

Network Intrusion Detection of Android

Smartphones Using Machine Learning and

Ensemble Learning Techniques

MSc Research Project

MSc Cybersecurity

Sumit Kumar

Student ID: X20258526

School of Computing

National College of Ireland

Supervisor: Mr. Jawad Salahuddin

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Sumit Kumar

Student ID:

X20258526

Program:

MSc in Cybersecurity

Year:

2022-2023

Module:

MSc Research Project

Supervisor:

Mr. Jawad Salahuddin

Submission Due

Date:

01-02-2023

Project Title:

Network Intrusion Detection of Android Smartphones using

Machine Learning and Ensemble Learning Techniques

Word Count:

7744 Page Count 24

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Sumit Kumar

Date:

01-02-2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Network Intrusion Detection of Android Smartphones

Using Machine Learning and Ensemble Learning

Techniques

Sumit Kumar

X20258526

Abstract

Mobile risks are growing at a quick rate as the number of mobile users

significantly increases. Modern age’s major cyberattacks have been fuelled by

the advanced development of mobile devices and technologies. The popular

operating system Android, which is used in smartphones, is a prime target for

dubious activities carried out by various intrusions and malware. Due to its

popularity and open-source platform, Android has turned into a top target for

unethical intrusions. A mobile virus can result in a number of cybersecurity

problems. The volume of data created and the increase in zero-day threats make

the present security applications insufficient to predict and detect intrusion with

variable properties. These challenges have been addressed in recent years using

machine learning classification algorithms, and this study compares classic

machine learning models with ensemble learning models to determine which

model can yield the greatest results. So, utilizing the Random Forest, Decision

Tree, KNN techniques, and the Android Mischief dataset as training data, we

presented a comparison between ensemble learning and the classic ML

classification model in this study to detect remote access trojan (RAT). Metrics

like accuracy, precision, and F1 score are used to measure the model's

performance, and its performance is contrasted with that of more established

models like Decision Tree and K Nearest Neighbor (KNN).

Keywords: Android, Remote Access Trojan, RAT, Network Intrusion

Detection, Machine Learning, Ensemble Learning, Random Forest, Decision

Tree, KNN

1 Introduction

Since the turn of the century, high-speed mobile communication networks have developed

quickly, leading to an increase in the use of portable electronics like smartphones. Due to

their portability and array of capabilities, which range from simple alarms to payments to the

bank, people use their phones to manage their life. Worldwide, there are more than 3.6 billion

phone owners, and a Statista Research study from April 2021 indicates that more than 54% of

all Internet consumption is now done on mobile devices. (Smartphone subscriptions

worldwide 2027, no date) Google has a very popular platform called Android, which powers

billions of smartphones worldwide. Anyone can independently create an android-based

application because Android is an open-source platform. A malware-filled Android

application is created by a variety of intruders to carry out numerous destructive actions. As a

2

result of its acceptance, there has been a rise in the variety and number of cyberattacks.

Kaspersky statistics show that about 7% of these Android mobile attacks were carried out by

Remote Access Trojans (RAT). Because they make it possible to remotely manage the

infected machine in a variety of ways, RATs are regarded as one of the most hazardous types

of malware. (Remote Access Trojan (RAT), no date) Long-term attempts to identify RATs

have been made by the security community, with some measure of success. Antivirus

detections of binary files outside of Android mobiles or link analysis are the finest detections

currently discovered. RAT network traffic detection, however, has not proven effective.

Although network traffic-based RAT detections may significantly increase the security of our

mobile devices, to our knowledge, no extensive research has been done to identify Android

RATs in the network. This study contributes to this field of study by comparing ensemble

learning and conventional machine learning models on the most recent dataset to identify

remote access trojans (RATs) for Android devices with the highest level of accuracy.

The research contribution and novelty as compared to prior work on this dataset are based on

research and findings that have been done in the same area, and it is believed that nobody has

used machine learning algorithms such as Decision tree and Random Forest for the Android

remote access trojan (RAT) detection and provided a comparison between the ensemble

learning and traditional machine learning model’s accuracy result of RAT detection for

Android. Also, the same dataset that is the Android mischief dataset is not used by any

other researcher so far since this dataset is published in the year 2021 and there is no latest

ongoing research where the same dataset was used with similar machine learning models for

Android RAT detection.

Remote Access Trojan (RAT)

Malware called a "remote access trojan" enables an attacker to take over a target device and

control it from a distance. Given that they are a component of the majority of assaults,

including APTs and Ransomware, RATs are one of the most significant threats today.

Particularly when it comes to Android RATs in phones, it is difficult to identify RATs in

network traffic. Why? The fundamental issue is that our mobile devices lack any simple

means of viewing the network traffic. The security of our phones is significantly less assured

than that of our computers. (What is a RAT (Remote Access Trojan)? | Definition from

TechTarget, no date)

1.1 Motivation for Research

Due to the daily introduction and development of new and emerging remote access trojans

(RAT) by several hackers or attackers, RAT and its detection have always had a number of

problems. It is vital to look into new technologies that would protect mobile devices from

unidentified and ambiguous dangers even though current operating mobile computing

systems combine a number of security features, such as (post) authentication mechanisms and

access control. In order to protect our mobile phones, this thesis uses traditional machine

learning models like Decision Tree, KNN, and Ensemble learning to address the issue of

Android RAT detection in network traffic. In order to examine the processes and prevent

3

malicious assaults and keep confidential data safe, it is the responsibility of reliable

secondary means to gather information on the system and its infrastructure.

1.2 Research Questions

• How effectively, and with a low false-positive rate, can proposed machine learning

models identify the intrusion in the network of Android mobile devices?

• How do feature selection strategies assist us in enhancing accuracy?

1.3 Research Objectives

• To establish the most efficient method for finding Remote Access Trojan (RAT) on

Android mobile networks.

1.4 Research Hypothesis

H1: The suggested machine learning models have a high degree of accuracy in recognising

the remote access trojan in Android mobile networks.

H0: The suggested machine learning models have not a high degree of accuracy in

recognising the remote access trojan in Android mobile networks.

H2: By using feature selection strategies, we can increase our accuracy.

H0: By using feature selection strategies, we cannot increase our accuracy.

1.5 Structure of the Report

Chapter # Description Details

2 Related Work This section will cover the literature related to

network intrusion detection along with examination

of the earlier research on this topic.

3 Research Methodology This section will cover a thorough explanation of

the algorithms utilised and all the specifications for

creating this thesis.

4 Design Specification This section will cover the design process of the

proposed model for the thesis. This will also cover

the methods utilised and the structure for each of

the approach.

5 Implementation This section will explain the implementation of the

proposed machine learning models.

6 Evaluation This section will cover the outcomes following the

application of the thesis. Based on a comparison of

4

the outcomes produced by various algorithms, a

conversation will be conducted

7 Conclusion and Future Work This section will cover the conclusion withdrawn

following the application of this theory. This part

provides the response to the research question. It

will also be explored what the future will entail.

Table 1: Report Structure

2 Related Work

A discussion of the material I read for the purpose of developing my thesis will be presented

in this part. There will be a brief review of the advantages and disadvantages of the literature.

A discussion of the literature will then be conducted.

In 2008, the first Android phone was developed, and sales have skyrocketed since. As more

people began utilising android devices for various purposes, cybercriminals began to launch

assaults. Cybercriminals and threat actors have been more interested in android phones as

their popularity has increased. As a result, there are a tonne of mobile malware programmes

that target Android-powered smartphones and do malicious tasks like stealing money or

private data, among others. These malicious software programmes were created by inventive

hackers and detecting them requires processing intelligence and detection software. Most

work on utilising machine learning techniques to detect intrusions on Android is based on

system and API calls. Network-based functionalities for Android malware have just recently

been the focus of a small number of research.(Olson, no date)

2.1 Penetration of Android Devices

The smartphone is a typical and important item today. However, the security risks have

escalated in proportion to the development of Android smartphones. According to the

(Ahmad, Ali Shah and Ahmad Al-Khasawneh, 2021) even if many security measures have

been developed for platforms like Android, not all risks can be eliminated by only employing

encryption and authentication. Due to the increase in viruses and breaches, smartphones are

at serious danger for security. According to recent studies and reports, malware and viruses

are becoming more common on operating systems of smartphone, particularly Android.

Smartphone development is being held back by its lack of computing power and inadequate

energy supply, which depend on battery usage.

As per the (Rahmat et al., 2019) 90% of Android cell phones are vulnerable to at least one

significant flaw. As a result, after exploiting existing vulnerabilities, attackers look for

opportunities to create new attack vectors in order to compromise an organization's

infrastructure as a whole. However, during the past few years, machine learning has achieved

significant results with its malware classification and feature selection methods. In addition to

providing a brief history of some conventional techniques, this paper will discuss key

classification techniques that were employed to identify anomalies in the Android mobile

network sector.

5

2.2 Prior Contribution and Their Limitations

Malware was discovered on Android for the first time in 2010; following that, its prevalence

progressively rose. With an emphasis on the development of new and effective IDS,

substantial research has already been conducted on mobile device security. With the help of

signature-enabled and anomaly-based techniques, it is possible to collect intrusion features

and subsequently identify the software or behaviours that make up the intrusion. (Zhou et al.,

2012) did a study that revealed certain categories of harmful programmes that have been

disclosed during the past year. A study proposed by (Shabtai et al., 2012) depending on the

host, an Android malware detection framework. The proposed strategy continuously

examines a wide range of smartphone characteristics and events before classifying the

acquired data using methods of machine learning. However, no actual virus testing was done

on the indicated system. A study conducted by (Yuan et al., 2013) proposed an intrusion

detection system (IDS) for detecting anomalies in Android mobile devices. The recently

created framework classified the data gathered from a smartphone as either malicious or valid

using the Naive Bayes algorithm. The claims regarding the detection rates, however, remain

under question because the malware utilised in the Classifier's training of Naive Bayes is not

made public. (Ghorbanian et al., 2013) a signature-based IDS was shown to be a proposed

system for Android smartphones. The authors used the detection technique which was

signature-based with pre-established rules to find irregularities. This methodology solely

takes into account risks that is known, leaving out unknown dangers.

Due to the high level of security concerns, it is crucial to keep in mind that novel solutions

need to be researched in order to protect current mobile devices from both known and

unknown threats. In the study of (Yerima et al., 2013) the applications were divided into

benign and suspicious categories by the authors using Bayesian classification. For training

and classification, 1000 samples of each type of programme were used by them, including

malware. Where in the study of (Sahs and Khan, 2012) Authors trained support vector

machine (SVM) models to distinguish between good and bad applications using permission

and call flow graphs. A study conducted by (Mahindru and Singh, 2017) using Random

Forest, Naive Bayes, K-star, J48 Decision Tress, and Simple Logistic Technique, the author

attempted to categorise malicious applications of Android. The study's findings show that a

simple logistic approach has a 99.6% accuracy rate on a dynamic application dataset, but that

the choice of classifier and the sample size that is smaller frequently cause false positives.

According to the study conducted by (Arp et al., 2014) the author use DREBIN to locate

phoney Android apps. The SVM Classifier was used to build the model, which categorises

good and dangerous applications based on factors including API calls, permissions, and

network addresses. It has already been highlighted that many users fail to install the DREBIN

programme on their mobile device, which is required to detect fake programmes. The

inability of DREBIN to detect malware that uses obfuscation or dynamic code is just one of

the many limitations that it has. A model presented by (Song et al., 2016) a static

identification technique for detecting malware on Android, where a filtering technique has

been merged with detection. The primary benefit of this work was its ability to reduce

6

workload, which led to high efficiency. The outcome produced additionally displays a rate of

98.80%. Multiple number of studies that were conducted in the middle of the previous time

period. A approach for categorising malware was suggested by (Ali Alatwi et al., 2016)

which focuses primarily on improving the model's performance in the domain of undeniable.

The quality of the characteristics played a significant role in accuracy. In this study, classifier

training has been carried out on each group separately to improve performance. A related

investigation was carried out by (Bhatia and Kaushal, 2017) which increases dynamic

analysis's effectiveness for spotting malware on Android by twofold. They suggested using a

virtual box for the execution and employed a monkey tool that produces movements in this

approach, they gathered a lot of traces, and the data they gathered was utilised to analyse

different learning approaches, which gave accuracy levels of more than 80%. The study

found that dynamic analysis is an effective way to find malware.

Later, an approach has been suggested by (Feizollah et al., 2017) When evaluating the

effectiveness of the intents as a feature for detecting malware, the study makes use of a

substantial dataset that includes 7406 programmes andriodialysis which is capable of

checking two unrelated intent objects termed implicit and explicit. When manipulating

androids with purpose, there have been reports of an efficiency of over 90%, and for consent,

it was over 80%. The indent feature is not regarded as the ultimate last resort, which is a

significant limitation for the paper. The study suggested by (Feng et al., 2018) where author

suggested a framework for a study called EnDriod, which is successful. The proposed work

seeks to implement very precise intrusion detection based on several kinds of dynamic

performance metrics. EnDriod's acceptance of the feature selection method to avoid the noisy

or inappropriate characteristics and extract the important behaviour feature is one of the main

advantages.

Another study conducted by (Yerima and Sezer, 2019) where author proposed a ensemble

detector that was multi-level classifier named Droid fusion to improve classifier accuracy by

removing security threats to the Android system, the base classifiers at the lower stage are

combined with the predictive ranking-based algorithm at the upper level. A study conducted

by (Demontis et al., 2019) It has been scientifically demonstrated that using machine learning

techniques increases security. Since the designed algorithm can be very resistant to

avoidance, an adversary aware methodology has been used. Another system called

OmniDroid was proposed by (Martín, Lara-Cabrera and Camacho, 2019) the tool's primary

goal is to assist researchers and developers while developing anti-malware programmes. It

was a large and widely used dataset that contains 22000 real set of intrusion and goodware

samples. The dataset was produced using AndroPyTool and a number of classifiers.

Researcher (Rana and Sung, 2020) proposed a study on several machine learning strategies

using ensemble learning approaches as sacking, boosting, etc. The study found that the

boosting algorithm can be useful and effective since it reduces most main errors by

separating strong learners from weak learners. According to the study conducted by

(Aminanto and Kim, 2022) The use of deep learning in intrusion detection is open to

criticism and other potential problems, which lends weight to this assertion. Last but not

least, Deep Learning models can be beneficial in upcoming research on the detection of

7

unknown dangers. Below figure depicts the existing malware detection techniques which

uses either static analysis or dynamic analysis techniques.

 Figure 1: Existing Malware Detection Techniques

2.3 Intrusion Detection Using Machine Learning

Intrusion that targets computers, and computer systems has been categorised using machine

learning in recent years. Machine learning is widely utilised to identify dangerous

applications in recent years as more Android intrusion samples have become available. In

order for the Android phone to be able to detect any intrusion activities that might be injected

by any undesirable sources, the notion of traditional machine learning and Ensemble

Learning Algorithm was taken into consideration in this research.

Types of Machine Learning Approach

Supervised Learning:

In supervised machine learning, the dataset for the model includes both the input and the

output data. Several facets are displayed as input data. The objective of a supervised machine

learning algorithm is to discover any relationships between the input and output data using

these specified attributes. The model is biased toward the result when using the supervised

learning approach. Simply learning the actions to take will get it there. For instance, the

algorithm must decide whether this email is spam or not. These supervised learning tasks

involve 0 and 1 based Boolean equations. In general, supervised learning includes two

categories of algorithms: classification algorithms and regression algorithms.(Edwards, 2020)

Unsupervised Learning:

Unsupervised machine learning is a type of learning when the system only receives input data

and the results are unknowable. In this situation, the algorithm is allowed to choose a path of

action of its own. The algorithm must look at certain previously undetectable patterns in the

input dataset in order to predict future results or develop a solution. This is the trickiest

instructional technique. The algorithm must go through a process of trial and error to reach a

result. Unsupervised machine learning is a powerful tool for developing original solutions to

8

any challenge. Consequently, this technique is also known as the technique of knowledge

discovery.(Edwards, 2020)

Figure 2 Machine Learning Approaches

3 Research Methodology

The fundamental framework for the proposed study is an experimental design, and secondary

sources is used for the datasets. The source used was a remote access trojan intrusion dataset

namely Android mischief dataset, which was very relevant because it represented genuine

intrusion attacks. The outcome analysis also aims to be a comparison analysis carried out by

contrasting various elements of the multiple under examination. This would help with the

primary study question, which was to find a compromise between the new implementation

and the accuracy of the evolving intrusion detection models for Android handsets. Therefore,

by comparing the different machine learning models shown in this thesis, the developers may

decide the optimal detection technique to use going forward. The focus of the research

technique to be used in the proposed method of research is the significant research models

discovered in the literature, as determined from the earlier pertinent works above. The

proposed model will be constructed in a number of steps, as illustrated in the figure below.

Figure 3 Process Flow of Proposed Model

We will first take the dataset we'll be working with to a program. Data preprocessing will

take place next as a next step. This stage involves establishing a solid grasp of the facts. The

process of data generalisation is carried out in this step, which also checks for missing values

9

and provides no null values. After that, extraction of the feature and selection are carried out.

To score the features at this stage depending on their importance level in achieving the target

variable, we are employing the select from model feature selection approach. After

comparing the scores, those with the lower scores are removed from the data.

The following step would be model training, Decision tree, K Nearest Neighbor from classic

machine learning model and Random Forest from Ensemble learning are the models that will

be used. Accuracy score, precision, and F1 score are the evaluation measures that are

discussed. They are all classification models, which is what they are all. With the help of the

data, classification models can predict to which category or class an observation belongs.

Training the models on training data comes first, then testing them on test data, where a

portion of the data set will be used to train the model in this scenario. The population as a

whole is what training and testing are really just subsets of. The remaining data set is used for

testing after training, and the results are assessed via Accuracy.

4 Design Specification

This section of the report is a description of the machine learning models and their

framework and assessment metrics used in this proposed model.

4.1 Decision Tree Model

The first algorithm that is used in the development of this thesis is Decision Tree. Decision

Tree is a supervised machine learning algorithm that can be used to address problems

involving classification and regression. With the help of decision nodes and leaf nodes, it

creates the model as a tree structure. Any number of branches make up a decision node.

Decisions are represented by leaf nodes. The root node is a top-level decision node. It is

capable of handling both continuous and categorical data.(Arora, 2020) Tests or assessments

are made based on the qualities of the dataset that is presented. It presents a graphic

representation of every possible response to a problem or choice, given specified criteria. It is

known as a decision tree because, like a tree, it begins with the root node and grows by

adding more branches to take the form of a tree.

10

Figure 4 Decision Tree Model1

4.2 K Nearest Neighbor (KNN) Model

KNN is utilised in classification and regression applications. But the classification component

is where it really excels. To find new data points, KNN uses a concept called "feature

similarity." The distance of the newly generated data points from the training dataset will be

used to calculate a measure for them. A majority vote is used to select a class label for a

classification problem, which means that the classification that is most often used to refer to a

particular data point is accepted.(Okfalisa et al., 2017)

Figure 5 K-Nearest Neighbor (KNN) Model2

The procedures for putting the KNN algorithm into practise is as follows.

• Both the training and testing datasets are loaded, and the dataset is separated into these

two categories.

• Depending on their kind, the training dataset is separated into various clusters.

1 https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm
2 https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning

11

• For the data point that needs to be classified, the k-value is chosen.

• The categorised clusters are all used to identify the K closest neighbour data points. These

closest neighbours are located using a distance function.

• The cluster with the greatest number of neighbours is given the new data point.

4.3 Random Forest Model

Using data that was partitioned randomly, an ensemble of decision trees was created. Forest

is the name given to the collection of trees. Each tree is produced using a selection of

attributes, such as information gain, gain ratio, etc., and is based on an independent random

sample. When solving classification issues, we select the top-voting tree as the final solution.

The average of all the trees is taken into account as the final outcome for regression

issues.(Arora, 2020)

Figure 6 Random Forest Model3

Random Forest vs Decision Tree

Although decision trees are straightforward, they have numerous major flaws, including

overfitting, variance- or bias-related errors. A Random Forest is a group of decision trees that

produce an aggregated result. The random forest uses several trees to reduce the possibility of

overfitting. They are also challenging to understand. A decision tree is easier to read and

understand when compared to a random forest.

Despite being quick to implement, a single decision tree is not good at forecasting the

outcomes. A stronger model will result from adding more trees, which also reduces

overfitting. We must produce, process, and analyse each and every tree in the forest.

Consequently, this is a lengthy procedure that occasionally takes hours or even entire days.

4.4 Proposed Metrics for Performance Evaluation

The definition of the evaluation parameters that will be used is now the most important

component of the technique that will be used for the comparative examination of the

3 https://levelup.gitconnected.com/random-forest-regression-209c0f354c84

12

performances of the suggested models that will be used to address the primary research issue

in the proposed research. The evaluation metrics are an essential component of a machine

learning model. There is no use in developing a machine learning model without a clear

feedback mechanism. We get a model's feedback through the evaluation metrics. We

continue till we achieve the necessary accuracy score; we will improve model performance.

The effectiveness of a model is guided by evaluation metrics.

The following criteria are used in the proposed approach to assess the models' performance:

4.4.1 Accuracy

Accuracy, which is calculated as the ratio of successfully identified objects to all evaluated

objects, is the most sensible performance statistic. A scale of statistical evaluation for a model

is called the accuracy score. The quantity of values that the model can accurately anticipate is

its accuracy. In mathematics, it can be written as:

4.4.2 F1-Score

The F1-Score for a classification problem is the harmonic mean of the precision and recall

values. The weighted average for precision and recall might be used to characterise it. An F-

score is said to be at its maximum when it reaches 1, and at its minimum when it reaches 0.

Precision: Only a small portion of all positively anticipated positive data objects—referred to

as precision—were really predicted with any degree of accuracy.

Recall: Keep in mind that the answer is calculated by dividing the number of precise

affirmative outcomes by the total number of relevant samples.

4.4.3 Confusion Matrix

The most popular tool for evaluating the effectiveness of a classification algorithm is the

confusion matrix. A few crucial parameters will be used to compare the performance of the

models used in the proposed research. The performance of the model is revealed through an

13

insightful confusion matrix. However, different performance metrics can be calculated

utilising its component pieces to get even more information.

• True Positive (TP): The percentage of values that

are both truly true and as predicted by the model.

• True Negative (TN): True negative is the

percentage of values that are actually negative,

and the model also an anticipated negative

outcome.

• False Positive (FP): The number of genuinely

negative values for which the model also made a

prediction of truth is known as the False Positive.

• False Negative (FN): The proportion of

genuinely negative values that the model also

predicted to be true is known as false-negative.

 Figure 7 Confusion Matrix

5 Implementation

Here, we'll go through how machine learning and ensemble learning were used to create a

powerful classification model and get the best results possible. In this section, the modelling

and feature selection procedure is also explained.

5.1 Software and Programming Language Used

Python is used to programme the suggested model. The machine learning project is best

suited for the Python programming language. Python is the best choice for machine learning

applications due to its consistency, platform freedom, ease of use, accessibility to top-notch

ML tools and frameworks, flexibility, huge community, and ease of use. On the Microsoft

Windows 11 platform, code is written and executed using Anaconda software and Jupyter

Notebook (IDE).

5.2 Description of Dataset

In this study, the model is trained and tested using the Android Mischief Dataset, which was

generated in the Stratosphere Laboratory at the Czech Technical University in Prague. The

dataset can be downloaded from https://mcfp.felk.cvut.cz/publicDatasets/Android-Mischief-

Dataset/. The network traffic from mobile devices infected with Android RATs is collected

in the Android Mischief Dataset. In order to propose new detections to safeguard our devices,

it aims to provide the community with a dataset to learn about and evaluate the network

behavior of RATs. 8 packet captures from 8 running Android RATs are part of the dataset's

current iteration.(Android Mischief Dataset, no date) The following 8 RATs are included in

the most recent edition of the Android Mischief Dataset: Android Tester v6.4.6, DroidJack

v4.4, HawkShaw, SpyMax v2.0, AndroRAT, Saefko Attack Systems v4.9, AhMyth and

command-line AndroRAT.

https://mcfp.felk.cvut.cz/publicDatasets/Android-Mischief-Dataset/
https://mcfp.felk.cvut.cz/publicDatasets/Android-Mischief-Dataset/

14

5.3 List of Installed Python Packages

For the purpose of conducting our investigation, the following libraries and packages

are installed:

• NumPy: NumPy refers to numerical Python and the Python package NumPy is used to

manipulate arrays. With NumPy, array objects should be up to 50 times faster than those

of conventional Python lists.

• Pandas: Pandas is a Python module for analysis of data. It offers numerous data

structures and procedures for working with time series and numerical data.

• Matplotlib: A comprehensive tool for creating static, animated, and interactive

visualisations is offered by the Matplotlib toolbox for Python. Matplotlib makes both

tough problems and simple ones doable.

• Seaborn: Matplotlib serves as the foundation for the Seaborn library, which plots graphs.

It will be used to view random distributions.

• Scikit-learn or sklearn: Scikit-learn is probably the most useful Python machine

learning library. The sklearn toolkit includes a number of efficient machine learning and

statistical modeling methods, including as classification, regression, clustering, and

dimensionality reduction.(Libraries in Python - GeeksforGeeks, no date)

5.4 Dataset Pre-processing

When all necessary programmes have been installed and data has been imported into the

system, we start data pre-processing, which entails doing a basic statistical description of

each feature, cleansing of the data collection involves checking for missing values and

ensuring that they aren't there. We separate the data and labels from the data set after

removing all of the null columns from the data set and filling in the null values with zeros.

Since we are working with integer data, we remove the object type column from the data. We

next convert the data and labels to a NumPy array because object type includes both strings

and numbers.

5.5 Feature Selection

Selecting meaningful features for training our model is one of the most crucial tasks in a

machine learning classification. To train our model with the right number of features and to

disregard those that are not important in order to improve precision and shorten training

times, this research uses feature selection. Features are evaluated using the correlation-based

feature selection (CFS) method. A technique for choosing features in a dataset based on

their connection with the target variable is called correlation-based feature selection (CFS).

According to CFS, variables that have a strong correlation with the target variable are better

suited for making predictions than features that have a weak correlation. CFS begins by

figuring out the association between each feature and the desired outcome. After that, it

employs a heuristic to order the features according to their connection with the desired

variable. In order to provide a machine learning model with the most highly associated

features, it finally chooses a subset of them. After separating the features of the data from the

15

target set, the relevance of the features is assessed. Below figure shows the final selected

features of the dataset on which our machine learning models has trained.

Figure 8 Feature Selection Output

5.6 Modelling (Training and Testing)

The train test split approach was used to divide the data and labels. The dataset will be split in

half, with 70% of the data being used for training and 30% being utilised for testing. The goal

of this study was to develop a model utilising ensemble learning to categorise Android

intrusion detection software as malicious or benign. Our ensemble learning model is based on

Random Forest, and our comparison analysis uses Decision Tree and KNN algorithms. The

model has been developed, and the split data and labels have been fitted to the developed ML

model. The model is then trained using the split data and labels from the training data set.

The trained model was subsequently saved. Last but not least, we use the testing data set to

determine the trained model's accuracy and F1 score.

6 Evaluation

The outcomes of using the proposed machine learning models will be covered in this section.

In this part, the accuracy, f1-score, and confusion matrix outcomes from each model will be

compared.

As the models are implemented and evaluated for effectiveness, the results of the

implemented models are displayed below. The results show that Random Forest received the

best score in remote access trojan (RAT) detection. Random Forest's accuracy is 96.44% and

its F1 score is 96.3%, while Decision Tree's accuracy is 86.7% and its F1 score is 86.12%.

ML Model Test Accuracy Precision Recall F1-Score

Random Forest 96.44% 95.87% 97% 96.3%

Decision Tree 86.7% 93.62% 83.12% 86.12%

K Nearest

Neighbor (KNN)

Discarded Discarded Discarded Discarded

16

Table 2 Machine Learning Models Result

Figure 9 Bar graph of ML Model Test Accuracy

For a better understanding of the results, the various remote access trojan (RAT) types that

we searched for throughout the intrusion testing are categorised.

Class Remote Access Trojan (RAT)

Class 0 RAT01_AndroidTester

Class 1 RAT02_DroidJack

Class 2 RAT03_HawkShaw

Class 3 RAT04_SpyMAX

Class 4 RAT05_AndroRAT

Class 5 RAT06_Saefko

Class 6 RAT07_AhMyth

Class 7 RAT08_cli_AndroRAT

Table 3 Class of Remote Access Trojan

6.1 Case Study 1: Random Forest Outcomes

Accuracy of Random Forest algorithm in detection of RAT = 96.44%

Below figure shows the individual remote access trojan (RAT) detection score of precision,

recall, and F1 score by Random Forest model.

17

Figure 10 Bar Graph of Random Forest Result

Below figure depicts the confusion matrix of the Random Forest classifier where highlighted

diagonal boxes show the true positive (TP) value which means exact match the between

predicted sample of the Random Forest trained machine learning model and the true test

sample. 162,985 samples were classified correctly out of 169,001 samples and rest 6,016

were classified incorrectly.

Figure 11 Confusion Matrix of Random Forest Model

18

Deviation of output from Random Forest Model against Test Data

Figure 12 Output Deviation of Random Forest

6.2 Case Study 2: Decision Tree Outcomes

Accuracy of Decision Tree algorithm in detection of RAT = 86.7%

Below picture shows the individual remote access trojan (RAT) detection score of precision,

recall, and F1 score by decision tree model.

Figure 13 Bar Graph of Decision Tree Result

19

Below figure depicts the confusion matrix of the Decision Tree classifier where highlighted

diagonal boxes show the true positive (TP) value which means exact match the between

predicted sample of Decision Tree machine learning trained model and the true test sample.

146,516 samples were classified correctly out of 169,001 samples and rest 22,485 were

classified incorrectly.

Figure 14 Confusion Matrix of Decision Tree

Deviation of output from Decision Tree Model againt Test Data

Figure 15 Output Deviation of Decision Tree

20

6.3 Discussion

When the models are put into practise and their effectiveness is assessed, it is discovered that

Random Forest from Ensemble Learning surpasses the traditional machine learning Decision

Tree and KNN models in terms of detecting remote access trojans (RATs) of Android

phones. Since this thesis is the comparison between ensemble machine learning model and

traditional machine learning model whether which model detect the Android network

intrusion, we can observe that the Decision Tree model takes less time, but it has less

accuracy and stability if compared with Random Forest’s accuracy, stability and reliability as

Random Forest involves collection of Decision Trees with aggregate and single result

and decreases the likelihood of overfitting.

However, we have trained KNN model as well and we got that the KNN has the accuracy

score and F1 score for the trained model, but we have completely discarded this model as

KNN is taking more than 3 hours to build the model in detecting the remote access

trojan (RAT) and we can say that the KNN is slow learner in Android intrusion detection

and can not be implemented for Android device.

With reference to the figure 12 and figure 15, it is clearly observed that Random Forest

model gave more accurate prediction against the test data.

7 Conclusion and Future Work

The objective of this research is to improve intrusion detection for Android devices by

utilising machine learning and ensemble learning models. As per the objective, this

implementation focuses on false negatives while comparing models according to their

accuracy, precision, recall, and F- 1 score to conclude on the most suitable models in this

process.

Each model computes and produces results with a different precision quickly. The confusion

matrix is used to identify which model has the best accuracy and the less false negatives. We

have put following machine learning models:

1. Random Forest from ensemble learning

2. Decision Tree, KNN from traditional machine learning

into practice for comparison and trained the models on the Android Mischief Dataset. This

dataset contains 8 different Remote Access Trojans (RAT). After assessing their

effectiveness, I have observed that Random Forest surpasses the traditional ML models in

detecting remote access Trojan (RAT) with the test accuracy of 96.44%. It is also having less

false positive observed from the confusion matrix, whereas Decision Tree model is having

accuracy limited to 86.7% in detecting RAT. We have trained KNN model as well and

discarded it completely as KNN model was taking more than 3 hours and even more to

build the model which is not at all suitable for the targeted remote access trojan for

Android.

21

However, Decision Tree has taken less time than Random Forest to build the model but less

accurate whereas Random Forest is more accurate and best suited to the targeted remote

access trojan detection. Therefore, I have concluded that Random Forest from ensemble

learning is more efficient in detection of remote access trojan. It involves collection of

Decision Trees with aggregate and single result concept that minimises the possibility of

overfitting, and it is more stable and reliable compared to Decision Tree and KNN

machine learning models.

7.1 Future Work

The scope of this thesis was to focus on detection of the intrusion in Android network and not

the prevention or on how to stop the intrusion of Android devices. Preventive measures of the

identified remote access trojans can also be implemented in future using ensemble machine

learning along with other machine learning algorithms by using large dataset to make it more

robust and efficient system for RAT detection. Additionally, a dataset with the right attributes

for a particular RAT attack type is required to increase the accuracy of that attack type along

with some hybrid ensemble learning model to get more accurate result. The model created in

this thesis can be turned into appropriate mobile software that can operate in real time

alongside the Android system to constantly look for any RAT infection and safeguard

Android devices.

8 Acknowledgment

I would like to express my gratitude to Mr. Jawad Salahuddin, my supervisor, who supported

me with his valuable support and guidance throughout the research. His timely guidance and

consistent encouragement helped me understand the topic of research better and develop a

deep understanding about the topic.

He inspired me to do better in my research. I genuinely appreciate his contribution in

advancing my study and helping me drive and complete my project in time and with great

details.

9 References

Ahmad, I., Ali Shah, S.A. and Ahmad Al-Khasawneh, M. (2021) ‘Performance Analysis of

Intrusion Detection Systems for Smartphone Security Enhancements’, in 2021 2nd

International Conference on Smart Computing and Electronic Enterprise (ICSCEE). 2021

2nd International Conference on Smart Computing and Electronic Enterprise (ICSCEE), pp.

19–25. Available at: https://doi.org/10.1109/ICSCEE50312.2021.9497904.

Ali Alatwi, H. et al. (2016) ‘Android Malware Detection Using Category-Based Machine

Learning Classifiers’, in Proceedings of the 17th Annual Conference on Information

Technology Education. New York, NY, USA: Association for Computing Machinery

(SIGITE ’16), pp. 54–59. Available at: https://doi.org/10.1145/2978192.2978218.

22

Aminanto, M.E. and Kim, K. (no date) ‘Deep Learning in Intrusion Detection System: An

Overview’.

Android Mischief Dataset (no date) Stratosphere IPS. Available at:

https://www.stratosphereips.org/android-mischief-dataset (Accessed: 10 December 2022).

Arora, S. (2020) ‘Decision Tree vs Random Forest in Machine Learning’, AITUDE, 8

February. Available at: https://www.aitude.com/decision-tree-vs-random-forest-in-machine-

learning/ (Accessed: 9 December 2022).

Arp, D. et al. (2014) ‘Drebin: Effective and Explainable Detection of Android Malware in

Your Pocket’, in Proceedings 2014 Network and Distributed System Security Symposium.

Network and Distributed System Security Symposium, San Diego, CA: Internet Society.

Available at: https://doi.org/10.14722/ndss.2014.23247.

Bhatia, T. and Kaushal, R. (2017) ‘Malware detection in android based on dynamic analysis’,

in 2017 International Conference on Cyber Security And Protection Of Digital Services

(Cyber Security). 2017 International Conference on Cyber Security And Protection Of

Digital Services (Cyber Security), pp. 1–6. Available at:

https://doi.org/10.1109/CyberSecPODS.2017.8074847.

Demontis, A. et al. (2019) ‘Yes, Machine Learning Can Be More Secure! A Case Study on

Android Malware Detection’, IEEE Transactions on Dependable and Secure Computing,

16(4), pp. 711–724. Available at: https://doi.org/10.1109/TDSC.2017.2700270.

Edwards, G. (2020) Machine Learning | An Introduction, Medium. Available at:

https://towardsdatascience.com/machine-learning-an-introduction-23b84d51e6d0 (Accessed:

30 July 2022).

Feizollah, A. et al. (2017) ‘AndroDialysis: Analysis of Android Intent Effectiveness in

Malware Detection’, Computers & Security, 65, pp. 121–134. Available at:

https://doi.org/10.1016/j.cose.2016.11.007.

Feng, P. et al. (2018) ‘A Novel Dynamic Android Malware Detection System With Ensemble

Learning’, IEEE Access, 6, pp. 30996–31011. Available at:

https://doi.org/10.1109/ACCESS.2018.2844349.

Ghorbanian, M. et al. (2013) ‘Signature-based hybrid Intrusion detection system (HIDS) for

android devices’, in 2013 IEEE Business Engineering and Industrial Applications

Colloquium (BEIAC). 2013 IEEE Business Engineering and Industrial Applications

Colloquium (BEIAC), pp. 827–831. Available at:

https://doi.org/10.1109/BEIAC.2013.6560251.

Libraries in Python - GeeksforGeeks (no date). Available at:

https://www.geeksforgeeks.org/libraries-in-python/ (Accessed: 14 December 2022).

Mahindru, A. and Singh, P. (2017) Dynamic Permissions based Android Malware Detection

using Machine Learning Techniques, p. 210. Available at:

https://doi.org/10.1145/3021460.3021485.

Martín, A., Lara-Cabrera, R. and Camacho, D. (2019) ‘Android malware detection through

hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the

23

OmniDroid dataset’, Information Fusion, 52, pp. 128–142. Available at:

https://doi.org/10.1016/j.inffus.2018.12.006.

Okfalisa et al. (2017) ‘Comparative analysis of k-nearest neighbor and modified k-nearest

neighbor algorithm for data classification’, in 2017 2nd International conferences on

Information Technology, Information Systems and Electrical Engineering (ICITISEE). 2017

2nd International conferences on Information Technology, Information Systems and

Electrical Engineering (ICITISEE), pp. 294–298. Available at:

https://doi.org/10.1109/ICITISEE.2017.8285514.

Olson, P. (no date) First-Known Targeted Malware Attack On Android Phones Steals

Contacts And Text Messages, Forbes. Available at:

https://www.forbes.com/sites/parmyolson/2013/03/26/first-known-targeted-malware-attack-

on-android-phones-steals-contacts-and-text-messages/ (Accessed: 13 December 2022).

Rahmat, S. et al. (2019) ‘Network Traffic-Based Hybrid Malware Detection for Smartphone

and Traditional Networked Systems’, in 2019 IEEE 10th Annual Ubiquitous Computing,

Electronics & Mobile Communication Conference (UEMCON). 2019 IEEE 10th Annual

Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp.

0322–0328. Available at: https://doi.org/10.1109/UEMCON47517.2019.8992934.

Rana, Md.S. and Sung, A.H. (2020) ‘Evaluation of Advanced Ensemble Learning Techniques

for Android Malware Detection’, Vietnam Journal of Computer Science, 07(02), pp. 145–

159. Available at: https://doi.org/10.1142/S2196888820500086.

Remote Access Trojan (RAT) (no date). Available at:

https://encyclopedia.kaspersky.com/glossary/remote-access-trojan-rat/ (Accessed: 7

December 2022).

Sahs, J. and Khan, L. (2012) ‘A Machine Learning Approach to Android Malware

Detection’, in 2012 European Intelligence and Security Informatics Conference. 2012

European Intelligence and Security Informatics Conference (EISIC), Odense, Denmark:

IEEE, pp. 141–147. Available at: https://doi.org/10.1109/EISIC.2012.34.

Shabtai, A. et al. (2012) ‘“Andromaly”: a behavioral malware detection framework for

android devices’, Journal of Intelligent Information Systems, 38(1), pp. 161–190. Available

at: https://doi.org/10.1007/s10844-010-0148-x.

Smartphone subscriptions worldwide 2027 (no date) Statista. Available at:

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

(Accessed: 7 December 2022).

Song, J. et al. (2016) ‘An integrated static detection and analysis framework for android’,

Pervasive and Mobile Computing, 32, pp. 15–25. Available at:

https://doi.org/10.1016/j.pmcj.2016.03.003.

What is a RAT (Remote Access Trojan)? | Definition from TechTarget (no date) Security.

Available at: https://www.techtarget.com/searchsecurity/definition/RAT-remote-access-

Trojan (Accessed: 13 December 2022).

Yerima, S.Y. et al. (2013) ‘A New Android Malware Detection Approach Using Bayesian

Classification’, in 2013 IEEE 27th International Conference on Advanced Information

24

Networking and Applications (AINA). 2013 IEEE 27th International Conference on

Advanced Information Networking and Applications (AINA), Barcelona: IEEE, pp. 121–128.

Available at: https://doi.org/10.1109/AINA.2013.88.

Yerima, S.Y. and Sezer, S. (2019) ‘DroidFusion: A Novel Multilevel Classifier Fusion

Approach for Android Malware Detection’, IEEE Transactions on Cybernetics, 49(2), pp.

453–466. Available at: https://doi.org/10.1109/TCYB.2017.2777960.

Yuan, F. et al. (2013) ‘Research of Intrusion Detection System on Android’, in 2013 IEEE

Ninth World Congress on Services. 2013 IEEE Ninth World Congress on Services, pp. 312–

316. Available at: https://doi.org/10.1109/SERVICES.2013.77.

Zhou, W. et al. (2012) ‘Detecting repackaged smartphone applications in third-party android

marketplaces’, in Proceedings of the second ACM conference on Data and Application

Security and Privacy. New York, NY, USA: Association for Computing Machinery

(CODASPY ’12), pp. 317–326. Available at: https://doi.org/10.1145/2133601.2133640.

