuracy

increased in the KNN model but decreased by 0.63% in both Random Forest and XGBoost

cases. The accuracy and the precision remain almost same for XGBoost with and without

feature selection as there is a very slight increase in accuracy of model with feature selection.

7. CONCLUSION AND FUTURE WORK

This research shows how the malicious executables can be found out in the wild with the help

of machine learning. In the initial part of the process, data of both malicious and

benign executables are employed to build our data collection, and a Python script is used to

extract the information needed. It is necessary to get the data set ready for training machine

learning algorithms once it has been created. After implementation of the model, the model

got an accuracy of 98.29% in the XGB model followed by 98.19% of Random Forest, and

second-highest accuracy by KNN which is 96.77%. The research expected that the XGBoost

will give more accuracy and it do so with an increase of 0.065 % from Random Forest

algorithm and 1.54 % increase from KNN algorithm in accuracy. The Recall and F1 scores

are the best achieved by XGBoost with feature selection where recall is 98.52% an F1 score

is coming out to be 98.76% Overall, the best results are given with feature extraction and the

best accuracy is given by XGBoost algorithm.

Table 1 Summarised Results

*= Models with Feature Selection

Figure 155 Graphical Representation of Summarised Results

Although when the features were selected in XGBoost, the accuracy increased a bit for

(0.043%), but the precision decreased by 0.142%. If after feature selection accuracy or

precision falls, it means that all the variables are important for the model when we are

minimising the false positives. As the precison of the algorithm XBoost The Graphical

representation shows the efficacy of all the models with respect to each other

7.1 LIMITATIONS:

Due to time constraints, the study was unable to demonstrate the behavior of executables by

extracting the API call sequence for each file, analysing, or seeing the behavior of the files

through the numerous API calls made by each file, and conducting detection appropriately.

Despite the study's success in improving accuracy, it would have been much more effective if

it had been used to a much larger dataset, where file behavior may have yielded more precise

findings. Although malicious and safe files were identified thanks to this study, the

effectiveness of the model classification might be improved with the help of behavior

statistics.

7.2 FUTURE WORK

The future work can classify files in the future based on the actions of executables by

extracting APIStats variables from Cuckoo Sandbox data and improving the model [11].

They may train machine learning models based on the API calls of the files, evaluating the

behavior of malware kinds, and attempting to identify the malware in real time if they

compile the API calls of malicious and benign files into a phrase or frequency dictionary. By

compiling the dataset, there may be a possibility of getting higher accuracy and precision

results.

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

KNN RF XGB KNN* RF* XGB*

Chart Title

Accuracy Precision Recall F1 Score

8. ACKNOWLEDGMENT

Finally, I'd want to express my gratitude to my advisor, Prof. Imran Khan, who was there for

me during the whole process of writing this report and who helped me make informed

decisions throughout. In addition, I want to express my gratitude to my parents for their

unwavering love and support I encountered while working on my thesis. For his assistance

with the implementation whenever I hit a snag, I'd want to extend my gratitude to a buddy

who is a student in data analytics at NCI. As an added note, I'd like to express my

appreciation to the National College of Ireland and the School of Computing for successfully

wrapping up their respective semesters.

9. REFERENCES:

[1] Catak, F.O. and Yazı, A.F. (2021). A Benchmark API Call Dataset for Windows PE

Malware Classification. arXiv:1905.01999 [cs]. [online] Available at:

https://arxiv.org/abs/1905.01999

[2] Firdausi, I., Erwin, A., Lim, C. and Satriyo Nugroho, A. (2010). (PDF) Analysis of

Machine learning Techniques Used in Behavior-Based Malware Detection. [online]

ResearchGate. Available at:

https://www.researchgate.net/publication/232627329_Analysis_of_Machine_learning_Techni

ques_Used_in_Behavior-Based_Malware_Detection [Accessed 11 Nov. 2022].

[3] Galal, H.S., Mahdy, Y.B. and Atiea, M.A. (2015). Behavior-based features model for

malware detection. Journal of Computer Virology and Hacking Techniques, 12(2), pp.59–67.

doi:10.1007/s11416-015-0244-0.

[4] Hotz, N. (2022). CRISP-DM. [online] Data Science Project Management. Available at:

https://www.datascience-pm.com/crisp-dm-2/ [Accessed 25 Nov. 2022].

[5] Hussain, A., Asif, M., Ahmad, M.B., Mahmood, T. and Raza, M.A. (2022). Malware

Detection Using Machine Learning Algorithms for Windows Platform. Lecture Notes in

Networks and Systems, pp 619–632(https://doi.org/10.1007/978-981-16-7618-5_53), pp.619–

632. doi:10.1007/978-981-16-7618-5_53.

[6] Kolter, J.Z. and Maloof, M.A. (2004). Learning to detect malicious executables in the

wild. Proceedings of the 2004 ACM SIGKDD international conference on Knowledge

discovery and data mining - KDD ’04, 2721-2744. doi:10.1145/1014052.1014105.

[7] Naz, S. and Singh, D.K. (2019). Review of Machine Learning Methods for Windows

https://arxiv.org/abs/1905.01999
https://www.researchgate.net/publication/232627329_Analysis_of_Machine_learning_Techniques_Used_in_Behavior-Based_Malware_Detection
https://www.researchgate.net/publication/232627329_Analysis_of_Machine_learning_Techniques_Used_in_Behavior-Based_Malware_Detection
file:///C:/Users/panty/Desktop/10.1007/s11416-015-0244-0
https://www.datascience-pm.com/crisp-dm-2/
file:///C:/Users/panty/Desktop/10.1007/978-981-16-7618-5_53
file:///C:/Users/panty/Desktop/10.1145/1014052.1014105

Malware Detection. [online] IEEE Xplore. doi:10.1109/ICCCNT45670.2019.8944796.

[8] Radwan, A.M. (2019). Machine Learning Techniques to Detect Maliciousness of Portable

Executable Files. [online] IEEE Xplore. doi:10.1109/ICPET.2019.00023.

[9] Sarang Narkhede (2018). Understanding Confusion Matrix. [online] Medium. Available

at: https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 [Accessed

23 Nov. 2022].

[9] Schultz, M.G. and Eskin, E. (n.d.). Data Mining Methods for Detection of New Malicious

Executables. [online] Available at:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a9bd1102fbd9a3184127a7

7a50dc47517147a3ba [Accessed 11 Nov. 2022].

[10] Shiva Darshan, S.L. and Jaidhar, C.D. (2018). Windows malware detection system based

on LSVC recommended hybrid features. Journal of Computer Virology and Hacking

Techniques, 15(2), pp.127–146. doi:10.1007/s11416-018-0327-9.

[11] Singh, J. and Singh, J. (2020). Detection of malicious software by analyzing the

behavioral artifacts using machine learning algorithms. Information and Software

Technology, 121, p.106273. doi:10.1016/j.infsof.2020.106273.

[12] Ujhelyi, T. (2022). Random Forest in Python and coding it with Scikit-learn (tutorial).

[online] Data36. Available at: https://data36.com/random-forest-in-python/ [Accessed 26

Nov. 2022].

[13] Wang, C., Ding, J., Guo, T. and Cui, B. (2017). A Malware Detection Method Based on

Sandbox, Binary Instrumentation and Multidimensional Feature Extraction. Advances on

Broad-Band Wireless Computing, Communication and Applications, pp.427–438.

doi:10.1007/978-3-319-69811-3_39.

file:///C:/Users/panty/Desktop/10.1109/ICCCNT45670.2019.8944796
file:///C:/Users/panty/Desktop/10.1109/ICPET.2019.00023
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a9bd1102fbd9a3184127a77a50dc47517147a3ba
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a9bd1102fbd9a3184127a77a50dc47517147a3ba
file:///C:/Users/panty/Desktop/10.1007/s11416-018-0327-9
file:///C:/Users/panty/Desktop/10.1016/j.infsof.2020.106273
https://data36.com/random-forest-in-python/
file:///C:/Users/panty/Desktop/10.1007/978-3-319-69811-3_39

