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Abstract 

Mobile risks are growing at a quick rate as the number of mobile users 

significantly increases. Modern age’s major cyberattacks have been fuelled by 

the advanced development of mobile devices and technologies. The popular 

operating system Android, which is used in smartphones, is a prime target for 

dubious activities carried out by various intrusions and malware. Due to its 

popularity and open-source platform, Android has turned into a top target for 

unethical intrusions. A mobile virus can result in a number of cybersecurity 

problems. The volume of data created and the increase in zero-day threats make 

the present security applications insufficient to predict and detect intrusion with 

variable properties. These challenges have been addressed in recent years using 

machine learning classification algorithms, and this study compares classic 

machine learning models with ensemble learning models to determine which 

model can yield the greatest results. So, utilizing the Random Forest, Decision 

Tree, KNN techniques, and the Android Mischief dataset as training data, we 

presented a comparison between ensemble learning and the classic ML 

classification model in this study to detect remote access trojan (RAT). Metrics 

like accuracy, precision, and F1 score are used to measure the model's 

performance, and its performance is contrasted with that of more established 

models like Decision Tree and K Nearest Neighbor (KNN). 

 

Keywords: Android, Remote Access Trojan, RAT, Network Intrusion 

Detection, Machine Learning, Ensemble Learning, Random Forest, Decision 

Tree, KNN   
 

1 Introduction 
 

Since the turn of the century, high-speed mobile communication networks have developed 

quickly, leading to an increase in the use of portable electronics like smartphones. Due to 

their portability and array of capabilities, which range from simple alarms to payments to the 

bank, people use their phones to manage their life. Worldwide, there are more than 3.6 billion 

phone owners, and a Statista Research study from April 2021 indicates that more than 54% of 

all Internet consumption is now done on mobile devices. (Smartphone subscriptions 

worldwide 2027, no date) Google has a very popular platform called Android, which powers 

billions of smartphones worldwide. Anyone can independently create an android-based 

application because Android is an open-source platform. A malware-filled Android 

application is created by a variety of intruders to carry out numerous destructive actions. As a 



2 
 

 

result of its acceptance, there has been a rise in the variety and number of cyberattacks. 

Kaspersky statistics show that about 7% of these Android mobile attacks were carried out by 

Remote Access Trojans (RAT). Because they make it possible to remotely manage the 

infected machine in a variety of ways, RATs are regarded as one of the most hazardous types 

of malware. (Remote Access Trojan (RAT), no date) Long-term attempts to identify RATs 

have been made by the security community, with some measure of success. Antivirus 

detections of binary files outside of Android mobiles or link analysis are the finest detections 

currently discovered. RAT network traffic detection, however, has not proven effective. 

Although network traffic-based RAT detections may significantly increase the security of our 

mobile devices, to our knowledge, no extensive research has been done to identify Android 

RATs in the network. This study contributes to this field of study by comparing ensemble 

learning and conventional machine learning models on the most recent dataset to identify 

remote access trojans (RATs) for Android devices with the highest level of accuracy. 

 

The research contribution and novelty as compared to prior work on this dataset are based on 

research and findings that have been done in the same area, and it is believed that nobody has 

used machine learning algorithms such as Decision tree and Random Forest for the Android 

remote access trojan (RAT) detection and provided a comparison between the ensemble 

learning and traditional machine learning model’s accuracy result of RAT detection for 

Android. Also, the same dataset that is the Android mischief dataset is not used by any 

other researcher so far since this dataset is published in the year 2021 and there is no latest 

ongoing research where the same dataset was used with similar machine learning models for 

Android RAT detection. 

 

Remote Access Trojan (RAT) 

Malware called a "remote access trojan" enables an attacker to take over a target device and 

control it from a distance. Given that they are a component of the majority of assaults, 

including APTs and Ransomware, RATs are one of the most significant threats today. 

Particularly when it comes to Android RATs in phones, it is difficult to identify RATs in 

network traffic. Why? The fundamental issue is that our mobile devices lack any simple 

means of viewing the network traffic. The security of our phones is significantly less assured 

than that of our computers. (What is a RAT (Remote Access Trojan)? | Definition from 

TechTarget, no date) 

1.1 Motivation for Research 

Due to the daily introduction and development of new and emerging remote access trojans 

(RAT) by several hackers or attackers, RAT and its detection have always had a number of 

problems. It is vital to look into new technologies that would protect mobile devices from 

unidentified and ambiguous dangers even though current operating mobile computing 

systems combine a number of security features, such as (post) authentication mechanisms and 

access control. In order to protect our mobile phones, this thesis uses traditional machine 

learning models like Decision Tree, KNN, and Ensemble learning to address the issue of 

Android RAT detection in network traffic. In order to examine the processes and prevent 
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malicious assaults and keep confidential data safe, it is the responsibility of reliable 

secondary means to gather information on the system and its infrastructure. 

1.2 Research Questions 
 

• How effectively, and with a low false-positive rate, can proposed machine learning 

models identify the intrusion in the network of Android mobile devices? 

 

• How do feature selection strategies assist us in enhancing accuracy? 

 

1.3 Research Objectives 
 

• To establish the most efficient method for finding Remote Access Trojan (RAT) on 

Android mobile networks. 

 

1.4 Research Hypothesis 

H1: The suggested machine learning models have a high degree of accuracy in recognising 

the remote access trojan in Android mobile networks. 

H0: The suggested machine learning models have not a high degree of accuracy in 

recognising the remote access trojan in Android mobile networks. 

 

H2: By using feature selection strategies, we can increase our accuracy. 

H0: By using feature selection strategies, we cannot increase our accuracy. 

 

1.5 Structure of the Report 
 

Chapter # Description Details 

2 Related Work This section will cover the literature related to 

network intrusion detection along with examination 

of the earlier research on this topic. 

3 Research Methodology This section will cover a thorough explanation of 

the algorithms utilised and all the specifications for 

creating this thesis. 

4 Design Specification This section will cover the design process of the 

proposed model for the thesis. This will also cover 

the methods utilised and the structure for each of 

the approach. 

5 Implementation This section will explain the implementation of the 

proposed machine learning models. 

6 Evaluation This section will cover the outcomes following the 

application of the thesis. Based on a comparison of 
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the outcomes produced by various algorithms, a 

conversation will be conducted 

7 Conclusion and Future Work This section will cover the conclusion withdrawn 

following the application of this theory. This part 

provides the response to the research question. It 

will also be explored what the future will entail. 

 

Table 1: Report Structure 

 

2 Related Work 
 

A discussion of the material I read for the purpose of developing my thesis will be presented 

in this part. There will be a brief review of the advantages and disadvantages of the literature. 

A discussion of the literature will then be conducted. 

In 2008, the first Android phone was developed, and sales have skyrocketed since. As more 

people began utilising android devices for various purposes, cybercriminals began to launch 

assaults. Cybercriminals and threat actors have been more interested in android phones as 

their popularity has increased. As a result, there are a tonne of mobile malware programmes 

that target Android-powered smartphones and do malicious tasks like stealing money or 

private data, among others. These malicious software programmes were created by inventive 

hackers and detecting them requires processing intelligence and detection software. Most 

work on utilising machine learning techniques to detect intrusions on Android is based on 

system and API calls. Network-based functionalities for Android malware have just recently 

been the focus of a small number of research.(Olson, no date) 

2.1 Penetration of Android Devices 

The smartphone is a typical and important item today. However, the security risks have 

escalated in proportion to the development of Android smartphones. According to the 

(Ahmad, Ali Shah and Ahmad Al-Khasawneh, 2021) even if many security measures have 

been developed for platforms like Android, not all risks can be eliminated by only employing 

encryption and authentication. Due to the increase in viruses and breaches, smartphones are 

at serious danger for security. According to recent studies and reports, malware and viruses 

are becoming more common on operating systems of smartphone, particularly Android. 

Smartphone development is being held back by its lack of computing power and inadequate 

energy supply, which depend on battery usage.  

As per the (Rahmat et al., 2019) 90% of Android cell phones are vulnerable to at least one 

significant flaw. As a result, after exploiting existing vulnerabilities, attackers look for 

opportunities to create new attack vectors in order to compromise an organization's 

infrastructure as a whole. However, during the past few years, machine learning has achieved 

significant results with its malware classification and feature selection methods. In addition to 

providing a brief history of some conventional techniques, this paper will discuss key 

classification techniques that were employed to identify anomalies in the Android mobile 

network sector. 
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2.2 Prior Contribution and Their Limitations 

Malware was discovered on Android for the first time in 2010; following that, its prevalence 

progressively rose. With an emphasis on the development of new and effective IDS, 

substantial research has already been conducted on mobile device security. With the help of 

signature-enabled and anomaly-based techniques, it is possible to collect intrusion features 

and subsequently identify the software or behaviours that make up the intrusion. (Zhou et al., 

2012) did a study that revealed certain categories of harmful programmes that have been 

disclosed during the past year. A study proposed by (Shabtai et al., 2012) depending on the 

host, an Android malware detection framework. The proposed strategy continuously 

examines a wide range of smartphone characteristics and events before classifying the 

acquired data using methods of machine learning. However, no actual virus testing was done 

on the indicated system. A study conducted by (Yuan et al., 2013) proposed an intrusion 

detection system (IDS) for detecting anomalies in Android mobile devices. The recently 

created framework classified the data gathered from a smartphone as either malicious or valid 

using the Naive Bayes algorithm. The claims regarding the detection rates, however, remain 

under question because the malware utilised in the Classifier's training of Naive Bayes is not 

made public. (Ghorbanian et al., 2013) a signature-based IDS was shown to be a proposed 

system for Android smartphones. The authors used the detection technique which was 

signature-based with pre-established rules to find irregularities. This methodology solely 

takes into account risks that is known, leaving out unknown dangers. 

 

Due to the high level of security concerns, it is crucial to keep in mind that novel solutions 

need to be researched in order to protect current mobile devices from both known and 

unknown threats. In the study of (Yerima et al., 2013) the applications were divided into 

benign and suspicious categories by the authors using Bayesian classification. For training 

and classification, 1000 samples of each type of programme were used by them, including 

malware. Where in the study of (Sahs and Khan, 2012) Authors trained support vector 

machine (SVM) models to distinguish between good and bad applications using permission 

and call flow graphs. A study conducted by (Mahindru and Singh, 2017) using Random 

Forest, Naive Bayes, K-star, J48 Decision Tress, and Simple Logistic Technique, the author 

attempted to categorise malicious applications of Android. The study's findings show that a 

simple logistic approach has a 99.6% accuracy rate on a dynamic application dataset, but that 

the choice of classifier and the sample size that is smaller frequently cause false positives. 

 

According to the study conducted by (Arp et al., 2014) the author use DREBIN to locate 

phoney Android apps. The SVM Classifier was used to build the model, which categorises 

good and dangerous applications based on factors including API calls, permissions, and 

network addresses. It has already been highlighted that many users fail to install the DREBIN 

programme on their mobile device, which is required to detect fake programmes. The 

inability of DREBIN to detect malware that uses obfuscation or dynamic code is just one of 

the many limitations that it has. A model presented by (Song et al., 2016) a static 

identification technique for detecting malware on Android, where a filtering technique has 

been merged with detection. The primary benefit of this work was its ability to reduce 



6 
 

 

workload, which led to high efficiency. The outcome produced additionally displays a rate of 

98.80%. Multiple number of studies that were conducted in the middle of the previous time 

period. A approach for categorising malware was suggested by (Ali Alatwi et al., 2016) 

which focuses primarily on improving the model's performance in the domain of undeniable. 

The quality of the characteristics played a significant role in accuracy. In this study, classifier 

training has been carried out on each group separately to improve performance. A related 

investigation was carried out by (Bhatia and Kaushal, 2017) which increases dynamic 

analysis's effectiveness for spotting malware on Android by twofold. They suggested using a 

virtual box for the execution and employed a monkey tool that produces movements in this 

approach, they gathered a lot of traces, and the data they gathered was utilised to analyse 

different learning approaches, which gave accuracy levels of more than 80%. The study 

found that dynamic analysis is an effective way to find malware. 

 

Later, an approach has been suggested by (Feizollah et al., 2017) When evaluating the 

effectiveness of the intents as a feature for detecting malware, the study makes use of a 

substantial dataset that includes 7406 programmes andriodialysis which is capable of 

checking two unrelated intent objects termed implicit and explicit. When manipulating 

androids with purpose, there have been reports of an efficiency of over 90%, and for consent, 

it was over 80%. The indent feature is not regarded as the ultimate last resort, which is a 

significant limitation for the paper. The study suggested by (Feng et al., 2018) where author 

suggested a framework for a study called EnDriod, which is successful. The proposed work 

seeks to implement very precise intrusion detection based on several kinds of dynamic 

performance metrics. EnDriod's acceptance of the feature selection method to avoid the noisy 

or inappropriate characteristics and extract the important behaviour feature is one of the main 

advantages. 

 

Another study conducted by (Yerima and Sezer, 2019) where author proposed a ensemble 

detector that was multi-level classifier named Droid fusion to improve classifier accuracy by 

removing security threats to the Android system, the base classifiers at the lower stage are 

combined with the predictive ranking-based algorithm at the upper level. A study conducted 

by (Demontis et al., 2019) It has been scientifically demonstrated that using machine learning 

techniques increases security. Since the designed algorithm can be very resistant to 

avoidance, an adversary aware methodology has been used. Another system called 

OmniDroid was proposed by (Martín, Lara-Cabrera and Camacho, 2019) the tool's primary 

goal is to assist researchers and developers while developing anti-malware programmes. It 

was a large and widely used dataset that contains 22000 real set of intrusion and goodware 

samples. The dataset was produced using AndroPyTool and a number of classifiers. 

Researcher (Rana and Sung, 2020) proposed a study on several machine learning strategies 

using ensemble learning approaches as sacking, boosting, etc. The study found that the 

boosting algorithm can be useful and effective since it reduces most main errors by 

separating strong learners from weak learners. According to the study conducted by 

(Aminanto and Kim, 2022) The use of deep learning in intrusion detection is open to 

criticism and other potential problems, which lends weight to this assertion. Last but not 

least, Deep Learning models can be beneficial in upcoming research on the detection of 
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unknown dangers. Below figure depicts the existing malware detection techniques which 

uses either static analysis or dynamic analysis techniques. 

 

 

                                      Figure 1: Existing Malware Detection Techniques 

 

2.3 Intrusion Detection Using Machine Learning 

Intrusion that targets computers, and computer systems has been categorised using machine 

learning in recent years. Machine learning is widely utilised to identify dangerous 

applications in recent years as more Android intrusion samples have become available. In 

order for the Android phone to be able to detect any intrusion activities that might be injected 

by any undesirable sources, the notion of traditional machine learning and Ensemble 

Learning Algorithm was taken into consideration in this research. 

 

Types of Machine Learning Approach 

 

Supervised Learning:  

In supervised machine learning, the dataset for the model includes both the input and the 

output data. Several facets are displayed as input data. The objective of a supervised machine 

learning algorithm is to discover any relationships between the input and output data using 

these specified attributes. The model is biased toward the result when using the supervised 

learning approach. Simply learning the actions to take will get it there. For instance, the 

algorithm must decide whether this email is spam or not. These supervised learning tasks 

involve 0 and 1 based Boolean equations. In general, supervised learning includes two 

categories of algorithms: classification algorithms and regression algorithms.(Edwards, 2020) 

 

Unsupervised Learning: 

Unsupervised machine learning is a type of learning when the system only receives input data 

and the results are unknowable. In this situation, the algorithm is allowed to choose a path of 

action of its own. The algorithm must look at certain previously undetectable patterns in the 

input dataset in order to predict future results or develop a solution. This is the trickiest 

instructional technique. The algorithm must go through a process of trial and error to reach a 

result. Unsupervised machine learning is a powerful tool for developing original solutions to 
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any challenge. Consequently, this technique is also known as the technique of knowledge 

discovery.(Edwards, 2020) 

 

 

Figure 2 Machine Learning Approaches 

 
 

3 Research Methodology 
 

The fundamental framework for the proposed study is an experimental design, and secondary 

sources is used for the datasets. The source used was a remote access trojan intrusion dataset 

namely Android mischief dataset, which was very relevant because it represented genuine 

intrusion attacks. The outcome analysis also aims to be a comparison analysis carried out by 

contrasting various elements of the multiple under examination. This would help with the 

primary study question, which was to find a compromise between the new implementation 

and the accuracy of the evolving intrusion detection models for Android handsets. Therefore, 

by comparing the different machine learning models shown in this thesis, the developers may 

decide the optimal detection technique to use going forward. The focus of the research 

technique to be used in the proposed method of research is the significant research models 

discovered in the literature, as determined from the earlier pertinent works above. The 

proposed model will be constructed in a number of steps, as illustrated in the figure below. 

 

 

Figure 3 Process Flow of Proposed Model 

 

We will first take the dataset we'll be working with to a program. Data preprocessing will 

take place next as a next step. This stage involves establishing a solid grasp of the facts. The 

process of data generalisation is carried out in this step, which also checks for missing values 
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and provides no null values. After that, extraction of the feature and selection are carried out. 

To score the features at this stage depending on their importance level in achieving the target 

variable, we are employing the select from model feature selection approach. After 

comparing the scores, those with the lower scores are removed from the data. 

 

The following step would be model training, Decision tree, K Nearest Neighbor from classic 

machine learning model and Random Forest from Ensemble learning are the models that will 

be used. Accuracy score, precision, and F1 score are the evaluation measures that are 

discussed. They are all classification models, which is what they are all. With the help of the 

data, classification models can predict to which category or class an observation belongs. 

Training the models on training data comes first, then testing them on test data, where a 

portion of the data set will be used to train the model in this scenario. The population as a 

whole is what training and testing are really just subsets of. The remaining data set is used for 

testing after training, and the results are assessed via Accuracy. 

 

4 Design Specification 
 

This section of the report is a description of the machine learning models and their 

framework and assessment metrics used in this proposed model. 

4.1 Decision Tree Model 

The first algorithm that is used in the development of this thesis is Decision Tree. Decision 

Tree is a supervised machine learning algorithm that can be used to address problems 

involving classification and regression. With the help of decision nodes and leaf nodes, it 

creates the model as a tree structure. Any number of branches make up a decision node. 

Decisions are represented by leaf nodes. The root node is a top-level decision node. It is 

capable of handling both continuous and categorical data.(Arora, 2020) Tests or assessments 

are made based on the qualities of the dataset that is presented. It presents a graphic 

representation of every possible response to a problem or choice, given specified criteria. It is 

known as a decision tree because, like a tree, it begins with the root node and grows by 

adding more branches to take the form of a tree.  
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Figure 4 Decision Tree Model1 

 

4.2 K Nearest Neighbor (KNN) Model 

KNN is utilised in classification and regression applications. But the classification component 

is where it really excels. To find new data points, KNN uses a concept called "feature 

similarity." The distance of the newly generated data points from the training dataset will be 

used to calculate a measure for them. A majority vote is used to select a class label for a 

classification problem, which means that the classification that is most often used to refer to a 

particular data point is accepted.(Okfalisa et al., 2017) 

 

 

Figure 5 K-Nearest Neighbor (KNN) Model2 

 

The procedures for putting the KNN algorithm into practise is as follows. 

 

• Both the training and testing datasets are loaded, and the dataset is separated into these 

two categories. 

• Depending on their kind, the training dataset is separated into various clusters. 

 
 
1 https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm 
2 https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning 
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• For the data point that needs to be classified, the k-value is chosen. 

• The categorised clusters are all used to identify the K closest neighbour data points. These 

closest neighbours are located using a distance function. 

• The cluster with the greatest number of neighbours is given the new data point. 

4.3 Random Forest Model 

Using data that was partitioned randomly, an ensemble of decision trees was created. Forest 

is the name given to the collection of trees. Each tree is produced using a selection of 

attributes, such as information gain, gain ratio, etc., and is based on an independent random 

sample. When solving classification issues, we select the top-voting tree as the final solution. 

The average of all the trees is taken into account as the final outcome for regression 

issues.(Arora, 2020) 

 

 

Figure 6 Random Forest Model3 

 

Random Forest vs Decision Tree 

Although decision trees are straightforward, they have numerous major flaws, including 

overfitting, variance- or bias-related errors. A Random Forest is a group of decision trees that 

produce an aggregated result. The random forest uses several trees to reduce the possibility of 

overfitting. They are also challenging to understand. A decision tree is easier to read and 

understand when compared to a random forest. 

 

Despite being quick to implement, a single decision tree is not good at forecasting the 

outcomes. A stronger model will result from adding more trees, which also reduces 

overfitting. We must produce, process, and analyse each and every tree in the forest. 

Consequently, this is a lengthy procedure that occasionally takes hours or even entire days. 

 

4.4 Proposed Metrics for Performance Evaluation 

The definition of the evaluation parameters that will be used is now the most important 

component of the technique that will be used for the comparative examination of the 
 

 
3 https://levelup.gitconnected.com/random-forest-regression-209c0f354c84 
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performances of the suggested models that will be used to address the primary research issue 

in the proposed research. The evaluation metrics are an essential component of a machine 

learning model. There is no use in developing a machine learning model without a clear 

feedback mechanism. We get a model's feedback through the evaluation metrics. We 

continue till we achieve the necessary accuracy score; we will improve model performance. 

The effectiveness of a model is guided by evaluation metrics. 

 

The following criteria are used in the proposed approach to assess the models' performance: 

4.4.1 Accuracy 

Accuracy, which is calculated as the ratio of successfully identified objects to all evaluated 

objects, is the most sensible performance statistic. A scale of statistical evaluation for a model 

is called the accuracy score. The quantity of values that the model can accurately anticipate is 

its accuracy. In mathematics, it can be written as: 

 

 

4.4.2 F1-Score 

The F1-Score for a classification problem is the harmonic mean of the precision and recall 

values. The weighted average for precision and recall might be used to characterise it. An F-

score is said to be at its maximum when it reaches 1, and at its minimum when it reaches 0. 

 
 

Precision: Only a small portion of all positively anticipated positive data objects—referred to 

as precision—were really predicted with any degree of accuracy. 

 

 
 

Recall: Keep in mind that the answer is calculated by dividing the number of precise 

affirmative outcomes by the total number of relevant samples. 

 

4.4.3 Confusion Matrix 

The most popular tool for evaluating the effectiveness of a classification algorithm is the 

confusion matrix. A few crucial parameters will be used to compare the performance of the 

models used in the proposed research. The performance of the model is revealed through an 
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insightful confusion matrix. However, different performance metrics can be calculated 

utilising its component pieces to get even more information. 

 

• True Positive (TP): The percentage of values that 

are both truly true and as predicted by the model. 

• True Negative (TN): True negative is the 

percentage of values that are actually negative, 

and the model also an anticipated negative 

outcome. 

• False Positive (FP): The number of genuinely 

negative values for which the model also made a 

prediction of truth is known as the False Positive.  

• False Negative (FN): The proportion of 

genuinely negative values that the model also 

predicted to be true is known as false-negative. 

 

                Figure 7 Confusion Matrix 

 

5 Implementation 
 

Here, we'll go through how machine learning and ensemble learning were used to create a 

powerful classification model and get the best results possible. In this section, the modelling 

and feature selection procedure is also explained. 

 

5.1 Software and Programming Language Used 

Python is used to programme the suggested model. The machine learning project is best 

suited for the Python programming language. Python is the best choice for machine learning 

applications due to its consistency, platform freedom, ease of use, accessibility to top-notch 

ML tools and frameworks, flexibility, huge community, and ease of use. On the Microsoft 

Windows 11 platform, code is written and executed using Anaconda software and Jupyter 

Notebook (IDE). 

5.2 Description of Dataset 

In this study, the model is trained and tested using the Android Mischief Dataset, which was 

generated in the Stratosphere Laboratory at the Czech Technical University in Prague. The 

dataset can be downloaded from https://mcfp.felk.cvut.cz/publicDatasets/Android-Mischief-

Dataset/.  The network traffic from mobile devices infected with Android RATs is collected 

in the Android Mischief Dataset. In order to propose new detections to safeguard our devices, 

it aims to provide the community with a dataset to learn about and evaluate the network 

behavior of RATs. 8 packet captures from 8 running Android RATs are part of the dataset's 

current iteration.(Android Mischief Dataset, no date) The following 8 RATs are included in 

the most recent edition of the Android Mischief Dataset: Android Tester v6.4.6, DroidJack 

v4.4, HawkShaw, SpyMax v2.0, AndroRAT, Saefko Attack Systems v4.9, AhMyth and 

command-line AndroRAT. 

https://mcfp.felk.cvut.cz/publicDatasets/Android-Mischief-Dataset/
https://mcfp.felk.cvut.cz/publicDatasets/Android-Mischief-Dataset/
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5.3 List of Installed Python Packages 

For the purpose of conducting our investigation, the following libraries and packages 

are installed: 

 

• NumPy: NumPy refers to numerical Python and the Python package NumPy is used to 

manipulate arrays. With NumPy, array objects should be up to 50 times faster than those 

of conventional Python lists. 

• Pandas: Pandas is a Python module for analysis of data. It offers numerous data 

structures and procedures for working with time series and numerical data. 

• Matplotlib: A comprehensive tool for creating static, animated, and interactive 

visualisations is offered by the Matplotlib toolbox for Python. Matplotlib makes both 

tough problems and simple ones doable. 

• Seaborn: Matplotlib serves as the foundation for the Seaborn library, which plots graphs. 

It will be used to view random distributions. 

• Scikit-learn or sklearn: Scikit-learn is probably the most useful Python machine 

learning library. The sklearn toolkit includes a number of efficient machine learning and 

statistical modeling methods, including as classification, regression, clustering, and 

dimensionality reduction.(Libraries in Python - GeeksforGeeks, no date) 

 

5.4 Dataset Pre-processing 

When all necessary programmes have been installed and data has been imported into the 

system, we start data pre-processing, which entails doing a basic statistical description of 

each feature, cleansing of the data collection involves checking for missing values and 

ensuring that they aren't there. We separate the data and labels from the data set after 

removing all of the null columns from the data set and filling in the null values with zeros. 

Since we are working with integer data, we remove the object type column from the data. We 

next convert the data and labels to a NumPy array because object type includes both strings 

and numbers. 

5.5 Feature Selection 

Selecting meaningful features for training our model is one of the most crucial tasks in a 

machine learning classification. To train our model with the right number of features and to 

disregard those that are not important in order to improve precision and shorten training 

times, this research uses feature selection. Features are evaluated using the correlation-based 

feature selection (CFS) method. A technique for choosing features in a dataset based on 

their connection with the target variable is called correlation-based feature selection (CFS). 

According to CFS, variables that have a strong correlation with the target variable are better 

suited for making predictions than features that have a weak correlation. CFS begins by 

figuring out the association between each feature and the desired outcome. After that, it 

employs a heuristic to order the features according to their connection with the desired 

variable. In order to provide a machine learning model with the most highly associated 

features, it finally chooses a subset of them. After separating the features of the data from the 
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target set, the relevance of the features is assessed. Below figure shows the final selected 

features of the dataset on which our machine learning models has trained. 

 

 

Figure 8 Feature Selection Output 

5.6 Modelling (Training and Testing) 

The train test split approach was used to divide the data and labels. The dataset will be split in 

half, with 70% of the data being used for training and 30% being utilised for testing. The goal 

of this study was to develop a model utilising ensemble learning to categorise Android 

intrusion detection software as malicious or benign. Our ensemble learning model is based on 

Random Forest, and our comparison analysis uses Decision Tree and KNN algorithms. The 

model has been developed, and the split data and labels have been fitted to the developed ML 

model. The model is then trained using the split data and labels from the training data set. 

The trained model was subsequently saved. Last but not least, we use the testing data set to 

determine the trained model's accuracy and F1 score. 

 

6 Evaluation 
 

The outcomes of using the proposed machine learning models will be covered in this section. 

In this part, the accuracy, f1-score, and confusion matrix outcomes from each model will be 

compared. 

 

As the models are implemented and evaluated for effectiveness, the results of the 

implemented models are displayed below. The results show that Random Forest received the 

best score in remote access trojan (RAT) detection. Random Forest's accuracy is 96.44% and 

its F1 score is 96.3%, while Decision Tree's accuracy is 86.7% and its F1 score is 86.12%. 

 

ML Model Test Accuracy Precision Recall F1-Score 

Random Forest 96.44% 95.87% 97% 96.3% 

Decision Tree 86.7% 93.62% 83.12% 86.12% 

K Nearest 

Neighbor (KNN) 

Discarded Discarded Discarded Discarded 
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Table 2 Machine Learning Models Result 

 

 

Figure 9 Bar graph of ML Model Test Accuracy 

 

For a better understanding of the results, the various remote access trojan (RAT) types that 

we searched for throughout the intrusion testing are categorised. 

 

Class Remote Access Trojan (RAT) 

Class 0 RAT01_AndroidTester 

Class 1 RAT02_DroidJack 

Class 2 RAT03_HawkShaw 

Class 3 RAT04_SpyMAX 

Class 4 RAT05_AndroRAT 

Class 5 RAT06_Saefko 

Class 6 RAT07_AhMyth 

Class 7 RAT08_cli_AndroRAT 

 

Table 3 Class of Remote Access Trojan 

 

 

6.1 Case Study 1: Random Forest Outcomes 
 

Accuracy of Random Forest algorithm in detection of RAT = 96.44% 

 

Below figure shows the individual remote access trojan (RAT) detection score of precision, 

recall, and F1 score by Random Forest model. 
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Figure 10 Bar Graph of Random Forest Result 

 

Below figure depicts the confusion matrix of the Random Forest classifier where highlighted 

diagonal boxes show the true positive (TP) value which means exact match the between 

predicted sample of the Random Forest trained machine learning model and the true test 

sample. 162,985 samples were classified correctly out of 169,001 samples and rest 6,016 

were classified incorrectly. 

 

 

Figure 11 Confusion Matrix of Random Forest Model 

 

 

 

 

 



18 
 

 

Deviation of output from Random Forest Model against Test Data 

 

 

Figure 12 Output Deviation of Random Forest 

 

6.2 Case Study 2: Decision Tree Outcomes 
 

Accuracy of Decision Tree algorithm in detection of RAT = 86.7% 

 

Below picture shows the individual remote access trojan (RAT) detection score of precision, 

recall, and F1 score by decision tree model. 

 

 

 

Figure 13 Bar Graph of Decision Tree Result 
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Below figure depicts the confusion matrix of the Decision Tree classifier where highlighted 

diagonal boxes show the true positive (TP) value which means exact match the between 

predicted sample of Decision Tree machine learning trained model and the true test sample. 

146,516 samples were classified correctly out of 169,001 samples and rest 22,485 were 

classified incorrectly. 

 

 

Figure 14 Confusion Matrix of Decision Tree 

 

 

Deviation of output from Decision Tree Model againt Test Data 

 

 

Figure 15 Output Deviation of Decision Tree 
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6.3 Discussion 

When the models are put into practise and their effectiveness is assessed, it is discovered that 

Random Forest from Ensemble Learning surpasses the traditional machine learning Decision 

Tree and KNN models in terms of detecting remote access trojans (RATs) of Android 

phones. Since this thesis is the comparison between ensemble machine learning model and 

traditional machine learning model whether which model detect the Android network 

intrusion, we can observe that the Decision Tree model takes less time, but it has less 

accuracy and stability if compared with Random Forest’s accuracy, stability and reliability as 

Random Forest involves collection of Decision Trees with aggregate and single result 

and decreases the likelihood of overfitting. 

 

However, we have trained KNN model as well and we got that the KNN has the accuracy 

score and F1 score for the trained model, but we have completely discarded this model as 

KNN is taking more than 3 hours to build the model in detecting the remote access 

trojan (RAT) and we can say that the KNN is slow learner in Android intrusion detection 

and can not be implemented for Android device. 

 

With reference to the figure 12 and figure 15, it is clearly observed that Random Forest 

model gave more accurate prediction against the test data.   

 
 

7 Conclusion and Future Work 
 

The objective of this research is to improve intrusion detection for Android devices by 

utilising machine learning and ensemble learning models. As per the objective, this 

implementation focuses on false negatives while comparing models according to their 

accuracy, precision, recall, and F- 1 score to conclude on the most suitable models in this 

process.  

Each model computes and produces results with a different precision quickly. The confusion 

matrix is used to identify which model has the best accuracy and the less false negatives. We 

have put following machine learning models: 

1. Random Forest from ensemble learning 

2. Decision Tree, KNN from traditional machine learning  

into practice for comparison and trained the models on the Android Mischief Dataset. This 

dataset contains 8 different Remote Access Trojans (RAT). After assessing their 

effectiveness, I have observed that Random Forest surpasses the traditional ML models in 

detecting remote access Trojan (RAT) with the test accuracy of 96.44%. It is also having less 

false positive observed from the confusion matrix, whereas Decision Tree model is having 

accuracy limited to 86.7% in detecting RAT. We have trained KNN model as well and 

discarded it completely as KNN model was taking more than 3 hours and even more to 

build the model which is not at all suitable for the targeted remote access trojan for 

Android.  
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However, Decision Tree has taken less time than Random Forest to build the model but less 

accurate whereas Random Forest is more accurate and best suited to the targeted remote 

access trojan detection. Therefore, I have concluded that Random Forest from ensemble 

learning is more efficient in detection of remote access trojan. It involves collection of 

Decision Trees with aggregate and single result concept that minimises the possibility of 

overfitting, and it is more stable and reliable compared to Decision Tree and KNN 

machine learning models. 

7.1 Future Work 

The scope of this thesis was to focus on detection of the intrusion in Android network and not 

the prevention or on how to stop the intrusion of Android devices. Preventive measures of the 

identified remote access trojans can also be implemented in future using ensemble machine 

learning along with other machine learning algorithms by using large dataset to make it more 

robust and efficient system for RAT detection. Additionally, a dataset with the right attributes 

for a particular RAT attack type is required to increase the accuracy of that attack type along 

with some hybrid ensemble learning model to get more accurate result. The model created in 

this thesis can be turned into appropriate mobile software that can operate in real time 

alongside the Android system to constantly look for any RAT infection and safeguard 

Android devices. 
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