

Securing CI/CD Pipeline: Automating the

detection of misconfigurations and

integrating security tools

MSc Industrial Internship

MSc. Cybersecurity

Muskan Mangla

Student ID: X21162697

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Muskan Mangla

Student ID:

X21162697

Programme:

MSc. Cybersecurity

Year:

2022-2023

Module:

MSc Industrial Internship

Supervisor:

Vikas Sahni

Submission

Due Date:

06th January 2023

Project Title:

Securing CI/CD Pipeline: Automating the detection of

misconfigurations and integrating security tools

Word Count:

5990 Page Count: 20

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Muskan

Date:

04th January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Securing CI/CD Pipeline: Automating the detection of

misconfigurations and integrating security tools

Muskan Mangla

X21162697

Abstract

 In recent years, the adoption of DevOps technology has become widespread in

enterprises and private sectors. DevOps emphasizes communication and collaboration

between development and operations teams to accelerate the delivery of software. One

key component of DevOps is the use of continuous integration and continuous delivery

(CI/CD) pipelines, which automate the process of building, testing, and deploying

software. However, the use of CI/CD pipelines' lack of security oversights that

introduces security risks due to the potential for security misconfigurations. These

misconfigurations can lead to vulnerabilities that can be exploited by a malicious actor

and thus making it important to identify and address them as part of the CI/CD process.

To address these security concerns, a DevSecOps approach was adopted, which

integrates security into the CI/CD pipeline and ensures that the software being deployed

is secure and free of vulnerabilities. This was achieved by continuous detection of

security misconfigurations automatically in every stage of the CI/CD Pipeline and

addressing them as part of the CI/CD process. By adopting a DevSecOps approach,

organizations can provide continuous security assurance and strengthen the security of

their CI/CD pipelines.

1 Introduction

The use of software development methodologies such as Agile, Waterfall, and DevOps has

allowed organizations to efficiently deliver applications through scalable and automated

processes. However, the rapid deployment of cloud applications has often led to security

challenges in the production environment. To mitigate these risks, it is crucial for

organizations to prioritize security in their DevOps pipeline, as this helps to prevent security

issues from arising after deployment (Ahmed & Francis, 2019). By integrating security into

the DevOps process, organizations can ensure that their applications are secure and free of

vulnerabilities before they are deployed to the production environment (Kumar & Goyal,

2021)

The implementation of a CI/CD pipeline can pose significant security risks to an

organization, including insecure code and misconfiguration. These threats can compromise

the integrity of the pipeline and lead to the disclosure of sensitive information (Chernyshev,

Baig, & Zeadally, 2021).

In this paper, a secure CI/ CD pipeline has been proposed by identifying security

misconfigurations using the security testing tools in AWS services and Infrastructure as code

2

that is built and deployed in the CI and CD Pipeline. In addition, Source Code Scanning and

Analysis (SCA) and Static Application Security Testing (SAST) will be conducted to identify

the other major security risks. In this proposal, a count of ten security findings are manually

validated to eliminate the false positives and the mitigation solutions are highlighted using

AWS services to enhance the security of the CI and CD pipeline.

Research Question

RQ1: How to automatically detect and identify security misconfigurations in a CI/CD

pipeline?

RQ2: Can the integration of security tools into a CI/CD pipeline improve security by

automating the detection of security misconfigurations?

Research Objective

The purpose of this research paper was to implement the DevOps Pipeline to automate the

code deployment and code build and enforce the security by detecting security

misconfigurations and other vulnerabilities using SAST and code analysis techniques

integrated into CI/CD Pipeline. This will help in assuring the continuous security of the

CI/CD Pipeline. The major misconfigurations would be eliminated by implementing this

proposed solution before the deployment stage.

Structure of the Paper

The remainder of the paper is structured as follows

Section 1 described the Introduction of the research topic along with the problem statement

and the objective of the research paper. Section 2 is illustrated as a literature review of the

previous work by cloud security researchers and authors. Section 3 provides the Research

Methodology and Section 4 shows the design of the proposed model including the Security

techniques and frameworks used to secure the CI/CD Pipeline. Further, Section 5 includes the

implementation of the security solutions in the pipeline, and Section 6 highlighted the

evaluation of DevOps and DevSecOps.

2 Related Work

2.1 DevOps, CI, and CD

DevOps is a way of collaborating DEV (Development) and OPS (Operations) personnel tasks

to automate the processes unlikely the traditional deployment process. The DevOps

implementation is outlined in this research paper (Ivanov & Smolander, 2018) where the

authors have demonstrated the DevOps pipeline for serverless applications. DevOps benefits

in the software development automation that includes source, test, deployment, and

monitoring phases. CI is defined as the integration of code changes in the base code by the

developers and post, that the changes are validated by quality testing tools and build the

software. When this process is automated is known as CI. Whereas, the CD is a process of

automating the code changes deploy to a staging or production environment. DevOps was

implemented using Gitlab suite and Docker containers to run the jobs, However, this research

3

has not emphasized the security threats challenges, and mitigations in the deployed CI/CD

pipeline. (Arachchi & Perera, 2018) described the CI/CD pipeline approach and the

importance that has rapidly increased the efficiency of software development.

2.1.1 DevOps security challenges and existing solutions

DevSecOps is a movement that aims to modernize security methods for compatibility with

DevOps. This study (Myrbakken & Colomo-Palacios, 2017) reviewed the literature on

DevSecOps to provide an overview of its benefits and challenges. The results indicated that

implementing security that can keep up with DevOps is challenging, but can offer significant

benefits if successful. (Mao, et al., 2020) researched on DevSecOps practices that include

process: Plan, Code, Build, Test, and Operation phases, Infrastructure: Secrets Management,

Configuration Management, and Container security scanning.

The application security techniques with limitations are examined and future opportunities

are highlighted in this paper (Chernyshev, et al., 2021). The underlined Application security

techniques examined were Threat Modeling to identify potential vulnerabilities by following

OWASP ASVS, Manual code reviews, SAST (static analysis) by running the tools such as

Sonarqube, Snyk code analyzer, DAST(dynamic analysis), and Sofware composition analysis

to identify known vulnerable dependencies in DevOps using dependency scanning tool. The

shortcomings of this paper were missing the practical real-world scenarios implementation

and analysis. The novelty of the research was not adequate

In this paper (Dhaya Sindhu, 2021), the DevOps benefits and challenges are highlighted

along with mitigation strategies to overcome the shortcomings. The major issues that are

mentioned include the communication gap between the development and security teams that

leads to insecure and delayed delivery often. Fast delivery and short development cycles are

the main focus areas of DevOps that can cause the business to a single vulnerability which

further leads to security breaches and malicious assaults.

The security risks associated with the cloud infrastructure and deployment are lacked to

detect due to the utilization of open source tools and innovative technologies. A simple bug

or misconfiguration might lead to sensitive information disclosure. In addition, poor access

and secrecy management are critical in the continuous delivery pipeline that has the

possibility of exposing credentials to the internet that can further be exploited and gained

admin access. In order to mitigate the highlighted challenges, the researcher has provided

solutions that included the adoption of the DevSecOps model, efficient Privilege Access

Management system, and enforce Secure Policies to ensure the continuous security of the

DevOps infrastructure.

However, the limitation of this research lacked the integration of security tools to detect

security issues. The detection of vulnerabilities was not performed for the DevOps

infrastructure and illustrated the research only at the theoretical level. (Mohan, et al., 2018)

detailed the security concerns in the Continuous deployment process that included manual

security tests, participation of the security team, separation of roles, audit, security guidelines,

and enforcement of access controls. The recommended solution was SecDevOps which

4

included proper enforcement of separation of duties, secret management, logging, and

monitoring.

The objective of this paper (Battina & Sindhu, 2017) highlighted the security of DevOps and

definitions for DevOps and DevSecOps. The security policies enforced throughout the

DevOps process to detect and mitigate security issues are illustrated. The best practices

included are identity and access management (IAM), configuration, vulnerability scanning,

and restricted access. The research scope was not wide to carry out the research. The research

paper highlighted only the theoretical level and missing real-world case studies or scenarios.

2.1.2 Misconfiguration attacks in CI/CD

The main focus of this research (Ahmed & Francis, 2019) tends to the integration of

DevSecOps to avoid insecure services and misconfigurations while deploying the application

using the CI/ CD pipeline. This research paper's methodology is to implement DevSecOps in

the DevOps practice by adding security from the initialization stage. The security tools that

consist of the Snyk dependency check were utilized to identify the vulnerabilities before the

deployment of the application to secure the application. However, the research was

performed in a limited scope and on a smaller scale. In addition, the mitigation for the

discovered findings was not included.

The efficient configuration policies to mitigate the security threats that can occur by

exploiting misconfiguration vulnerabilities are proposed in this paper (Torkura, et al., 2021).

The authors have developed the secure baseline configuration by applying the security best

practices from the Centre for Internet Security (CIS) cloud security benchmarks. Further, the

proposed method which was Continuous security monitoring and auditing was implemented

for providing continuous security assurance. This was achieved by continuously detecting the

vulnerabilities related to misconfigurations on cloud resources. Therefore, the security

posture of the monitored cloud infrastructure can be analyzed. The limitation of this research

lacked the implementation of detection rules of misconfigurations for other Cloud services (

Lambda, databases).

This research paper is significant to a novel Secure by Design methodology that was

integrated into the development process (Casola, et al., 2020). The automated security testing

process included security assessment and risk analysis to determine the potential threats using

the STRIDE threat model. (Casola, et al., 2020) emphasized the Security SLA model to share

the responsibility for security issues between Cloud Providers and Customers using the NIST,

Cloud Control Matrix. In addition, the technical security metrics as well as operations

security controls were underlined to ensure the configured policy or controls are implemented

correctly. The paper highlighted the automated techniques for the risk analysis and security

assessment of cloud applications and this research paper aimed to calculate the efficiency,

usability, and time consumption for the evaluation of the results, they utilized online

questionnaires and surveys to receive the feedback and analyze the efforts to deploy the tool

by selecting the evaluation team who are not skilled in the security aspects. This research has

5

not highlighted detecting vulnerabilities using scanning tools and their usage and how the

vulnerabilities were mitigated.

2.1.3 Continuous Security Testing in CI/CD Pipeline

In this paper (Rangnau et al. in 2020), security solutions for DevOps practices were proposed

and demonstrated through the integration of three automated security testing tools. This

practical, security-focused study highlighted techniques for automating dynamic security

testing and examined the approach to implementing a CI/CD pipeline, including the selection

of tools such as OWASP ZAP. Additionally, the integration and implementation of DAST in

the CI/CD pipeline were examined to identify security issues. The objective of the research

was successfully achieved, though challenges were encountered in meeting the requirements

for DAST implementation. A case study involving the integration of three common security

testing tools was conducted to address these challenges and provide solutions.

(Ullah, et al., 2017) has evaluated the security between a secure CD process and a non-secure

CD Process. This paper aims to design a secure CD process by utilizing security tactics. The

five security tactics have been proposed to secure the CD process by leveraging the AWS

IAM ecosystem and use of a private SSH key Further, the analysis was performed using

Qualys OWASP and ZAP scanner. (Sojan, et al., 2021) summarized and evaluated the need

for security monitoring solutions to detect and monitor security threats and vulnerabilities.

To summarize, the previous papers described the principles and theoretical concepts of

DevSecOps. The researchers highlighted the security challenges, risks, and opportunities for

securing the DevOps Pipeline, however, the tools, benchmarks, frameworks, and

methodology and their usage were lacked to for practical applicability. The key concept was

to implement the security in DevOps Pipeline. However, most literature focused on the SAST

and SCA tools to detect the vulnerabilities in the CI/CD Pipeline. In addition, the security

mitigations were not enabled to secure the Pipeline from the misconfiguration attacks. Less is

known about how to integrate security tools and techniques into the Code Pipeline. In this

proposed solution, the limitations of the included related work were achieved by enabling the

security tools for identifying the security issues and implementing the security solutions by

AWS services and monitoring solutions to detect the malicious activities. This research

method and solution will help the other researchers/ individuals/organization and authors to

implement the Secure CodePipleline using AWS as a cloud service provider.

2.2 Research Niche

Table 1: Summary of Literature Review

Related Work(s) Strength Limitations

(Ivanov & Smolander,

2018)

Described the DevOps, CI and

CD

The limitations of DevOps

were not highlighted in the

paper

(Arachchi & Perera,

2018)

Elaborated on CI/CD approach

and methodology to adopt

Lack of security integration

6

(Myrbakken &

Colomo-Palacios,

2017)

The DevOps implementation

process was outlined

The security challenges are not

highlighted

(Myrbakken &

Colomo-Palacios,

2017)

DevOps challenges and solutions

are discussed in this paper. The

challenges to implementing the

security have been evaluated

Lack of evaluation

methodology

(Mao, et al., 2020) Secret management and

Configuration Management was

considered for the

implementation in the security

phase

Security tools are not

integrated into the DevSecOps

Pipeline to identify

misconfigurations and other

vulnerabilities

(Chernyshev, et al.,

2021)

Utilized security tools such as

Snyk code analyzer, and DAST

and followed OWASP ASVS to

identify potential vulnerabilities

in Cloud application

This paper has not elaborated

on continuous security and the

novelty of this paper was not

considered

(Dhaya Sindhu, 2021) In this paper, the importance of

detecting security

misconfigurations is highlighted.

Recommendations on the

DevSecOps model were

provided

The limitation of this research

lacked the integration of

security tools to detect security

issues

(Mohan, et al., 2018) Security concerns and

recommendations in the CD

process were mentioned

Lack of implementation

(Battina & Sindhu,

2017)

Security policies were enforced

to identify and mitigate the

vulnerabilities in DevOps. The

best practices for IAM were

highlighted

However, the research paper

does not consist of a wider

scope to carry out the research

and in addition, future work

was missing

(Ahmed & Francis,

2019)

DevSecOps model was adopted

to avoid insecure code and

misconfigurations. Snyk

dependency check was utilized

The list of misconfigurations

was not highlighted in the

paper and its evaluation.

(Torkura, et al., 2021) Secure baseline configuration

with regards to CIS benchmark

was proposed

Lack of detection rules

implementation to discover

misconfigurations

(Casola, et al., 2020) Security assessment and risk

analysis using the STRIDE

model were conducted

The detection of

misconfigurations using

mentioned security tools was

not performed

(Rangnau, et al., 2020) Integration of security tools in

CI/CD pipeline and detection of

vulnerabilities using tools was

proposed

However, the detection of

misconfigurations was not

performed

(Ullah, et al., 2017) Evaluation between a secure and

non-secure Continuous

Deployment process was

analyzed. The security tactics

Misconfigurations were not

defined in this paper

7

were enforced to secure a CD

process.

(Sojan, et al., 2021) Highlighted the security

monitory solution to identify the

security issues

Only at the theoretical level

3 Research Methodology

Preliminary research on the implementation of DevOps has emphasized the importance of

incorporating security into the early stages of software development (Ahmed & Francis,

2019). DevSecOps practices can help prevent insecure coding and misconfigurations, which

can lead to zero-day attacks, data breaches, and loss of confidentiality, integrity, and

availability. It is therefore crucial to incorporate DevSecOps in ongoing deployments to

mitigate these risks. Then, the importance of detecting misconfigurations and errors in

Infrastructure as code resulted in vulnerabilities and expanded attack surface for the cloud

application mentioned by (Alonso, et al., 2023). The component dependency check must be

verified using SCA tools and SAST tools and an active knowledge database.

Therefore, the search string used for the research was “DevSecOps” and “Misconfiguration in

Infrastructure as code”. The research was carried out based on the related works by multiple

authors (Battina & Sindhu, 2017), (Casola, et al., 2020), (Kumar & Goyal, 2021).

To avoid misconfiguration and vulnerabilities in the infrastructure as code, AWS Services, or

CI/CD Pipeline, the Secure CI/CD pipeline was adopted and illustrated misconfigurations

caused while deploying the application automatically. Therefore, a secure CI/CD pipeline has

been proposed and the following methodology was implemented:

Stages of a CI/CD Pipeline Security

Continuous Integration: Terraform code was applied to create or modify the cloud

environment and GitHub Actions was used to set up the CI workflow and merged the code

changes into a central repository.

Continuous Security: A continuous security workflow using GitHub Actions was

implemented to ensure the security of a codebase. The GitHub Actions workflow was

adopted by authors (Benedetti, et al., 2022) and (Kinsman, et al., 2021) and discussed the

importance of using GitHub Actions as the latest technology introduced by GitHub to

automate the workflows. The workflows are specified in .yml or .yaml file extensions.

(Kinsman, et al., 2021) compared the commits of each workflow file from other studies and

analyzed the data from 3,910 GitHub repositories. When a specified trigger event occurred,

such as the pushing of code to a particular branch or the creation of a pull request, a series of

actions are automatically taken. These actions included the use of static analysis tools to

detect vulnerabilities in the code and the running of tools to check for misconfigurations. The

continuous security workflow was configured to run these actions automatically and alerted

notifications of the triggered actions or failed actions. In this way, the implementation of a

8

continuous security workflow using GitHub Actions helped to secure the codebase and

identify and fix issues early in the development process.

Code analysis: Static code analysis tools were used to scan the codebase for potential

vulnerabilities. This included checking for insecure coding practices, such as the use of

hardcoded passwords or the inclusion of sensitive data in the codebase. The tools utilized are

Semgrep and tfsec.

Continuous Delivery: In this stage, the code is deployed to a staging environment where it

can be tested in a production-like environment. This involved additional security checks,

such as AWS Security Hub, and Cloud Inspector, and utilized various tools such as Prowler

and ScouteSuite and AWS-service-enum script for identifying misconfigurations in AWS

services and infrastructure.

In this phase, the terraform that is infrastructure as a code tool was utilized and integrated

with GitHub Actions.

Logging and Monitoring: In this stage, the development team monitors the code in

production and performs regular maintenance and updates to address any security

vulnerabilities or misconfigurations that may be discovered. AWS CloudTrail was used as a

monitoring solution provided by AWS. The use of CloudTrail for monitoring assisted in the

identification of misconfigurations or potential security vulnerabilities in the AWS

environment and facilitate timely action to address them.

4 Design Specification

The below architecture was proposed as a secure module of the CI/CD pipeline that was

utilized to automate the application deployment process.

Figure 1: Secure Design

9

Semgrep1 is a static analysis tool that uses pattern matching to identify vulnerabilities and

security issues in code. It supports a wide range of programming languages, including

Python, JavaScript, Java, and C++. Semgrep uses a custom language called Semgrep Patterns

to define the patterns it should look for in the codebase. These patterns can be customized to

match the specific security concerns of the project. The choice of the tool was selected based

on the analysis performed by the Semgrep authors, supported by the OWASP community,

and pinpointed by other great security forums mentioned in the article1.

Tfsec is a static analysis tool specifically designed for Terraform code. It was used for

scanning Terraform configurations for potential security issues, such as the use of insecure

resources or misconfigured resource settings. tfsec is written in Go and integrated into the

GitHub action workflows. This was used in the previous research by (Ibrahim, et al., 2022) to

secure the terraform configurations.

Terraform was chosen based on the comparison of the tools by (Ibrahim, et al., 2022) as

shown in Figure 2. Terraform is a tool for building, changing, and versioning infrastructure

safely and efficiently. It uses configuration files in HashiCorp Configuration Language

(HCL) or JSON to describe the desired state of the infrastructure resources, and then it

automatically creates, updates, and deletes those resources in a cloud provider or on-

premises.

The AWS resources were deployed and managed by Terraform including the following AWS

resources :

• EC2 Instance: Amazon EC2 (Elastic Compute Cloud)2 is a cloud computing service

that provides resizable compute capacity in the form of virtual servers (called

"instances") that can be easily launched and terminated as needed.

• Networking resources such as VPCs, subnets, and security groups: Amazon

Virtual Private Cloud (VPC) is a service that allows users to create a logically isolated

section of the AWS cloud to launch resources in a virtual network that they define. A

subnet is a range of IP addresses within a larger network. A security group is a virtual

firewall that controls inbound and outbound traffic to resources in a virtual private

cloud (VPC).

• Storage resources such as S3 buckets and volumes: Amazon Simple Storage

Service (S3)2 is a scalable, durable, and secure object storage service that allows users

to store and retrieve any amount of data from anywhere on the web, organized into

logical containers called "buckets."

• Database instances such as DynamoDB: Amazon DynamoDB2 is a fully managed,

NoSQL database service that provides fast and predictable performance with seamless

scalability.

• IAM: Amazon Identity and Access Management (IAM)2 is a web service that helps to

secure control access to AWS resources. IAM enables users to create and

1https://portswigger.net/daily-swig/semgrep-static-code-analysis-tool-helps-eliminate-entire-classes-of-vulnerabilities

10

manage AWS users, roles, and groups, and use permissions to allow and deny their

access to AWS resources.

Figure 2: Tools Comparison

AWS Security Hub is a central place to manage security and compliance across AWS

accounts and workloads provided on AWS documentation2. It provides a comprehensive

view of security posture and enables automation of the process of finding and fixing security

issues.

AWS Inspector2 is a security assessment service that helps to identify vulnerabilities and

deviations from best practices. Inspector performs automated security assessments of

applications, networks, and Amazon Machine Images (AMIs), and provides

recommendations for improving their security.

5 Implementation

The results obtained using the methodology and proposed design identified misconfigurations

and addressed them in the early development cycle. The CI/CD Pipeline with continuous

security was implemented using GitHub Actions workflows. The Terraform integrated with

GitHub Actions enabled the automation of the process of Infrastructure as code (IAC)

deployment with changes. The changes to Terraform configuration files (main. tf) were

committed to a Git repository hosted on GitHub. A GitHub Action was triggered by the

commit that includes a Terraform plan step to preview the proposed changes to the

infrastructure. The Action includes Terraform apply step to apply the changes for the

deployment. To add continuous security in CI/CD process, the tfsec GitHub

Action(tfsec.yml) was configured to the su-muskan/AWSGoat repository to scan the

terraform code for security issues or misconfigurations. This ensured the Terraform code is

checked for security issues before it is deployed to production, helping to reduce the risk of

vulnerabilities in the infrastructure. Further, Semgrep was configured as a SAST tool using

GitHub Actions to identify the security misconfigurations in the code that included Insecure

IAM Permissions, and an S3 bucket open to public access. After the deployment, AWS

Security Hub and Inspector are utilized to monitor the security of your environment and

identify potential security risks.

In addition, Prowler, and ScoutSuite tools were used to perform security assessments of AWS

accounts.

2 https://docs.aws.amazon.com/

11

It checks for security best practices and potential vulnerabilities and provides

recommendations for improvement. This will further help in securing AWS environments

and reduces the risk to CI/CD pipeline and compliance with industry standards and best

practices. CloudTrail as a monitoring solution was also combined in this DevSecOps pipeline

to identify any unusual or suspicious activity and take action to mitigate potential security

risks.

By running static code analysis with tools like semgrep and tfsec, it was possible to detect a

wide range of vulnerabilities in the codebase. Some examples of misconfigurations that these

tools detected include:

• Misconfigured resources, such as insecure network settings or S3 buckets public

access, or misconfigured security groups

• Insecure coding practices, such as the use of hardcoded passwords or the inclusion

of sensitive data in the codebase

• Unsafe handling of user input, such as insufficient input validation or the use of

insecure functions

• Insecure IAM policy permissions

By detecting these misconfigurations vulnerabilities early in the development process, it was

possible to improve the security and stability of the software and reduce the risk of security

breaches.

Security Hub detected 9 critical, and 11 High misconfigurations on AWS S3 buckets, IAM

Policy, security groups, and MFA was not enabled for the root account. In addition, Prowler

and Scout Suite tools detected the major misconfigurations on VPC, EC2, IAM, and S3.

6 Evaluation

This experiment aimed to detect misconfigurations in the Infrastructure as code as a part of

the CI/CD Pipeline. The secure module of the CI/CD Pipeline was built by integrating

security tools to identify security misconfigurations in every stage of the CI/CD pipeline. The

evaluation was performed between the CI/CD Pipeline and the Secure CI/CD Pipeline. The

pipeline without security does not detect any misconfigurations or vulnerabilities. However,

this proposed pipeline with security detected the security misconfigurations or vulnerabilities

that benefit compliance and security. The output produced from the security tools and GitHub

Actions workflows showed the security misconfigurations on AWS resources which are EC2,

S3, IAM, security groups, VPC, etc.

6.1 tfsec

The misconfigurations detected in the repository using tfsec were 155 as shown in Figure 3.

The majority of the misconfigurations were regarding S3 bucket unauthorized access, IAM

policy subjected to excessive permissions, and code security issues.

12

Figure 3: tfsec scan result

6.2 Semgrep

Below are the identified security misconfigurations from the Semgrep tool that checks for

any secrets leaked in plaintext or other misconfigurations. Figure 4 represents the SQL errors,

S3 access misconfigured, input handling error, and misconfigured IAM policy.

Figure 4: Semgrep scan result

13

6.3 Security Hub

Security Hub scan found misconfigured AWS services and resources following the CIS and

AWS security best practices as shown in Figure 5. The majority of the misconfigurations

were related to AWS IAM, EC2, S3, and Dynamo DB.

Figure 5: Security Hub scan result

6.4 Prowler

The below results from Prowler after the deployment. Figure 6 displayed the output from the

Prowler security tool that has identified security configuration findings.

Figure 6: Prowler scan result

Using the above-mentioned tools, it was successfully identified security misconfigurations in

AWS Infrastructure as code and this could help the developers or cloud architects to

remediate the security misconfigurations in the initial stage before deployment which

minimizes the risk from vulnerabilities, exploitation, and exfiltration of secrets. However,

false positives were also detected using these tools that can be manually validated. Therefore,

revisited 10 identified misconfigurations to verify the false positives using AWS Command

Line Interface(CLI).

14

6.5 Manual Validation of the Findings

The list of security misconfigurations that are analyzed manually is shown in Table 2.

Table 2: Manual Analysis of security Misconfigurations

Misconfigurations Description Severity

Rating

Mitigations Affected

Resources

S3 buckets allow

public read access

Anonymous users will be

able to list the objects in

an Amazon S3 bucket

that gives everyone

online access to READ

(LIST) and utilize the

knowledge gathered to

discover possible objects

with misconfigured

permissions and exploit

them.

High Deny

PUBLIC

READ

access to

Amazon S3

buckets by

default

S3 bucket:

production-

blog-awsgoat-

bucket-

644666690429

IAM: Password

Policy not enabled

No rules on the IAM

Password policy can

leave the account

vulnerable to password-

related security issues,

such as weak or easily

guessable passwords, or

passwords that are reused

across multiple accounts.

High Configure

Password

complexity

and other

minimum

requirements

that are

password

reuse, expiry

IAM users, roles

and policies

Root Account

without MFA

Enabling multi-factor

authentication (MFA) for

the root account of the

Amazon Web Services

(AWS) account is an

important security best

practice because it adds

an extra layer of

protection to the AWS

account. No MFA leads

to unauthorized access

High Enable MFA

for root

account

root_account

IAM Policy with

wildcards

The use of ‘*’ in the

IAM Policy allows

access to all the

resources which might

result in potential

privilege escalation

vulnerabilities

High Apply the

Least of

Privilege

Principle or

enable Zero

Trust

aws-goat-

instance-

boundary-policy

15

Security Group

Opens All Ports to

All

It was detected that all

ports in the security

group are open, and any

source IP address could

send traffic to these

ports, which creates a

wider attack surface for

resources assigned to it.

High Open ports

should be

reduced to

the minimum

needed to

correctly

operate and,

when

possible,

source

address

restrictions

should be

implemented

.

AWS_GOAT_s

g

Security Group

Opens SSH Port to

All

Every port in the security

group is open, allowing

traffic to come from any

source IP address.

High Restrict

Open ports

and enforce

source

address

restrictions

AWS_GOAT_s

g

AWS EC2 AMI

not Encrypted

Amazon Machine Images

(AMIs) are encrypted to

fulfill compliance

requirements for data-at-

rest encryption. When

dealing with production

data that is crucial for

businesses, it is required

to implement data

encryption to protect it

from attackers or

unauthorized personnel.

Medium Encrypt any

unencrypted

Amazon

Machine

Images

available

within your

AWS

account.

amzn2-ami-

hvm-

2.0.20221210.1-

x86_64-ebs

AWS S3 bucket

allows HTTP

communication

Communications

between the client and

the S3 bucket are

unencrypted which could

reveal sensitive

information in cleartext

Medium Use of

HTTPS

do-not-delete-

awsgoat-state-

files-

644666690429

Unencrypted S3

bucket

Enforcing Server-Side

Encryption will

guarantee that your AWS

S3 buckets are

Medium Enable

Server side

encryption to

S3 buckets

dev-blog-

awsgoat-bucket-

644666690429

16

safeguarding their

sensitive data while it is

at rest.

Private key

detected

The sensitive credential

is hardcoded

Medium Remove the

hardcoded

.pem keys

/.ssh/keys/john.p

em,

/.ssh/keys/mary.

pem,

/.ssh/keys/charle

s.pem

6.6 Discussion

Figure 7 represented the results of an experiment that evaluated the effectiveness of tools,

tfsec and Semgrep, in identifying misconfigurations in a pipeline integrated with security.

The results of the experiment showed that both tools identified a relatively high number of

misconfigurations. This was significant because these tools were used before deployment,

which that stated any misconfigurations identified could be fixed in the early development

cycle. However, it was also important to consider how to maintain the security of the pipeline

after it had been deployed. This was achieved by using tools such as prowler and AWS

Security Hub to continuously monitor the pipeline and identify potential security issues. By

doing so, it was possible to quickly address any issues that were encountered and maintain

the overall security of the pipeline over time. In summary, a combination of proactive

measures in the development phase, such as the use of tfsec and Semgrep, and continuous

monitoring after deployment using tools like prowler and Security Hub, could help ensure the

security of the pipeline and reduce the risk of attacks.

Figure 7: Quantitative analysis of automatic detection of misconfigurations

17

7 Conclusion and Future Work

The first Research Question (RQ1) was successfully achieved using the security tools and

discovered misconfigurations. Further, RQ2 was also successfully implemented by

integrating security tools in every stage of the CI/CD Pipeline and detecting

misconfigurations before and post-deployment. The tfsec and Semgrep GitHub Action

workflow was integrated and successfully detected and identified security misconfigurations

before the deployment. The other tools such as Prowler, Scout Suite, and Security Hub

detected the security issues post-deployment and minimized the attack surface for the CI/CD

pipeline before deploying into the production environment. This ensured continuous security

in the CI/CD pipeline and helps the cloud architects and developers to implement this

proposed secure module of the pipeline to prevent security breaches or loss of data.

The limitation of this research was in the implementation of the 4 -stage DevOps Pipeline

that included Jenkins integration, Code Build, CodePipeline, and Code Deploy. The

challenge was to integrate the terraform with this 4-stage DevOps pipeline during the

provided timeframe. Therefore, another approach was utilized to implement CI/CD pipeline

using GitHub Actions.

One potential area of future work is to develop and implement a mitigation solution that can

automatically mitigate vulnerabilities based on industry guidelines such as the Center for

Internet Security (CIS) and the Open Web Application Security Project (OWASP). This

solution could potentially include features such as automated remediation of vulnerabilities

and real-time monitoring and alerting to identify and respond to potential threats or incidents.

By integrating this solution into the CI/CD process, organizations can further improve the

security of their systems and applications and reduce the risk of data breaches or other

security incidents.

References
Ahmed, Z. & Francis, S. C., 2019. Integrating Security with DevSecOps: Techniques and

Challenges. 2019 International Conference on Digitization (ICD), pp. 178-182.

Alonso, J., Piliszek, R. & Cankar, M., 2023. Embracing IaC Through the DevSecOps

Philosophy: Concepts, Challenges, and a Reference Framework. IEEE Software, pp. 56-62.

Arachchi, S. & Perera, I., 2018. Continuous Integration and Continuous Delivery Pipeline

Automation for Agile Software Project Management. 2018 Moratuwa Engineering Research

Conference (MERCon), Issue 10.1109/MERCon.2018.8421965, pp. 156-161.

Battina & Sindhu, D., 2017. BEST PRACTICES FOR ENSURING SECURITY IN

DEVOPS: A CASE STUDY APPROACH. International Journal of Innovations in

Engineering Research and Technology, pp. 38--45.

Benedetti, G., Verderame, L. & Merlo, A., 2022. Automatic Security Assessment of GitHub

Actions Workflows. Issue 10.48550/arXiv.2208.03837.

Casola, V., De Benedictis, A., Rak, M. & Villano, U., 2020. A novel Security-by-Design

methodology: Modeling and assessing security by SLAs with a quantitative approach.

Journal of Systems and Software, Volume 163, pp. 110-537.

18

Chaudhary, A. et al., 2021. Cloud DevOps CI -CD Pipeline.

Chernyshev, M., Baig, Z. & Zeadally, S., 2021. Cloud-Native Application Security: Risks,

Opportunities, and Challenges in Securing the Evolving Attack Surface. Computer, pp. 47-

57.

Dhaya Sindhu, B., 2021. The Challenges and Mitigation Strategies of Using DevOps during

Software Development. International Journal of Creative Research Thoughts (IJCRT), pp.

4760-4765.

Ibrahim, A., Yousef, A. H. & Medhat, W., 2022. DevSecOps: A Security Model for

Infrastructure as Code Over the Cloud. 2022 2nd International Mobile, Intelligent, and

Ubiquitous Computing Conference (MIUCC), Issue 10.1109/MIUCC55081.2022.9781709,

pp. 284-288.

Ivanov, V. & Smolander, K., 2018. Implementation of a DevOps pipeline for serverless

applications. In: International conference on product-focused software process improvement.

s.l.:Springer, pp. 48-64.

Kinsman, T., Wessel, M., Gerosa, M. A. & Treude, C., 2021. How Do Software Developers

Use GitHub Actions to Automate Their Workflows?. 2021 IEEE/ACM 18th International

Conference on Mining Software Repositories (MSR).

Kumar, R. & Goyal, R., 2021. When Security Meets Velocity: Modeling Continuous Security

for Cloud Applications using DevSecOps. Springer, pp. 415--432.

Mao, R. et al., 2020. Preliminary Findings about DevSecOps from Grey Literature. 2020

IEEE 20th International Conference on Software Quality, Reliability and Security (QRS), pp.

450-457.

Mohan, V., ben Othmane, L. & Kres, A., 2018. BP: Security Concerns and Best Practices for

Automation of Software Deployment Processes: An Industrial Case Study. 2018 IEEE

Cybersecurity Development (SecDev), Issue 10.1109/SecDev.2018.00011, pp. 21-28.

Myrbakken, H. & Colomo-Palacios, R., 2017. DevSecOps: A Multivocal Literature Review.

Springer International Publishing, pp. 17-29.

Rangnau, T., Buijtenen, R. v., Fransen, F. & Turkmen, F., 2020. Continuous Security

Testing: A Case Study on Integrating Dynamic Security Testing Tools in CI/CD Pipelines.

In: 2020 IEEE 24th International Enterprise Distributed Object Computing Conference

(EDOC). s.l.:s.n., pp. 145-154.

Sojan, A., Rajan, R. & Kuvaja, P., 2021. Monitoring solution for cloud-native DevSecOps.

2021 IEEE 6th International Conference on Smart Cloud (SmartCloud), Issue

10.1109/SmartCloud52277.2021.00029, pp. 125-131.

Torkura, K. A., Sukmana, M. I., Cheng, F. & Meinel, C., 2021. Continuous auditing and

threat detection in multi-cloud infrastructure. Computers \& Security, pp. 102-124.

Ullah, F. et al., 2017. Security Support in Continuous Deployment Pipeline. Proceedings of

12th International Conference on Evaluation of Novel Approaches to Software Engineering.

