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Abstract 

As Internet technology advances, network security is more and more exposed to 

various threats. In particular, malicious uniform resource locators (URLs) can be 

spread by attackers to carry out operations like spamming and phishing. Making 

progress in identifying malicious URLs is crucial for putting an end to these 

attacks. However, there are still several severe problems with the current findings. 

For instance, it could be challenging to identify problems precisely. Some of the 

detection methods used today are easy for attackers to circumvent. The vector input 

dimension affects the dynamic convolution technology's middle layer feature 

mapping width. The pooling layer settings are additionally continuously changed 

according to the depth of the present convolution layer and the duration of the URL 

input to obtain more precise features over a wider range. To acquire the 

embeddings of a URL, the innovative embedding approach bases word embedding 

on character anchoring. 
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1 Introduction 

 

1.1 Background  

Malware research and identification have become a problem for cybersecurity due to the 

growth of ad links on screens that tempt individuals to click on or occasionally download risky 

payloads that frequently result in significant attacks like ransomware (Oprea et al., 2018). This 

problem will be addressed by the project, which will create a malware detection program that 

will scrape each ad link from a parent web page, create a fingerprint for each link, and compare 

those biometrics to those recorded in the repository to identify each link's classification 

(whether good or bad one). To deceive people into clicking on risky links that install Trojans 

on their systems or expose their personal information, hackers frequently utilize spam and 

phishing. Users can recognize bad URLs and be shielded from attacks by using technology for 

identifying them. Blacklist-based techniques have been used in the past in studies on harmful 

URL detection to find harmful URLs. This tactic has a few special benefits. It is quick, easy to 

understand, and less likely to produce false positive results (Oprea et al., 2018). However, the 

domain generation algorithm (DGA) nowadays is capable of producing tens of thousands of 

unique malicious domain names each day that are undetected by conventional blacklist-based 

techniques. 

To detect fake URLs, researchers have started employing machine learning techniques. 

However, these tactics often require hand-extracting the characteristics since attackers may 

manufacture these qualities to hide their identities. Research focuses on developing a more 

precise malicious URL detection system in light of the modern network environment's 

complexity. This paper proposes a DCNN-based model for detecting malicious URLs (Oprea 

et al., 2018). To automatically extract properties and understand the language of the URL, it 

uses word vectors, a character-based technique based on character embedding. The k-max-

pooling layer is used in place of the pooling layer. The dynamic convolution technique's 

intermediate layer feature mapping width is dependent on the vector input dimension. 

Additionally, based on the previous convolution layer's depth and the URL input's length, the 

pooling layer parameters are continually modified to aid in the extraction of deeper features 

over a larger range (Ali et al., 2019).  

The method of detection is as follows. By analyzing the URL in order, the domain name, 

subdomains name, and website domain suffix are first obtained. The first branches of the 

detection model lengthen each URL and assign a unique number to each word. Numbers are 

used to represent the complete URL. The embedding layer is then given the sequences and 
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trained along with other layers. During the training phase, these patterns will learn the right 

vector expression (Ali et al., 2019). A DCNN is then given the data stream produced by the 

embedding layer. In two further rounds, the output goes through a convolution layer, a folding 

surface, and a pooling layer. The data stream is flattened by the flattened layer. To establish 

whether a piece of software is meant to be hazardous or not, malware detection methods are 

utilised. A detection system is made up of two processes: analysis and detection. Malware 

detection software is a method for preventing malware. The methods they employ have an 

impact on the characteristics of such detectors. Its two inputs are the programme under 

investigation and the distinctive traits or behaviors of a particular piece of code. Its detecting 

method can determine if a piece of software is malicious or harmless. To create a method for 

malware detection that is successful, malware analysis is required (Ali et al., 2019). Malware 

analysis is the practice of examining malware's functionality and purpose to comprehend how 

it operates and develop a defence to safeguard the organization's network. Malware analysis, 

which describes how malware works and its impacts on the system, may be divided into three 

categories. However, the tools, resources, and expertise needed to carry out each type of 

examination vary.  

Over the last 10 years, a lot of malware researchers have focused on data mining in an attempt 

to identify new, unknown malware; they have promoted data mining as a fourth recommended 

malware detection approach. In 2001, the idea of employing data mining and machine learning 

methods to recognise novel, undiscovered viruses based on each of their unique binary codes 

was first put out. Then, several investigations were conducted to identify various malware. 

Data mining facilitates data analysis by employing automated statistical analytic methods to 

find noteworthy patterns or connections. Since malware may steal personal data, turn off 

security software, and do other actions, it poses a major risk to a computer's system (Ali et al., 

2019).  

1.2 Research objectives  

To discuss several tools to decrease mal-adware activities. 

To evaluate several causes of attacks in mal adware. 

1.3 Research questions 

1. How to analyse several models related to URL security? 

2. What is the purpose of tools in lessening the risks in URLs? 

 

2 Related Work 
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2.1 A malicious URL detection model 

At present, outdated algorithms based on blacklisting and modern ones based on machine 

learning are the two main types of algorithms used to identify dangerous URLs. The first 

written description of the blacklist-based detection technique was published. Although quick 

and effective, this approach has considerable drawbacks because it cannot identify newly 

created malicious URLs. According to Wang et al. (2020), attackers may simply avoid the 

conventional blacklist-based detection approach by utilizing a random seed to create a wide 

range of malicious domain names. Using machine learning algorithms, researchers have found 

dangerous URLs in literature. Using statistical data, machine learning develops a prediction 

model that categorizes URLs as dangerous or benign. This function looks at the URL and any 

related websites or web pages to obtain the properties. According to Wang et al. (2020), static 

features and various properties are frequently used to categorise the properties gathered using 

this approach. The host information, lexical knowledge in URL strings, and sometimes HTML 

and JavaScript data are retrieved from literature. The "support vector machine (SVM)" is used 

for detection after several network traffic-related characteristics are obtained from the URL 

using literature.  

According to Wang et al. (2020), three feature processing techniques are suggested in the 

literature to enhance classification performance. The aforementioned techniques have been 

successful, yet they still have several drawbacks. Long-standing machine learning-based 

detection techniques may need features to be manually extracted. Several researchers have 

developed several methods based on deep learning models to detect malicious URLs and decide 

whether a URL is hazardous just by looking at the strings it contains. The idea of text 

classification is being looked at in this instance. These processes can use the URL to acquire 

accurate data automatically. For instance, literature Do Xuan et al. (2020) classify URLs 

generated by DGA using a "character-level cyclic neural network model". A sophisticated 

machine learning method to identify risky URLs To assess if DGA produces the URL, 

character-level semantic characteristics may be used with "the n-gram model and deep 

learning". The single-layer long selective memory structure is one deep learning framework 

for detecting bogus URLs (LSTM). These characteristics can be used by attackers to avoid 

detection, making it more challenging to maintain detection systems relying on conventional 

machine learning. Additionally, a trained algorithm may overlook certain essential information 

from the URL when detecting dangerous URLs on a big scale.  
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2.2 Malicious URL detection depending on Machine Learning (ML) 

According to Do Xuan et al. (2020), the Uniform Resource Locator of an Internet resource 

serves as its identification (URL). The resource name, which provides the IP address or web 

address where the resource is hosted, and the network identifier, which determines the protocol 

to use, are the features and two crucial parts of the URL. Each URL has a distinct structure and 

format, as can be seen. Attackers typically try to modify one or more structural elements of 

URLs to trick people into sharing their malicious URLs. Links that endanger users are known 

as malicious URLs. These URLs might lead users to harmful, dangerous, phishing, or other 

web pages where they could download malware or where attackers could take control of users' 

systems. According to Do Xuan et al. (2020), the number of harmful URLs has increased over 

the past few years, which has led to the development and use of strategies or procedures for 

their elimination. When it comes to the difficulty of recognizing malicious URLs, there are 

now two main trends: harmful URL detection based on indications or sets of rules, and 

hazardous URL detection based on behavior analysis techniques.  

A method based on a collection of signs or criteria may quickly and accurately identify 

fraudulent URLs. However, this technique cannot be used to find newly identified malicious 

URLs that do not follow the predefined signs or limits. Identifying risky URLs using 

blacklisting, machine learning, rule finding, and profound learning-based detection techniques 

is common practice. Do Xuan et al. (2020) looked at the IP addresses and domain names of 

various public blacklist sets of data. They created a graph-based approach to locate subsidence 

in the blacklists after realising that parked domains can account for a sizable portion of entries. 

To increase the technology's capacity for detection, researchers have increased the blacklists 

already in use. The fishnet system, developed by Yuan et al. (2021), used five heuristic 

algorithms to recognise simple permutations of well-known phishing sites to detect new 

phishing URLs. Since growing the data set takes time and the size of the initial list affects how 

effectively blacklist detection functions, various academics have suggested a rule-matching-

based technique. To locate new, previously unidentified dangerous URLs that fit the matching 

rule, rule matching examines the text structure of existing harmful URLs. SpyProxy is a proxy-

based tool for locating fake websites. Moshchuk developed a set of matching rules for the 

SpyProxy to match the intercepted data delivered from the web server to the browser. 

2.3 Utilization of novel optimization algorithm in detecting malicious URL 

The detection of dangerous URLs has historically been the focus of research on internet 

security protection. Currently, the two main techniques for identifying dangerous URLs are 
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black-and-white lists and machine learning. A website cannot be reached using the first method 

once it has been determined that its URL does not exist in the blacklist database. According to 

Yuan et al. (2021), numerous popular browsers, notably "IE8", "Mozilla Firefox 2.0", "Safari", 

"Chrome", and others, have made extensive use of them. It distinguishes itself by being both 

effective and simple. However, the system calls for constant blacklist maintenance, which is 

costly and might lead to the problem of judgement omission. These issues frequently reduce 

its appeal. To improve the capacity to identify fake URLs, the second method evaluates the 

challenges from a variety of angles, covering URL characteristics, website domain character 

traits, host characteristics, etc. According to Yuan et al. (2021), studies in this field have grown 

in popularity over time. However, the majority of these study findings pay minimal attention 

to machine learning research instead and prioritise the extraction and analysis of URL 

properties. Rumelhart and Hinton published the initial description of the BP neural network 

(BPNN), a well-liked machine learning approach for URL security testing, in 1986. Recent 

years have seen a sharp rise in internet usage. According to Yuan et al. (2021), the rise of 

mobile devices, ad hoc networks, sensor technologies, and the Internet of Things which was 

driven by the need for a lockdown to combat the COVID-19 epidemic has led to the Internet 

becoming increasingly important in people's everyday lives and activities. Due to the 

availability of reliable facilities like cloud storage, affordable platforms, and a sizable target 

market, the majority of businesses moved online. Internet use carries several risks, such as 

viruses, spam, scamming, financial fraud, theft of information, and data loss. The main threat 

source is malicious websites. 

2.4 Cyber Threat Intelligence-Based Malicious URL Detection 

According to Yuan et al. (2021), “18.5 million websites have been compromised with 

malware”. According to Google's safe surfing report, “there were two million phishing 

websites in September 2020”, up more than “280% from the same month in 2010”. To persuade 

people to visit malicious websites, attackers disseminate fake news and adverts. Once a victim 

accesses a malicious website, attackers can employ various tactics to either trick the victim into 

aiding them in committing financial fraud or other forms of assaults or install malware payloads 

on the killer's browsing device. The designers of many bad websites claim that they were not 

intentionally designed to be destructive. According to Bo et al. (2021), vulnerable websites 

might be used by nefarious attackers. Identification of malicious websites has been a concern 

since 2004's first days. To reliably identify these websites, several techniques have been 

suggested. Depending on where they acquired their information, these methods may be 
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categorised into three groups: script-based, URL-based, and online content-based. URL-based 

detection has garnered the most study, trailed by content-based detection, while script-based 

discovery has gotten less. Since URL-based detection is proactive and secure for the detecting 

machines and may find harmful URLs before the user accesses them, it was picked as the 

preferred method of detection.  

 

According to Bo et al. (2021), there are several methods for locating harmful drugs and 

unfavourable websites, many of which use the extraction of information from the URLs of 

those sites. Fewer of these procedures mechanized the features using deep learning techniques; 

the majority of them depended on humans to extract the attributes. Several distinct pieces of 

information were gathered and used for the detection, including a host questionnaire survey to 

collect like country name and host sponsor, domain attributes like lexical elements like the 

length of the URL and the number of dots in it. However, attackers might change URL-based 

characteristics and manipulate them, rendering them worthless for efficient representation. 

3 Research Methodology 

In order to detect mal adware for URL security an android application was created using java. 

The particular application took the URL as input for detecting whether the URL is phishing or 

not. A decision Tree has been used in order to detect phishing and machine learning has helped 

to provide a proper description of the detection. In this paper 0 has been considered as “Trusty”, 

1 means “Suspicious”, 01 means “Phisy” and 0.5 means “Suspicious”.  
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Figure 1: Framework of our proposed of malicious URLs detection system, Source- 

(Patil, and Patil, 2018) 

 

The organisational structure of our suggested malicious URL detection system is illustrated in 

Fig. 1. The feature extraction, training, and classification steps make up this technique. The 

Java feature extraction programme receives the dangerous and benign URLs directly from the 

benchmark sources. The 117 static and dynamic properties of the good and bad URLs have 

been extracted (Patil, and Patil, 2018). These qualities are binary and numeric. When 

Researchers were generating the dataset, they gave the good URLs the number 1 and the bad 

URLs the number +1. Six decision tree learning algorithms “J48 Decision Tree”, “Simple 

CART”, “Random Forest”, “Random Tree”, “ADTree”, and “REPTree”—are taught on our 

labelled dataset. Six trained models are provided at this stage for the testing stage (Ullah et al., 

2020). 
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3.1 Feature extraction 

Researchers have identified four different categories of static and dynamic URL qualities, 

including URL, domain name, website source, and short URL traits. The Java URL feature 

extractor has been put to use. The Java URL class is used to extract URL features, and the 

features are retrieved by lexically scanning the URL string. Depending on domain name 

recovery and scanning of the web address, the website address features extraction is put into 

practise. The website is browsed together with a Firefox instance, which collects the webpage's 

source characteristics, in order to apply a Java feature extraction engine to understand how 

HTML is constructed (Patil, and Patil, 2018). To ensure a distinct session for each URL viewed 

for extracting features, a new Firefox browser instance is started for each URL. By getting in 

touch with the URL shortening service providers, the enlarged URLs may be obtained. The 

study has established a predetermined threshold of 30 for the duration of URLs; if the submitted 

URL is longer than 30, it is flagged as malicious when we receive the real URL from URL 

shortening providers. The retrieved URL string's lexical characteristics were also investigated 

in the article to assess if it was innocuous or harmful (Patil, and Patil, 2018). This method is 

often used by many search engines, browser toolbars, etc. to prevent users from visiting the 

websites that are blacklisted. A database of reported URLs is called Blacklist. These dangerous 

URLs are not available until successful assaults are identified. However, it is difficult to 

maintain such a lengthy list up to date because more are always being added. They struggle to 

identify new threats because new URLs may be generated automatically, enabling them to 

escape blacklists and zero-hour phishing detection. Despite these disadvantages, blacklists are 

nevertheless often used by antivirus software and online filtering applications (Ullah et al., 

2020). 

3.2 Decision tree algorithm 

Decision trees can handle scenarios that are both category and numerical/continuous. 

Numerical decision trees provide a real anticipated value, whereas categorical decision trees 

only provide a result of 0/1, Yes/No, or True/False. Before analysing the subtrees, decision 

trees separate the data into subtrees and assign both parent and child nodes to each one. The 

homogenous clusters of the full dataset are shown in these subtrees. When employing decision 

trees, overfitting may not be a desirable thing (Ullah et al., 2020). By restricting the variables 

taken into account for each subtree, the Random Forest classifier may be utilised to address 

problems. Another method for preventing overfitting is pruning. The model's accuracy might 

be increased while the learning rate is sped up by altering a few parameters. If the maximum 
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characteristics option is selected, the model will have more alternatives for evaluation. If there 

are too many attributes, the technique could run slowly. The number of trees will directly affect 

the model's accuracy up until the maximum number reaches its threshold. Calculating the 

accuracy with different tree counts might reveal this (Ullah et al., 2020). Regardless of how 

many trees are added, accuracy remains constant until it reaches its highest level. 

4 Design Specification 

This engineering-focused phase aims to gather pertinent URL-related data. This information 

consists of things like popularity statistics, host information, HTML and JavaScript content on 

the website, if the URLs are on a blacklist, attributes inferred from the URL String, etc. As 

seen in Figure 2, the feature map may be made by obtaining various kinds of data from a URL.  

 

Figure 2: “Example of information about a URL that can be obtained in the Feature 

Collection stage. Source- (Usman et al., 2021)” 
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Blacklists may be used, as was already noted, to swiftly identify harmful URLs. All active 

URLs that have been determined to be harmful are included in the list (either by in-depth 

investigation or crowd-sourcing). Blacklisting has been shown to suffer from significant high 

negative cases due to the challenge of keeping comprehensive up-to-date lists, despite its ease 

of use and simplicity. As a result, blacklist inclusion may be employed as a strong characteristic 

rather than the only criteria (Usman et al., 2021). Numerous JavaScript techniques are routinely 

used by hackers to encrypt malicious code or launch unwanted activities without the client's 

knowledge. Use of the eval() and unescape() functions, for instance, may indicate that HTML 

code that has been encoded is being run often. N ative JavaScript methods will be used to find 

risky URLs. During the investigation, a subset (seven) of these native JavaScript methods that 

are often utilised in cross-site scripting and the spread of web-based malware were found. The 

"collection complexity" is the technical effort required to obtain accurate data on the attributes 

(Usman et al., 2021). In contrast to the other characteristics, which require more connections 

and have greater collection costs, the popularity, contextual, and blacklist attributes are directly 

retrieved from the URL. The problem of detecting malicious URLs may be solved using a large 

array of machine learning techniques. Several of these learning techniques may commonly 

have been used to quickly train a forecasting model after turning URLs into feature vectors 

(Janet, and Kumar, 2021). In order to more effectively handle the issue, attempts have also 

been made to develop specialised learning algorithms that either take use of the qualities given 

by the training data of malicious URLs or that specifically address the issues the application 

encounters. For this purpose, we categorise and evaluate the learning algorithms used in this 

area, and we also suggest appropriate machine learning technologies that may be used to solve 

certain problems.  

5 Implementation 

5.1 Data collection  

This section contains details on where highlighted URLs came from. Several machine learning 

researchers and online sources, such as PishTank, OpenPish, BlockList, and Yahoo's directory 

listing, have combined about 4.5M URLs into a sizable dataset. Along with the categorization 

of URLs, information must be gathered to determine if they are safe or harmful. As a result, 

they develop software that can draw traits straight from the URL (Janet, and Kumar, 2021). 

Because the lexical analysis is only designed to collect knowledge from full-length URLs and 

this study is focused on lexical features, the short URLs must be converted to their original 

form. This work has been finished with the help of "urlex.org", a URL expander service.  
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5.2 Data pre-processing  

The data must first go through pre-processing once the characteristics have been extracted. Pre-

processing, sometimes referred to as "data cleaning," involves filling in blank values and 

formatting data. Each machine learning model requires data in a certain format. For instance, 

since certain algorithms cannot accept null values, they must handle the raw, unformatted 

dataset. This stage is crucial for machine learning models since it affects results the most. The 

performance of the model can be improved by decreasing data noise (Janet, and Kumar, 2021). 

Before choosing the best strategy, it's crucial to take into account the dataset's organisation so 

that various machine learning techniques may be used on the same dataset.  

6 Evaluation 

Machine learning may be used to recognise shortened harmful URLs and create a real-world 

hazardous URL detection method for both short and traditional URLs. To do this, we propose 

a Chrome plugin that utilises the recommended machine learning model to instantly recognise 

and block risky URLs. A few studies concentrated on providing services to online social 

networks. The Chrome addon contains three stages: The URL restriction extension is made, a 

Python machine learning model is incorporated into Chrome, and the script is changed and 

attached to Chrome in the first two steps (Yeboah-Ofori, and Boachie, 2019). HTML, CSS, 

and JavaScript are among the file formats that the Chrome extension is compliant with. 

Therefore, it is necessary to update and incorporate into the study the written Python feature 

extraction approaches.  

 

6.1 Implementation Explanation Tree in code 

1) The click on SUBMIT button is recorded in binding.buttonFirst() in onViewCreated() 

of FirstFragment. 

 

 

Figure 3: Buildup of submit button  

 

2) here first we check if the url is valid with an inbuilt Validation class function 

Validations.validURL(url) == false 
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Figure 4: Validation of URL is it exist or not exist 

3) if the URL is incorrect then show "URL does not exist" and end the process (return;) else 

if url is valid then: 

a) First, we convert the string url collected from URL format by using line67 IF all the 

conditions of the URL Info class are met. 

 

 

Figure 5: Check for URL is live  

 

b) Conditions of URLInfo class which are present in parseULR() function – 

URLInfo.java: 

i) First, we check if the URL is empty then show error else if it's not empty then we 

convert the url to LowerCase and then call the 4 main functions which disect the 

input url into scheme, domain, port and Ip by using functions extractScheme(); 

extractDomain(); extractPort(); and extractIP(); 

 

ii) extractScheme(); checks indexOf("://") line22, if :// is not found in the url then 

throw error else go ahead and check store the scheme line27. Again, check if the 

scheme is empty then throw error. Then check if the scheme is equal to http or https 

line32. If none then throw error else scheme variable has the correct scheme. 

 

iii) extractDomain(); this function extracts the domain part from the url. 

 

iv) extractScheme(); checks indexOf("://") line22, if :// is not found in the url then 

throw error else go ahead and check store the scheme line27. Again, check if the 

scheme is empty then throw error. Then check if the scheme is equal to http or https 

line32. If none then throw error else scheme variable has the correct scheme. 
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v) extractScheme(); checks indexOf("://") line22, if :// is not found in the url then 

throw error else go ahead and check store the scheme line27. Again, check if 

scheme is empty then throw error. Then check if scheme is equal to http or https 

line32. If none then throw error else scheme variable has the correct scheme. 

 

c) Once all the above conditions are met then we call urlInfo.getStatus(); and store its 

result in the variable status. This function is calculating the url phishing score based on 

the Decision Tree and stores the score in variable total as follows: 

 

i) getPointUrlLength() - calculates the length of the full URL and returns the score 

accordingly. 

 

ii) getDotCount() - counts the number of dots present in the URL and returns the 

score. 

 

iii) getCertificateCount() - checks the validity of ssl certificate using CertificateUtils 

class line177, where we open a connection to capture the certificate in Certificate 

class variable. Next, we check if this received certificate equals "X.509" which is 

a standard to check non-phishing official certificates. 

 

iv) getDomainAge() - checks the domain’s age and scores it accordingly. Age is 

calculated from line147 where we call the getDomainInformation(url) function of 

the ApiUtils class. This function connects to api (https://ip2whois.com/developers-

api) which is a free service from ip2whois.com for developers to integrate their 

services in the developer’s application. From this api, once we get the response in 

JSON object format, we extract domain_age from it and return the result. 

v) getPointSuffix() - this function checks for hyphen ("-") and returns the score 

accordingly. 

https://ip2whois.com/developers-api
https://ip2whois.com/developers-api
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Figure 6: In end give phishy score to URL 

d) Once we have the total calculated, then we find out the appropriate message to be shown 

to the user depending on the total. 

6.2 Final outputs  

The test was done on both the application in android phone as well as in the live system Android 

studio. In order to this many other test were also performed to check the accuracy of the results 

which is mentioned in the result sections respectively. 

 

Image 1         Image2        Image3 

        

Figure 7: Image1 and Image3 Phishing detection from Android studio. 

Image2 phishing detection from Mobile Phone 
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6.1 Data source and dataset 

The dataset was split into training and testing sets at a ratio of 66:34, or 66% for training and 

34% for testing. Researchers collected malicious and helpful URLs from a variety of sources. 

The list of safe URLs is created using the top Alexa websites. Innocent URLs were gathered 

for the study from 26,041 different sources (Yeboah-Ofori, and Boachie, 2019). For the 

dangerous dataset, the study has gathered URLs from three sources, including the spam domain 

blacklist, the ransomware and phishing blacklist, and the Malware Domains List's list of 

harmful and injection attack URLs. 

6.2 Discussion 

It's critical to recognise dangerous websites before they cause us damage. In light of this, 

despite the existence of several URL-shortening services, there are presently no methods that 

are widely acknowledged for defining short URLs as harmful or benign. This work uses 

language cues and a straightforward machine-learning technique to find URLs that have been 

unlawfully shortened. This approach proposes a straightforward method to spot bogus 

websites: simply examine the URL string. The bulk of the properties that have been found as 

indications of potentially harmful URLs is categorised in the Feature Representation section 

(Yeboah-Ofori, and Boachie, 2019). This project has been modified to incorporate a browser 

plugin that categorises any given short or conventional URL as harmful or benign in order to 

provide a real-time categorization of shortened URLs. Along with the risk score, this machine 

learning add-on includes the website's categorization and original URL. The decision tree 

strategy, which was chosen, provides a wide range of features that will aid the model's accuracy 

rise. The suggested viable method to identify Android malware in this study uses the Ranker 

search strategy and Gain Ratio attribute evaluator to find certain qualities (Yeboah-Ofori, and 

Boachie, 2019). Using the J48 Decision Tree and other machine learning methods, the pre-

processed dataset was split into malware and benign data. The study found that the Decision 

Forest methodology delivered results more rapidly and accurately than the Decision Tree 

strategy. The study also compared and examined a wide variety of performance measures in 

respect to different classifiers and feature counts. Users may quickly and correctly discern 

between hazardous and beneficial programmes using the proposed detection approach. 

7 Results 
Result obtained successfully by different URL. Reading is observed on different scale levels 

from 0 –0.25, 0.25-0.50 and in between 0.50 – 1. result was obtained on both environments 
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i.e., android studio as well as by installing the application in mobile devices. In the given 

images below three tests were done. In the first phase tests were done on NCI website where 

the result is 0.3 which means it is not suspicious but on the other hand two vulnerable websites 

were tested on which the phishy score is more than 0.75 which means they are more suspicious. 

URL Phishy Score Label 

https://ncirl.ie 0.05 Trusted 

https://amazon.ie 0.0 Trusted 

http://www.malwaredomainlist.com/ 1.125 Trusted 

http://irfannayeem.com URL not exist N/A 

http://malshare.com/ 0.8 Malicious 

http://cybercrime-tracker.net/ 0.85 Malicious 

http://dieweiterleitungslinks.tech/XjdxBhqFvjdGqkm 0.85 Malicious 

https://google.com 0.0 Trusted 

https://goooole.com URL not exist N/A 

http://vxvault.net//ViriList.php 0.8 Malicious 

https://mymoodle.ncirl.ie/ 0.3 Fair 

https://reliaquest.wd5.myworkdayjobs.com/ 0.45 Fairly legitimate 

https://www.av-comparatives.org/ 0.3 Fairly legitimate 

https://bugcrowd.com/ 0.0 Trusted 

https://transparencyreport.google.com 0.25 Fairly legitimate 

http://www.virussign.com/index.html 1.05 High risky 

 

8 Conclusion and Future Work 

The security of the Internet is at stake due to the increase in harmful website prevalence. When 

it comes to detecting risky URLs, machine learning techniques are less effective than 

traditional blacklisting techniques. By examining its attributes, a well-trained machine learning 

model may be able to detect a dangerous URL with more accuracy than blacklisting, which is 

unable to discover new problematic URLs (Oprea et al., 2018). There is reason to think that as 

technology advances, more issues might arise from products like URL shortening, since there 

is no established method of employing short URLs as a recognition mechanism. In this work, 

a variety of machine learning techniques are used to detect fraudulent URLs. One may also 

conduct more study by considering the host-based information, the popularity of the website, 

and the linguistic characteristics of the URL. The categorization scheme utilised in this study 

for URLs can be useful for machine learning models. This article classifies the URL as either 

dangerous or benign (Oprea et al., 2018). By examining this idea in further detail, we may 

classify harmful URLs into three groups: spam, phishing, and malware. With the help of this 



 

18 

 

 

classification, the user will be able to make better decisions. Accuracy will increase while 

training and prediction durations will decrease when the best machine learning approaches are 

combined (Zhang, 2018). Consider using an online way to gather real-time data that keeps the 

model current by training with current malware Attacks that may apply cutting-edge, 

previously unrecognised tactics. A static plugin was also developed for this project. The 

machine learning model must be able to just save each URL that the browser accesses on the 

network and modify the model in real-time if it is to provide us more accurate results (Zhang, 

2018). The method may grow more difficult if the trained model is updated, but by doing 

monthly or weekly upgrades, the study can keep the intricacy to a minimal.  
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