

Mal-adware detection for URL security

MSc Research Project

MSc in Cybersecurity(MSCCYB)

Irfan Nayeem

Student ID: 20252391

School of Computing

National College of Ireland

Supervisor: Imran Khan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

 IRFAN NAYEEM…………………………………………………………

Student ID:

 20252391 ……………………………………………………………………

Programme:

 MSc in Cybersecurity - MSCCYB………………

Year:

 2022-2023

Module:

Research in Computing
…………………………………………….………

Supervisor:

 Imran Khan ………………………………………………………………

Submission
Due Date:

15/12/2022
……………………………………………………………………………

Project Title:

 Malware detection for URL security……........…………………………

Word Count:

 6120 ……………. Page Count: 21………………………….……

I hereby certify that the information contained in this (my submission) is information pertaining to research I

conducted for this project. All information other than my own contribution will be fully referenced and listed in

the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing

Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism)

and may result in disciplinary action.

Signature:

………………………………………………………………………………

Date:

15/12/2022

……………………………………………………………………………..

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□y

Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□y

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient
to keep a copy on computer.

□y

Assignments that are submitted to the Programme Coordinator Office must be placed into the
assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Mal-adware detection for URL security

Irfan Nayeem

x20252391

Abstract

As Internet technology advances, network security is more and more exposed to

various threats. In particular, malicious uniform resource locators (URLs) can be

spread by attackers to carry out operations like spamming and phishing. Making

progress in identifying malicious URLs is crucial for putting an end to these

attacks. However, there are still several severe problems with the current findings.

For instance, it could be challenging to identify problems precisely. Some of the

detection methods used today are easy for attackers to circumvent. The vector input

dimension affects the dynamic convolution technology's middle layer feature

mapping width. The pooling layer settings are additionally continuously changed

according to the depth of the present convolution layer and the duration of the URL

input to obtain more precise features over a wider range. To acquire the

embeddings of a URL, the innovative embedding approach bases word embedding

on character anchoring.

2

1 Introduction

1.1 Background

Malware research and identification have become a problem for cybersecurity due to the

growth of ad links on screens that tempt individuals to click on or occasionally download risky

payloads that frequently result in significant attacks like ransomware (Oprea et al., 2018). This

problem will be addressed by the project, which will create a malware detection program that

will scrape each ad link from a parent web page, create a fingerprint for each link, and compare

those biometrics to those recorded in the repository to identify each link's classification

(whether good or bad one). To deceive people into clicking on risky links that install Trojans

on their systems or expose their personal information, hackers frequently utilize spam and

phishing. Users can recognize bad URLs and be shielded from attacks by using technology for

identifying them. Blacklist-based techniques have been used in the past in studies on harmful

URL detection to find harmful URLs. This tactic has a few special benefits. It is quick, easy to

understand, and less likely to produce false positive results (Oprea et al., 2018). However, the

domain generation algorithm (DGA) nowadays is capable of producing tens of thousands of

unique malicious domain names each day that are undetected by conventional blacklist-based

techniques.

To detect fake URLs, researchers have started employing machine learning techniques.

However, these tactics often require hand-extracting the characteristics since attackers may

manufacture these qualities to hide their identities. Research focuses on developing a more

precise malicious URL detection system in light of the modern network environment's

complexity. This paper proposes a DCNN-based model for detecting malicious URLs (Oprea

et al., 2018). To automatically extract properties and understand the language of the URL, it

uses word vectors, a character-based technique based on character embedding. The k-max-

pooling layer is used in place of the pooling layer. The dynamic convolution technique's

intermediate layer feature mapping width is dependent on the vector input dimension.

Additionally, based on the previous convolution layer's depth and the URL input's length, the

pooling layer parameters are continually modified to aid in the extraction of deeper features

over a larger range (Ali et al., 2019).

The method of detection is as follows. By analyzing the URL in order, the domain name,

subdomains name, and website domain suffix are first obtained. The first branches of the

detection model lengthen each URL and assign a unique number to each word. Numbers are

used to represent the complete URL. The embedding layer is then given the sequences and

3

trained along with other layers. During the training phase, these patterns will learn the right

vector expression (Ali et al., 2019). A DCNN is then given the data stream produced by the

embedding layer. In two further rounds, the output goes through a convolution layer, a folding

surface, and a pooling layer. The data stream is flattened by the flattened layer. To establish

whether a piece of software is meant to be hazardous or not, malware detection methods are

utilised. A detection system is made up of two processes: analysis and detection. Malware

detection software is a method for preventing malware. The methods they employ have an

impact on the characteristics of such detectors. Its two inputs are the programme under

investigation and the distinctive traits or behaviors of a particular piece of code. Its detecting

method can determine if a piece of software is malicious or harmless. To create a method for

malware detection that is successful, malware analysis is required (Ali et al., 2019). Malware

analysis is the practice of examining malware's functionality and purpose to comprehend how

it operates and develop a defence to safeguard the organization's network. Malware analysis,

which describes how malware works and its impacts on the system, may be divided into three

categories. However, the tools, resources, and expertise needed to carry out each type of

examination vary.

Over the last 10 years, a lot of malware researchers have focused on data mining in an attempt

to identify new, unknown malware; they have promoted data mining as a fourth recommended

malware detection approach. In 2001, the idea of employing data mining and machine learning

methods to recognise novel, undiscovered viruses based on each of their unique binary codes

was first put out. Then, several investigations were conducted to identify various malware.

Data mining facilitates data analysis by employing automated statistical analytic methods to

find noteworthy patterns or connections. Since malware may steal personal data, turn off

security software, and do other actions, it poses a major risk to a computer's system (Ali et al.,

2019).

1.2 Research objectives

To discuss several tools to decrease mal-adware activities.

To evaluate several causes of attacks in mal adware.

1.3 Research questions

1. How to analyse several models related to URL security?

2. What is the purpose of tools in lessening the risks in URLs?

2 Related Work

4

2.1 A malicious URL detection model

At present, outdated algorithms based on blacklisting and modern ones based on machine

learning are the two main types of algorithms used to identify dangerous URLs. The first

written description of the blacklist-based detection technique was published. Although quick

and effective, this approach has considerable drawbacks because it cannot identify newly

created malicious URLs. According to Wang et al. (2020), attackers may simply avoid the

conventional blacklist-based detection approach by utilizing a random seed to create a wide

range of malicious domain names. Using machine learning algorithms, researchers have found

dangerous URLs in literature. Using statistical data, machine learning develops a prediction

model that categorizes URLs as dangerous or benign. This function looks at the URL and any

related websites or web pages to obtain the properties. According to Wang et al. (2020), static

features and various properties are frequently used to categorise the properties gathered using

this approach. The host information, lexical knowledge in URL strings, and sometimes HTML

and JavaScript data are retrieved from literature. The "support vector machine (SVM)" is used

for detection after several network traffic-related characteristics are obtained from the URL

using literature.

According to Wang et al. (2020), three feature processing techniques are suggested in the

literature to enhance classification performance. The aforementioned techniques have been

successful, yet they still have several drawbacks. Long-standing machine learning-based

detection techniques may need features to be manually extracted. Several researchers have

developed several methods based on deep learning models to detect malicious URLs and decide

whether a URL is hazardous just by looking at the strings it contains. The idea of text

classification is being looked at in this instance. These processes can use the URL to acquire

accurate data automatically. For instance, literature Do Xuan et al. (2020) classify URLs

generated by DGA using a "character-level cyclic neural network model". A sophisticated

machine learning method to identify risky URLs To assess if DGA produces the URL,

character-level semantic characteristics may be used with "the n-gram model and deep

learning". The single-layer long selective memory structure is one deep learning framework

for detecting bogus URLs (LSTM). These characteristics can be used by attackers to avoid

detection, making it more challenging to maintain detection systems relying on conventional

machine learning. Additionally, a trained algorithm may overlook certain essential information

from the URL when detecting dangerous URLs on a big scale.

5

2.2 Malicious URL detection depending on Machine Learning (ML)

According to Do Xuan et al. (2020), the Uniform Resource Locator of an Internet resource

serves as its identification (URL). The resource name, which provides the IP address or web

address where the resource is hosted, and the network identifier, which determines the protocol

to use, are the features and two crucial parts of the URL. Each URL has a distinct structure and

format, as can be seen. Attackers typically try to modify one or more structural elements of

URLs to trick people into sharing their malicious URLs. Links that endanger users are known

as malicious URLs. These URLs might lead users to harmful, dangerous, phishing, or other

web pages where they could download malware or where attackers could take control of users'

systems. According to Do Xuan et al. (2020), the number of harmful URLs has increased over

the past few years, which has led to the development and use of strategies or procedures for

their elimination. When it comes to the difficulty of recognizing malicious URLs, there are

now two main trends: harmful URL detection based on indications or sets of rules, and

hazardous URL detection based on behavior analysis techniques.

A method based on a collection of signs or criteria may quickly and accurately identify

fraudulent URLs. However, this technique cannot be used to find newly identified malicious

URLs that do not follow the predefined signs or limits. Identifying risky URLs using

blacklisting, machine learning, rule finding, and profound learning-based detection techniques

is common practice. Do Xuan et al. (2020) looked at the IP addresses and domain names of

various public blacklist sets of data. They created a graph-based approach to locate subsidence

in the blacklists after realising that parked domains can account for a sizable portion of entries.

To increase the technology's capacity for detection, researchers have increased the blacklists

already in use. The fishnet system, developed by Yuan et al. (2021), used five heuristic

algorithms to recognise simple permutations of well-known phishing sites to detect new

phishing URLs. Since growing the data set takes time and the size of the initial list affects how

effectively blacklist detection functions, various academics have suggested a rule-matching-

based technique. To locate new, previously unidentified dangerous URLs that fit the matching

rule, rule matching examines the text structure of existing harmful URLs. SpyProxy is a proxy-

based tool for locating fake websites. Moshchuk developed a set of matching rules for the

SpyProxy to match the intercepted data delivered from the web server to the browser.

2.3 Utilization of novel optimization algorithm in detecting malicious URL

The detection of dangerous URLs has historically been the focus of research on internet

security protection. Currently, the two main techniques for identifying dangerous URLs are

6

black-and-white lists and machine learning. A website cannot be reached using the first method

once it has been determined that its URL does not exist in the blacklist database. According to

Yuan et al. (2021), numerous popular browsers, notably "IE8", "Mozilla Firefox 2.0", "Safari",

"Chrome", and others, have made extensive use of them. It distinguishes itself by being both

effective and simple. However, the system calls for constant blacklist maintenance, which is

costly and might lead to the problem of judgement omission. These issues frequently reduce

its appeal. To improve the capacity to identify fake URLs, the second method evaluates the

challenges from a variety of angles, covering URL characteristics, website domain character

traits, host characteristics, etc. According to Yuan et al. (2021), studies in this field have grown

in popularity over time. However, the majority of these study findings pay minimal attention

to machine learning research instead and prioritise the extraction and analysis of URL

properties. Rumelhart and Hinton published the initial description of the BP neural network

(BPNN), a well-liked machine learning approach for URL security testing, in 1986. Recent

years have seen a sharp rise in internet usage. According to Yuan et al. (2021), the rise of

mobile devices, ad hoc networks, sensor technologies, and the Internet of Things which was

driven by the need for a lockdown to combat the COVID-19 epidemic has led to the Internet

becoming increasingly important in people's everyday lives and activities. Due to the

availability of reliable facilities like cloud storage, affordable platforms, and a sizable target

market, the majority of businesses moved online. Internet use carries several risks, such as

viruses, spam, scamming, financial fraud, theft of information, and data loss. The main threat

source is malicious websites.

2.4 Cyber Threat Intelligence-Based Malicious URL Detection

According to Yuan et al. (2021), “18.5 million websites have been compromised with

malware”. According to Google's safe surfing report, “there were two million phishing

websites in September 2020”, up more than “280% from the same month in 2010”. To persuade

people to visit malicious websites, attackers disseminate fake news and adverts. Once a victim

accesses a malicious website, attackers can employ various tactics to either trick the victim into

aiding them in committing financial fraud or other forms of assaults or install malware payloads

on the killer's browsing device. The designers of many bad websites claim that they were not

intentionally designed to be destructive. According to Bo et al. (2021), vulnerable websites

might be used by nefarious attackers. Identification of malicious websites has been a concern

since 2004's first days. To reliably identify these websites, several techniques have been

suggested. Depending on where they acquired their information, these methods may be

7

categorised into three groups: script-based, URL-based, and online content-based. URL-based

detection has garnered the most study, trailed by content-based detection, while script-based

discovery has gotten less. Since URL-based detection is proactive and secure for the detecting

machines and may find harmful URLs before the user accesses them, it was picked as the

preferred method of detection.

According to Bo et al. (2021), there are several methods for locating harmful drugs and

unfavourable websites, many of which use the extraction of information from the URLs of

those sites. Fewer of these procedures mechanized the features using deep learning techniques;

the majority of them depended on humans to extract the attributes. Several distinct pieces of

information were gathered and used for the detection, including a host questionnaire survey to

collect like country name and host sponsor, domain attributes like lexical elements like the

length of the URL and the number of dots in it. However, attackers might change URL-based

characteristics and manipulate them, rendering them worthless for efficient representation.

3 Research Methodology

In order to detect mal adware for URL security an android application was created using java.

The particular application took the URL as input for detecting whether the URL is phishing or

not. A decision Tree has been used in order to detect phishing and machine learning has helped

to provide a proper description of the detection. In this paper 0 has been considered as “Trusty”,

1 means “Suspicious”, 01 means “Phisy” and 0.5 means “Suspicious”.

8

Figure 1: Framework of our proposed of malicious URLs detection system, Source-

(Patil, and Patil, 2018)

The organisational structure of our suggested malicious URL detection system is illustrated in

Fig. 1. The feature extraction, training, and classification steps make up this technique. The

Java feature extraction programme receives the dangerous and benign URLs directly from the

benchmark sources. The 117 static and dynamic properties of the good and bad URLs have

been extracted (Patil, and Patil, 2018). These qualities are binary and numeric. When

Researchers were generating the dataset, they gave the good URLs the number 1 and the bad

URLs the number +1. Six decision tree learning algorithms “J48 Decision Tree”, “Simple

CART”, “Random Forest”, “Random Tree”, “ADTree”, and “REPTree”—are taught on our

labelled dataset. Six trained models are provided at this stage for the testing stage (Ullah et al.,

2020).

9

3.1 Feature extraction

Researchers have identified four different categories of static and dynamic URL qualities,

including URL, domain name, website source, and short URL traits. The Java URL feature

extractor has been put to use. The Java URL class is used to extract URL features, and the

features are retrieved by lexically scanning the URL string. Depending on domain name

recovery and scanning of the web address, the website address features extraction is put into

practise. The website is browsed together with a Firefox instance, which collects the webpage's

source characteristics, in order to apply a Java feature extraction engine to understand how

HTML is constructed (Patil, and Patil, 2018). To ensure a distinct session for each URL viewed

for extracting features, a new Firefox browser instance is started for each URL. By getting in

touch with the URL shortening service providers, the enlarged URLs may be obtained. The

study has established a predetermined threshold of 30 for the duration of URLs; if the submitted

URL is longer than 30, it is flagged as malicious when we receive the real URL from URL

shortening providers. The retrieved URL string's lexical characteristics were also investigated

in the article to assess if it was innocuous or harmful (Patil, and Patil, 2018). This method is

often used by many search engines, browser toolbars, etc. to prevent users from visiting the

websites that are blacklisted. A database of reported URLs is called Blacklist. These dangerous

URLs are not available until successful assaults are identified. However, it is difficult to

maintain such a lengthy list up to date because more are always being added. They struggle to

identify new threats because new URLs may be generated automatically, enabling them to

escape blacklists and zero-hour phishing detection. Despite these disadvantages, blacklists are

nevertheless often used by antivirus software and online filtering applications (Ullah et al.,

2020).

3.2 Decision tree algorithm

Decision trees can handle scenarios that are both category and numerical/continuous.

Numerical decision trees provide a real anticipated value, whereas categorical decision trees

only provide a result of 0/1, Yes/No, or True/False. Before analysing the subtrees, decision

trees separate the data into subtrees and assign both parent and child nodes to each one. The

homogenous clusters of the full dataset are shown in these subtrees. When employing decision

trees, overfitting may not be a desirable thing (Ullah et al., 2020). By restricting the variables

taken into account for each subtree, the Random Forest classifier may be utilised to address

problems. Another method for preventing overfitting is pruning. The model's accuracy might

be increased while the learning rate is sped up by altering a few parameters. If the maximum

10

characteristics option is selected, the model will have more alternatives for evaluation. If there

are too many attributes, the technique could run slowly. The number of trees will directly affect

the model's accuracy up until the maximum number reaches its threshold. Calculating the

accuracy with different tree counts might reveal this (Ullah et al., 2020). Regardless of how

many trees are added, accuracy remains constant until it reaches its highest level.

4 Design Specification

This engineering-focused phase aims to gather pertinent URL-related data. This information

consists of things like popularity statistics, host information, HTML and JavaScript content on

the website, if the URLs are on a blacklist, attributes inferred from the URL String, etc. As

seen in Figure 2, the feature map may be made by obtaining various kinds of data from a URL.

Figure 2: “Example of information about a URL that can be obtained in the Feature

Collection stage. Source- (Usman et al., 2021)”

11

Blacklists may be used, as was already noted, to swiftly identify harmful URLs. All active

URLs that have been determined to be harmful are included in the list (either by in-depth

investigation or crowd-sourcing). Blacklisting has been shown to suffer from significant high

negative cases due to the challenge of keeping comprehensive up-to-date lists, despite its ease

of use and simplicity. As a result, blacklist inclusion may be employed as a strong characteristic

rather than the only criteria (Usman et al., 2021). Numerous JavaScript techniques are routinely

used by hackers to encrypt malicious code or launch unwanted activities without the client's

knowledge. Use of the eval() and unescape() functions, for instance, may indicate that HTML

code that has been encoded is being run often. N ative JavaScript methods will be used to find

risky URLs. During the investigation, a subset (seven) of these native JavaScript methods that

are often utilised in cross-site scripting and the spread of web-based malware were found. The

"collection complexity" is the technical effort required to obtain accurate data on the attributes

(Usman et al., 2021). In contrast to the other characteristics, which require more connections

and have greater collection costs, the popularity, contextual, and blacklist attributes are directly

retrieved from the URL. The problem of detecting malicious URLs may be solved using a large

array of machine learning techniques. Several of these learning techniques may commonly

have been used to quickly train a forecasting model after turning URLs into feature vectors

(Janet, and Kumar, 2021). In order to more effectively handle the issue, attempts have also

been made to develop specialised learning algorithms that either take use of the qualities given

by the training data of malicious URLs or that specifically address the issues the application

encounters. For this purpose, we categorise and evaluate the learning algorithms used in this

area, and we also suggest appropriate machine learning technologies that may be used to solve

certain problems.

5 Implementation

5.1 Data collection

This section contains details on where highlighted URLs came from. Several machine learning

researchers and online sources, such as PishTank, OpenPish, BlockList, and Yahoo's directory

listing, have combined about 4.5M URLs into a sizable dataset. Along with the categorization

of URLs, information must be gathered to determine if they are safe or harmful. As a result,

they develop software that can draw traits straight from the URL (Janet, and Kumar, 2021).

Because the lexical analysis is only designed to collect knowledge from full-length URLs and

this study is focused on lexical features, the short URLs must be converted to their original

form. This work has been finished with the help of "urlex.org", a URL expander service.

12

5.2 Data pre-processing

The data must first go through pre-processing once the characteristics have been extracted. Pre-

processing, sometimes referred to as "data cleaning," involves filling in blank values and

formatting data. Each machine learning model requires data in a certain format. For instance,

since certain algorithms cannot accept null values, they must handle the raw, unformatted

dataset. This stage is crucial for machine learning models since it affects results the most. The

performance of the model can be improved by decreasing data noise (Janet, and Kumar, 2021).

Before choosing the best strategy, it's crucial to take into account the dataset's organisation so

that various machine learning techniques may be used on the same dataset.

6 Evaluation

Machine learning may be used to recognise shortened harmful URLs and create a real-world

hazardous URL detection method for both short and traditional URLs. To do this, we propose

a Chrome plugin that utilises the recommended machine learning model to instantly recognise

and block risky URLs. A few studies concentrated on providing services to online social

networks. The Chrome addon contains three stages: The URL restriction extension is made, a

Python machine learning model is incorporated into Chrome, and the script is changed and

attached to Chrome in the first two steps (Yeboah-Ofori, and Boachie, 2019). HTML, CSS,

and JavaScript are among the file formats that the Chrome extension is compliant with.

Therefore, it is necessary to update and incorporate into the study the written Python feature

extraction approaches.

6.1 Implementation Explanation Tree in code

1) The click on SUBMIT button is recorded in binding.buttonFirst() in onViewCreated()

of FirstFragment.

Figure 3: Buildup of submit button

2) here first we check if the url is valid with an inbuilt Validation class function

Validations.validURL(url) == false

13

Figure 4: Validation of URL is it exist or not exist

3) if the URL is incorrect then show "URL does not exist" and end the process (return;) else

if url is valid then:

a) First, we convert the string url collected from URL format by using line67 IF all the

conditions of the URL Info class are met.

Figure 5: Check for URL is live

b) Conditions of URLInfo class which are present in parseULR() function –

URLInfo.java:

i) First, we check if the URL is empty then show error else if it's not empty then we

convert the url to LowerCase and then call the 4 main functions which disect the

input url into scheme, domain, port and Ip by using functions extractScheme();

extractDomain(); extractPort(); and extractIP();

ii) extractScheme(); checks indexOf("://") line22, if :// is not found in the url then

throw error else go ahead and check store the scheme line27. Again, check if the

scheme is empty then throw error. Then check if the scheme is equal to http or https

line32. If none then throw error else scheme variable has the correct scheme.

iii) extractDomain(); this function extracts the domain part from the url.

iv) extractScheme(); checks indexOf("://") line22, if :// is not found in the url then

throw error else go ahead and check store the scheme line27. Again, check if the

scheme is empty then throw error. Then check if the scheme is equal to http or https

line32. If none then throw error else scheme variable has the correct scheme.

14

v) extractScheme(); checks indexOf("://") line22, if :// is not found in the url then

throw error else go ahead and check store the scheme line27. Again, check if

scheme is empty then throw error. Then check if scheme is equal to http or https

line32. If none then throw error else scheme variable has the correct scheme.

c) Once all the above conditions are met then we call urlInfo.getStatus(); and store its

result in the variable status. This function is calculating the url phishing score based on

the Decision Tree and stores the score in variable total as follows:

i) getPointUrlLength() - calculates the length of the full URL and returns the score

accordingly.

ii) getDotCount() - counts the number of dots present in the URL and returns the

score.

iii) getCertificateCount() - checks the validity of ssl certificate using CertificateUtils

class line177, where we open a connection to capture the certificate in Certificate

class variable. Next, we check if this received certificate equals "X.509" which is

a standard to check non-phishing official certificates.

iv) getDomainAge() - checks the domain’s age and scores it accordingly. Age is

calculated from line147 where we call the getDomainInformation(url) function of

the ApiUtils class. This function connects to api (https://ip2whois.com/developers-

api) which is a free service from ip2whois.com for developers to integrate their

services in the developer’s application. From this api, once we get the response in

JSON object format, we extract domain_age from it and return the result.

v) getPointSuffix() - this function checks for hyphen ("-") and returns the score

accordingly.

https://ip2whois.com/developers-api
https://ip2whois.com/developers-api

15

Figure 6: In end give phishy score to URL

d) Once we have the total calculated, then we find out the appropriate message to be shown

to the user depending on the total.

6.2 Final outputs

The test was done on both the application in android phone as well as in the live system Android

studio. In order to this many other test were also performed to check the accuracy of the results

which is mentioned in the result sections respectively.

Image 1 Image2 Image3

Figure 7: Image1 and Image3 Phishing detection from Android studio.

Image2 phishing detection from Mobile Phone

16

6.1 Data source and dataset

The dataset was split into training and testing sets at a ratio of 66:34, or 66% for training and

34% for testing. Researchers collected malicious and helpful URLs from a variety of sources.

The list of safe URLs is created using the top Alexa websites. Innocent URLs were gathered

for the study from 26,041 different sources (Yeboah-Ofori, and Boachie, 2019). For the

dangerous dataset, the study has gathered URLs from three sources, including the spam domain

blacklist, the ransomware and phishing blacklist, and the Malware Domains List's list of

harmful and injection attack URLs.

6.2 Discussion

It's critical to recognise dangerous websites before they cause us damage. In light of this,

despite the existence of several URL-shortening services, there are presently no methods that

are widely acknowledged for defining short URLs as harmful or benign. This work uses

language cues and a straightforward machine-learning technique to find URLs that have been

unlawfully shortened. This approach proposes a straightforward method to spot bogus

websites: simply examine the URL string. The bulk of the properties that have been found as

indications of potentially harmful URLs is categorised in the Feature Representation section

(Yeboah-Ofori, and Boachie, 2019). This project has been modified to incorporate a browser

plugin that categorises any given short or conventional URL as harmful or benign in order to

provide a real-time categorization of shortened URLs. Along with the risk score, this machine

learning add-on includes the website's categorization and original URL. The decision tree

strategy, which was chosen, provides a wide range of features that will aid the model's accuracy

rise. The suggested viable method to identify Android malware in this study uses the Ranker

search strategy and Gain Ratio attribute evaluator to find certain qualities (Yeboah-Ofori, and

Boachie, 2019). Using the J48 Decision Tree and other machine learning methods, the pre-

processed dataset was split into malware and benign data. The study found that the Decision

Forest methodology delivered results more rapidly and accurately than the Decision Tree

strategy. The study also compared and examined a wide variety of performance measures in

respect to different classifiers and feature counts. Users may quickly and correctly discern

between hazardous and beneficial programmes using the proposed detection approach.

7 Results
Result obtained successfully by different URL. Reading is observed on different scale levels

from 0 –0.25, 0.25-0.50 and in between 0.50 – 1. result was obtained on both environments

17

i.e., android studio as well as by installing the application in mobile devices. In the given

images below three tests were done. In the first phase tests were done on NCI website where

the result is 0.3 which means it is not suspicious but on the other hand two vulnerable websites

were tested on which the phishy score is more than 0.75 which means they are more suspicious.

URL Phishy Score Label

https://ncirl.ie 0.05 Trusted

https://amazon.ie 0.0 Trusted

http://www.malwaredomainlist.com/ 1.125 Trusted

http://irfannayeem.com URL not exist N/A

http://malshare.com/ 0.8 Malicious

http://cybercrime-tracker.net/ 0.85 Malicious

http://dieweiterleitungslinks.tech/XjdxBhqFvjdGqkm 0.85 Malicious

https://google.com 0.0 Trusted

https://goooole.com URL not exist N/A

http://vxvault.net//ViriList.php 0.8 Malicious

https://mymoodle.ncirl.ie/ 0.3 Fair

https://reliaquest.wd5.myworkdayjobs.com/ 0.45 Fairly legitimate

https://www.av-comparatives.org/ 0.3 Fairly legitimate

https://bugcrowd.com/ 0.0 Trusted

https://transparencyreport.google.com 0.25 Fairly legitimate

http://www.virussign.com/index.html 1.05 High risky

8 Conclusion and Future Work

The security of the Internet is at stake due to the increase in harmful website prevalence. When

it comes to detecting risky URLs, machine learning techniques are less effective than

traditional blacklisting techniques. By examining its attributes, a well-trained machine learning

model may be able to detect a dangerous URL with more accuracy than blacklisting, which is

unable to discover new problematic URLs (Oprea et al., 2018). There is reason to think that as

technology advances, more issues might arise from products like URL shortening, since there

is no established method of employing short URLs as a recognition mechanism. In this work,

a variety of machine learning techniques are used to detect fraudulent URLs. One may also

conduct more study by considering the host-based information, the popularity of the website,

and the linguistic characteristics of the URL. The categorization scheme utilised in this study

for URLs can be useful for machine learning models. This article classifies the URL as either

dangerous or benign (Oprea et al., 2018). By examining this idea in further detail, we may

classify harmful URLs into three groups: spam, phishing, and malware. With the help of this

18

classification, the user will be able to make better decisions. Accuracy will increase while

training and prediction durations will decrease when the best machine learning approaches are

combined (Zhang, 2018). Consider using an online way to gather real-time data that keeps the

model current by training with current malware Attacks that may apply cutting-edge,

previously unrecognised tactics. A static plugin was also developed for this project. The

machine learning model must be able to just save each URL that the browser accesses on the

network and modify the model in real-time if it is to provide us more accurate results (Zhang,

2018). The method may grow more difficult if the trained model is updated, but by doing

monthly or weekly upgrades, the study can keep the intricacy to a minimal.

References

O. S. A. Aboosh and O. A. I. Aldabbagh, "Android Adware Detection Model Based on

Machine Learning Techniques," 2021 International Conference on Computing and

Communications Applications and Technologies (I3CAT), 2021, pp. 98-104, doi:

10.1109/I3CAT53310.2021.9629400.

Ali, R., Ali, A., Iqbal, F., Khattak, A.M. and Aleem, S., 2019, December. A systematic review

of artificial intelligence and machine learning techniques for cyber security. In International

Conference on Big Data and Security (pp. 584-593). Springer,

Singapore.https://link.springer.com/chapter/10.1007/978-981-15-7530-3_44

Bo, W., Fang, Z.B., Wei, L.X., Cheng, Z.F. and Hua, Z.X., 2021. Malicious URLs detection

based on a novel optimization algorithm. IEICE TRANSACTIONS on Information and Systems,

104(4), pp.513-516.https://www.emerald.com/insight/content/doi/10.1108/JEIM-01-2021-

0057/full/html

Do Xuan, C., Nguyen, H.D. and Tisenko, V.N., 2020. Malicious URL detection based on

machine learning. International Journal of Advanced Computer Science and Applications,

11(1).https://pdfs.semanticscholar.org/2589/5814fe70d994f7d673b6a6e2cc49f7f8d3b9.pdf

Janet, B. and Kumar, R.J.A., 2021, March. Malicious URL detection: a comparative study. In

2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS) (pp. 1147-

1151). IEEE.https://ieeexplore.ieee.org/abstract/document/9396014/

Oprea, A., Li, Z., Norris, R. and Bowers, K., 2018, December. Made: Security analytics for

enterprise threat detection. In Proceedings of the 34th Annual Computer Security Applications

Conference (pp. 124-136).https://dl.acm.org/doi/abs/10.1145/3274694.3274710

https://link.springer.com/chapter/10.1007/978-981-15-7530-3_44
https://www.emerald.com/insight/content/doi/10.1108/JEIM-01-2021-0057/full/html
https://www.emerald.com/insight/content/doi/10.1108/JEIM-01-2021-0057/full/html
https://pdfs.semanticscholar.org/2589/5814fe70d994f7d673b6a6e2cc49f7f8d3b9.pdf
https://ieeexplore.ieee.org/abstract/document/9396014/
https://dl.acm.org/doi/abs/10.1145/3274694.3274710

19

Oprea, A., Li, Z., Norris, R. and Bowers, K., 2018, December. Made: Security analytics for

enterprise threat detection. In Proceedings of the 34th Annual Computer Security Applications

Conference (pp. 124-136).https://dl.acm.org/doi/abs/10.1145/3274694.3274710

Patil, D.R. and Patil, J.B., 2018. Malicious URLs detection using decision tree classifiers and

majority voting technique. Cybernetics and Information Technologies, 18(1), pp.11-

29.https://cit.iict.bas.bg/CIT_2018/v-18-1/02_paper.pdf

Ullah, F., Javaid, Q., Salam, A., Ahmad, M., Sarwar, N., Shah, D. and Abrar, M., 2020.

Modified decision tree technique for ransomware detection at runtime through API calls.

Scientific Programming, 2020.https://www.hindawi.com/journals/sp/2020/8845833/

Usman, N., Usman, S., Khan, F., Jan, M.A., Sajid, A., Alazab, M. and Watters, P., 2021.

Intelligent dynamic malware detection using machine learning in IP reputation for forensics

data analytics. Future Generation Computer Systems, 118, pp.124-

141.https://www.sciencedirect.com/science/article/pii/S0167739X21000066

Wang, Z., Li, S., Wang, B., Ren, X. and Yang, T., 2020, September. A malicious URL detection

model based on a convolutional neural network. In International Symposium on Security and

Privacy in Social Networks and Big Data (pp. 34-40). Springer,

Singapore.https://link.springer.com/chapter/10.1007/978-981-15-9031-3_3

Yeboah-Ofori, A. and Boachie, C., 2019, May. Malware attack predictive analytics in a cyber

supply chain context using machine learning. In 2019 International Conference on Cyber

Security and Internet of Things (ICSIoT) (pp. 66-73).

IEEE.https://ieeexplore.ieee.org/abstract/document/9058240/

Yuan, J., Chen, G., Tian, S. and Pei, X., 2021. Malicious URL detection based on a parallel

neural joint model. IEEE Access, 9, pp.9464-

9472.https://www.hindawi.com/journals/scn/2021/9994127/

Zhang, J., 2018. MLPdf: an effective machine learning based approach for PDF malware

detection. arXiv preprint arXiv:1808.06991.https://arxiv.org/abs/1808.06991

https://dl.acm.org/doi/abs/10.1145/3274694.3274710
https://cit.iict.bas.bg/CIT_2018/v-18-1/02_paper.pdf
https://www.hindawi.com/journals/sp/2020/8845833/
https://www.sciencedirect.com/science/article/pii/S0167739X21000066
https://link.springer.com/chapter/10.1007/978-981-15-9031-3_3
https://ieeexplore.ieee.org/abstract/document/9058240/
https://www.hindawi.com/journals/scn/2021/9994127/
https://arxiv.org/abs/1808.06991

20

	1 Introduction
	2 Related Work
	2.1 A malicious URL detection model
	2.2 Malicious URL detection depending on Machine Learning (ML)
	2.3 Utilization of novel optimization algorithm in detecting malicious URL
	2.4 Cyber Threat Intelligence-Based Malicious URL Detection

	3 Research Methodology
	3.1 Feature extraction
	3.2 Decision tree algorithm

	4 Design Specification
	5 Implementation
	5.1 Data collection
	5.2 Data pre-processing

	6 Evaluation
	6.1 Data source and dataset
	6.2 Discussion

	7 Results
	8 Conclusion and Future Work
	References

