

An Analytic Approach to Improve Security

Features of Web Application using Freeware

WAF.

MSc Research Project

MSc In Cybersecurity

Akshay Jadhav

Student ID: X20224630

School of Computing

National College of Ireland

Supervisor: Dr. Arghir Nicolae Moldovan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

AKSHAY SATISH JADHAV

Student ID:

X20224630

Programme:

MSc In Cybersecurity

Year:

2022-2023

Module:

MSc Research Project

Supervisor:

Arghir Nicolae Moldovan

Submission

Due Date:

01-02-2023

Project

Title:

An Analytic Approach to improve security features of web application using freeware WAF.

Word

Count:

10166 words
Page Count: 26 pages

I hereby certify that the information contained in this (my submission) is information pertaining to research I

conducted for this project. All information other than my own contribution will be fully referenced and listed in

the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing

Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism)

and may result in disciplinary action.

Signature:

AKSHAY SATISH JADHAV

Date:

01-02-2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to each project

(including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for your own

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box

located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

An Analytic Approach to improve security features of

web application using freeware WAF.

Akshay Jadhav

X20224630

Abstract

In recent years utilization of web applications has increased rapidly in comparison to past

decades. Web Applications are being used by various businesses, organizations and on

individual level as means of sharing information or for enhancing their business strategies. On

the other hand, due to its rapid increase in utilization web applications are more prone to

various attacks and threats. So, to overcome from these attacks modern business inculcates

various security measures one of which is deploying Web Application Firewall (WAF) to

protect the Web application because it is more capable of filtering the packets and blocking

vulnerable HTTP packets. This is the focus of the research to implement Web Application

Firewall (WAF) and reverse proxy method on web-based application. Second Focus is to

compare, analysis and draw conclusion from the different scanner results to predict at what

extent Web application firewall (WAF) protect the application from getting attacked. As per

the Experiments carried out throughout the research it was seen that Shadow Daemon WAF

with its custom rulesets for the web application and reverse proxy method plays an important

role in preventing different attacks on web application.

Keywords: Web Application Security, Web Application Firewall (WAF), Shadow Daemon

WAF, Reverse Proxy Method, Scanner Tools.

1 Introduction

Cybersecurity is vitally important for providing a high degree of protection in every element

of life in this modern period of critical analysis, technological advancement, and completely

globalized world of innovation. The hazards and issues related to internet security protocols

are also constantly changing. Among the most fundamental and significant ways to prevent

cybersecurity is by conducting security testing against vulnerabilities found in Web

Applications. As per the survey conducted by SANS and OWSAP about 70% of attacks are

being seen on Application layer1. Web application overall comprises of web servers and web

pages. As per the survey most of the attacks on web application were DDOS attack, SQL

injection attack, Cross-site Scripting (XSS) attack, Broken Access control. Amongst this all

attacks on web application, the most targeted sectors by intruder were Banking and Finance,

Government, Cybersecurity service providers and Education as all work went remotely during

COVID. After looking the above-mentioned data in the report, it is very important to improve

the security features to overcome the attacks on web application.

1 https://sansorg.egnyte.com/dl/FrtPvlmWwe

https://sansorg.egnyte.com/dl/FrtPvlmWwe

2

 To improve the security features, one solution that can enhance the security features is

by implementing Web Application Firewall (WAF). WAF has an ability of packet filtering and

blocking dangerous HTTP requests which plays an important role for hacker to attack a web

application. Since commercial WAF do not provide protection to Web Application at

Application level at that extent and are more expensive to use for the project purpose. So, it is

important to use an alternative to it is an open source WAF. There are n-Numbers of open

source WAF available in market such as Modsecurity, Shadow Daemon, Ironbee, Naxsi,

WebKnight with different features and Security levels associated with it. Shadow Daemon

WAF is an effective open-source application security module available for implementing

WAF. Shadow Daemon WAF has an easy utilization user interface in which rules can be

configured to prevent the web application from getting attacked by threats and attacks. So,

keeping the above point in mind we can say that shadow daemon WAF (open source) can be

used as an alternative solution to enhance the security features of web applications at low cost.

 So, for this project purpose Shadow Daemon open-source web

application module for Web Application Firewall (WAF) and Reverse proxy method

was used to provide advance level of security to Web application. It has also considered

to implement Apache and Nginx server for implementing reverse proxy method as both

this server is widely used web server for application deployment as per the survey

conducted by Netcraft in 20222.I have considered Three Vulnerable Web application

and implemented with Reverse proxy and shadow Daemon WAF. After implementing

the setup, I have added default and custom rules for the web application in Shadow

daemon WAF and used 3 open-source Web application Scanner Tools to scan them at

each stage of experimental setup to detect how many attacks are been prevented by

proposed solution. It was seen from the research that custom ruleset for WAF plays an

important role for preventing Web Application from getting attacked. Following are

the contribution and Novelty carried out throughout the project,

Contribution:

• The implementation of the shadow daemon WAF and reverse proxy method

provides a comprehensive security solution for web applications, improving the

overall security posture of the Web Applications.

• The shadow daemon WAF detects and mitigates web attacks, such as SQL

injection, cross-site scripting, and cross-site request forgery, while the reverse

proxy method adds an additional layer of protection by hiding the origin server and

filtering incoming traffic.

• The implementation is highly configurable and can be adapted to the specific

security requirements of each web applications, providing a customized security

solution (Customized Rulesets).

• Implementation of various Vulnerability Assessment tools to detect/verify various

vulnerabilities in Web Applications at each experimental setup.

Novelty:

• The integration of the shadow daemon WAF (Implemented for first time till now)

and reverse proxy method creates a unique solution that offers a comprehensive

approach to web application security.

2 https://news.netcraft.com/archives/category/web-server-survey/

https://news.netcraft.com/archives/category/web-server-survey/

3

• Unlike traditional security solutions that focus solely on detecting and mitigating

attacks, the shadow daemon WAF and reverse proxy method work together to

provide proactive security by hiding the origin server and filtering incoming traffic

towards Web Applications.

Research Question:

1. How Efficient are the Open Source WAF security solutions available to prevent Web

Applications?

- How Secured are the web application without WAF?

-How secured are the web application with WAF?

2. How Efficiently Open-Source Scanners can examine vulnerability in Web

Applications?

Research Objective:

1. Evaluating Security Features of Web Application without Reverse Proxy and WAF.

2. Evaluating Security Features of Web Application with Reverse Proxy and WAF

(default rulesets).

3. Evaluating Security Features of Web Application with Reverse Proxy and WAF

(Custom rulesets).

4. Evaluating the Overall results obtained from above setup to draw conclusion how many

attacks detected and how many attacks prevented.

 The rest of the report is structured as follows, Section 2 of report covers literature

review and related work that I have covered throughout my research, section 3 consists of

Research Methodology. Section 3 and 4 discuss the design specification and Implementation

of the research environment. Section 6 discuss the overall evaluation and case studies that been

performed throughout the project. Section 6 and 7 present the discussion about experimental

analysis and conclusion respectively.

2 Related Work

In this chapter of research project, it gives the brief description about the topics researched as

per project consideration to get an overall execution. The references mentioned would clearly

specify the concepts of Firewall, Web Application Firewall, Importance of Reverse proxy

method and its implementation work done in past, Deployment of Web Application Firewall

to prevent from getting attacked and past analysis done on same, Different types of open-source

scanners and its comparison done in the past analysis. All these mentioned concepts are being

researched and illustrated in bellow sections.

2.1 Firewall Vs Web Application Firewall

Web applications firewall are used widely by companies to protect their application, they are

configured accordingly to requirement. As web application firewall does provide in depth

security until and unless they are configured properly. In this research (Clincy & Shahriar,

2018), the author has discussed thoroughly on how configuring WAF can affect the

4

environment of application and how different WAF’s behave. They have mentioned about

WAF’s which are trained on market to know the input types from users and attacks, later these

WAF generate automate rules based on the history of data. The WAF can be configured

manually too, but the security professional should have a whole picture of how whitelisting

and blacklisting should be configured. As this paper does discuss multiple parameters of

configuring WAF but does not have a practical result to confirm these discussed materials.

 Several websites have been deployed in recent years which provide multiple services

to people using the web application. There has also been increase in attacks and threats to the

web application. These types of intrusion can result into data, financial information, and

credibility loss the company. In this study (Ghanbari et al., 2016) , the authors have discussed

advantages of WAF and comparison of IPS (Intrusion Prevention System) and WAF. They

have also mentioned how WAF complies with the best security standards like Payment Card

industry Security Standards (PCI DSS) and Open Web Application Security Project (OWASP).

Where OWASP has 10 unique approaches to penetration of Web application and methods to

prevent such attacks. The paper also discussed how IPS uses methods based on matching traffic

and use of signature. The web application structure is way different then applications that uses

methods of Traffic pattern (Pattern matching), As the application layer (seventh layer)

protection can only be done once the web application structure and features as fully understand.

All these features are embedded into Web application Firewall. There are multiple features of

security like SQL injection, CSRF protection, Inspection of HTTPS traffic, Web services

protection which is not provided by IPS whereas WAF does provide full protection to these

services.

 As WAF offers security services which are flexible and can be tailored according to

application yet are easy to deploy. This research (Pałka & Zachara, 2011), discusses the

implementation and deployment of WAF with configuring the parameters by matching them

with the traffic pattern generated from user usage. The paper also discusses the common attacks

like Script injections, parameter tampering, forceful browsing, Cross-site scripts and many

others. It also mentions the difficulty of configuring the WAF, as every aspect of security needs

to be covered. As learning WAF by own is not that difficult of a task, but the person is required

to be careful of the rules set.

2.2 Web Application Security and Vulnerabilities Associated with It.

Attackers intend to exploit vulnerabilities in web application for accessing the sensitive data.

This research (A Survey on Web Application Vulnerabilities and Countermeasures, n.d.), is a

survey for security aspects on web application including hacking tools, methods to improve

web application and critical vulnerabilities. They have majorly discussed on types of

vulnerabilities and fundamentals. Also, the mitigation solutions for the critical vulnerabilities

of Web Application. They have highly discussed on how to protect the following web

application vulnerabilities: - Injections, Cross Site Scripting, Broken Authentication and

Session Management, Insecure Direct Object References, and many others.

 The loopholes for the vulnerability are created by web developers who are not well

versed with security. In this study (An Analysis and Classification of Vulnerabilities in Web-

Based Application Development, n.d.), Web application vulnerabilities during the deployment

phase are analyzed and classified to identify the countermeasure, confidentiality, access

5

complexity, weakness, and severity level of security. The authors have mentioned about the

Web development life cycle phases. They have marked the vulnerabilities that occurred in the

phases with the parameters for low to critical. The major vulnerabilities had occurred during

the implementation phase due to improper techniques for implementation and mitigation. This

does gives idea that security just does not start when the application is deployed but it starts

when the application is starting to develop for secured web application.

2.3 Past Analysis Done on Web Application and WAF to prevent from

attacks.

As multiple business-related tasks are supported by the web applications for multiple

organizations. In this paper (Muzaki et al., 2020), the authors have demonstrated the

implementation of Reverse proxy method for web application and use web application firewall

– ModSecurity. Modsecurity is an open source WAF and can detect and preventing attacks.

The reverse proxy stands as a first filter for attacks as the request from client does go to reverse

proxy first then it goes to web application. The author has tested infrastructure setup for Cross

site scripting, Unauthorized Vulnerability web scanning and SQL injection, Modsecurity was

successfully in protecting these attacks.

2.4 Implementation of Reverse Proxy Method

In this study (Arnaldy & Hati, 2020), to optimize the web server and maintain security Reverse

proxy and WAF has been used. They have used Nginx as reverse proxy and ModSecurity as

WAF for the infrastructure. The Waf was tested for SQL injection, Local file Inclusion, Remote

File Inclusion and Cross site scripting. The Reverse proxy has successfully applied for

optimization and tested for services such as transfer time, connection time and request time.

Also, the author has configured the attacks on Web application to be notified from sys logs, for

this TOKEN bot was used. For optimization the author could also have used a high availability

proxy or Load balancer.

 In research (Valeur et al., 2006), the security divided into sensitive and non-sensitive

parts with approach of web application with reverse proxy for anomaly detection system. In

the Reverse proxy settings with anomaly detection system, it calculates score. If the score is

below threshold the request is not suspected to be suspicious and forwarded to web server. The

design is quite effective for routing limited requests to servers that have sensitive information.

The system was analyzed in real time. For analyzing the approach, they had a PHP analyzer

for detecting the metric involving the paths to databases with critical data in comparison to

standard web application available in market.

2.5 Implementation of WAF to Improve Security Features of Web

Application

Worldwide cyber-attacks and data breaches have increased in numbers. In this study (Kiruba

et al., 2022), they have implemented Waf majorly focusing on the Application layer. They have

also used a prebuild Application Programming Interface to analyze the incoming and outgoing

request. With addition to this they have used an application known as Detectify which provides

deep layer security to users. This methodology has increased the security standards for

transactions and accessing information.

6

 As major attacks take place on Web application. It has become a necessary step to

protect web application not only through network firewall but also thought other means. In this

research (Razzaq et al., 2013), different WAF solutions are compared on necessary features.

The authors have discussed about Mod Security, Imperva’s Secure Sphere, Barracuda network

application gateway, Breach Security’s Web Defined, F5-Big IP, Web Sniper, I-Sentry, Secure

IIS, Web Defend, Anchiva, Profense, Citrix, WebApp secure and Server Defender AI are some

WAF and other systems which are compared and explained. As with critical analysis all the

Web application firewalls limitations were highlighted in the paper. All Waf have different

advantages which can be used for protecting the Web application accordingly.

 This research (Lewandowski et al., 2020) , have used Spider trap 5 months activity for

honeypot on accessible by two domains and their IPs. In this paper the author has shortly

discussed about shadow daemon and how shadow daemon ability to learn the attacks to set

rules, as all the requests are logged for honeypot (can be a web application) working behind. It

also has ability to separate the request using the whitelist and blacklist rules. Some rules can

be manually set in shadow daemon, also pre-defined rules can be used to protect the application

too.

2.6 Importance of Automatic Testing (Scanners) over manual testing.

As there are multiple ways to protect a web application but how can someone confirm the

application are protected and checking each vulnerability one by one is a tedious task to do.

Companies had come up with scanner for vulnerabilities of web application. In this study

(Makino & Klyuev, 2015), they have used 2 scanners – Skipfish and OWASP ZAP for

detecting the vulnerabilities of DVWA and WAVSEP. The major vulnerabilities focused in

here are Cross Site Scripting, SQL injection and File inclusion. The vulnerabilities were

evaluated on basis of high, medium, low and informational. The paper concluded that OWASP

ZAP is far better than Skipfish according to the experiments done. Both were not able to detect

much of RFI vulnerabilities in application.

 In this research (Fong & Okun, 2007), they have mentioned and defined Web

application and its tools, and vulnerabilities of security related to web application. They have

also discussed about the functions of web application scanners. The paper has also defined web

application and web application scanner with how they function. Some of the commercial web

application scanner like Appscan, webking, webinspect and NTOspider have been stated with

functional requirement for web application scanner. In largely discussed the issues which are

there while testing with a scanner.

 In this study (Amankwah et al., 2020) , they have compared 3 commercial and 5 open

source WAF – IBM AppScan, Skipfish, Iron WASP, Acunetix, OWASP ZAP, Vega, HP

Webinspect and Arachini for their capabilities of detecting vulnerability. They were tested on

2 vulnerable applications DVWA and WebGoat. The capabilities of Web application scanners

were evaluated on basis of OBE (OWASP web benchmark), WASSEC, Youden index, recall

and precision. The paper discusses about the vulnerability type like Denial of Service, Buffer

Overflow, Authentication Flaws, Code Execution, Cross Site Request Forgery, SQL injection

and others. The paper concludes that the commercial WAF are effective at detecting the

vulnerabilities but also Some open-source scanners are equally efficient.

7

 In this research (Mburano & Si, 2019), there has been comparison of OWASP

benchmark results with the existing results of WAVSEP. The paper has chosen OWASP

benchmark since it’s an open-source program and regularly updated and has number of

contributors. OWASP ZAP and ARACHINI were compared for results of Command Injection,

LDAP injection, SQL injection, Cross Site Scripting and Path Traversal. The paper concluded

that, both the scanners performed different in many sectors therefore neither of them can be

considered as an all-rounder but can be used according to the requirement of our security

purpose. Also, OWASP ZAP does provide better results than Arachni in basis of XSS, CMDI

and SQLI.

3 Research Methodology

Figure 1:Research Methodology

In this chapter of research, important aspects of the project are being discussed in detailed steps

regarding the methodology that have followed throughout project plan. The project plan

compromises of 5 stages and which had made me evaluate my results based on the same. The

Methodology has been illustrated in Figure 1.

3.1 Selection of Web Apps

For this project various vulnerable web application available on internet such as DVWA,

Mutillidae II, etc and got to know all the ground information from the same. After researching

a lot, it was seen that many individuals all over the world have already done penetration testing

on the above applications and reports are already available for the same. So, taking all the

parameters into account one random PHP web application was selected from

sourcecodester.com which was Global online Banking system which was a vulnerable

application. So, I decided to consider the same application and move further with my project

plan and Deployed three Web Applications for the research. Table 1 illustrates the three Web

Applications with there Versions used for project and its Language.

Table 1: Web Application Selection

Web application Version Language

Global Online Banking System3 N/A PHP/MYSQL

Damn Vulnerable Web Application (DVWA)4 2.0.1 (latest) PHP/MYSQL

QWASP Mutillidae II5 2.10.8 (latest) PHP/MYSQL

3 https://www.sourcecodester.com/php/14868/banking-system-using-php-free-source-code.html
4 https://sourceforge.net/projects/dvwa.mirror/
5 https://owasp.org/www-project-mutillidae-ii/

https://www.sourcecodester.com/php/14868/banking-system-using-php-free-source-code.html
https://sourceforge.net/projects/dvwa.mirror/
https://owasp.org/www-project-mutillidae-ii/

8

3.2 Manual Testing & Analysis

After selecting the appropriate Web Applications for my research project then it was decided

to manually test the Web Applications. Since due to less time span for completing the

evaluation of project I decide to manually test only Banking Application and analyse it in depth

to find appropriate results. So, for manual penetration testing on Banking Application using

open-source web application security testing tool called as Burp suite has been used. Basically,

Manual Testing is done on the Banking application to understand two cases. First to cross

verify the scanner results by performing the attacks on same to check whether the same attacks

are being detected. Second is to check the PATH and CALLER parameters to create new rule

set to protect the application from different attacks that are been detected.

3.3 Deployment

After successfully completing the manual test in previous step, then it was decided to deploy

the Web Applications as per the plan to evaluate whole project successfully. Then Web

Applications were deployed under three experimental setups such as Web Application with No

Security, Web Application with Reverse Proxy +WAF (Default rules) and Web Application

with Reverse Proxy +WAF (Custom rules). Each of them has been explained in brief below.

3.3.1 Web Application with No security

In this step of deployment, after successfully selecting the Web Application for research the

next step was deployment of Web Applications over web. So, to do that I have deployed

selected Web Applications over web using XAMPP.

XAMPP for Apache and MYSQL6

XAMPP is basically a well know cross platform web server which helps developer to develop

and deploy their application on web server. The control panel of XAMPP server which allows

the web application to host on Apache port and by adding its database file with help of

phpMyAdmin panel on web. This port numbers can be changed depending on which port you

want to deploy the web application by just changing httpd.config file for Apache.

In this manner for project purpose 3 selected Web Applications over web was deployed using

XAMPP and No security features were added to protect the web Applications.

3.3.2 Web Application with Reverse Proxy + WAF (default rules)

In this step of deployment, after successfully deploying the Web Applications over web using

XAMPP, the main aim of this research was to provide two levels of security to the Web

Applications from getting attacked. First is by implementing Reverse Proxy and second by

deploying Shadow Daemon WAF.

Reverse Proxy Setup

For project purpose web applications was deployed on Apache server on port 5000 and another

server called as NGINX server on port 3000 and also set the parameters in both server

configuration files which makes Nginx server to act as a proxy server for Apache. This is the

first level of security to application as whatever the traffic coming on Apache server will first

go to the proxy server (NGINX) and then it will transfer the request to Apache server.

Shadow Daemon WAF installation with default rules

6 https://www.ionos.com/digitalguide/server/tools/xampp-tutorial-create-your-own-local-test-server/

https://www.ionos.com/digitalguide/server/tools/xampp-tutorial-create-your-own-local-test-server/

9

Figure 2 : Shadow Daemon Working Setup7

After successfully implementing reverse proxy, now it’s time to provide second level of

security protection to web application by deploying shadow Daemon WAF. So, referring the

official document of shadow daemon WAF8 open-source shadow daemon WAF was deployed

by cloning its repository from GitHub and setting up user credentials and created profile for

my web application. To connect web applications and shadow daemon WAF PHP connector

has been installed which records all the request coming in and out to the web application. The

default rules for protecting shadow_ui and common headers are available on GitHub which

was imported into Shadow Daemon WAF 9.The Figure 2 illustrates the setup and working of

Shadow Daemon WAF.

3.3.3 Web Application with Reverse Proxy + WAF (Custom rules)

In this step we will be using the same setup which we have deployed above for Web

Application with Reverse Proxy +WAF for our research with default rulesets. Now here comes

the main part to provide second level of security to Web Application. For this experimental

setup the default rule set were removed and then applied with new rule set depending upon the

result obtained from manual testing and scanner results. Then started creating the new rule set

by referring the PATH and CALLER value obtained from Manual Testing and same detected

on the shadow daemon WAF.

3.4 Vulnerability Scanning

After successfully deploying the Web Applications under various Experimental setup, now it

was important to select Various Web Application Vulnerability Scanner tools. While

conducting the research my main objective was to select the scanner tools which are well

known in cybersecurity industries. For project various SAST and DAST open-source tools

were researched, and three open-source tools were selected depending on past analysis done

on OWASP Benchmark to scan Vulnerabilities in my web applications. All the selected tools

are the proxy tools which have scanning tools built right into them and it can also be used as a

web proxies. It provides the precise control over the request response interaction of the selected

target. These tools prove to be more efficient for the penetration tester to manually test the

application as it easily scans the post login queries. The selected tools for the research are being

illustrated in Table 2 with different parameters.

7 https://shadowd.zecure.org/documentation/architecture/
8 https://shadowd.zecure.org/overview/introduction/
9 https://github.com/zecure/shadowd_rules

https://shadowd.zecure.org/documentation/architecture/
https://shadowd.zecure.org/overview/introduction/
https://github.com/zecure/shadowd_rules

10

Table 2:Evaluated Scanner Details

Tool Name Version License Tool type Price

OWSAP Zed Attack Proxy10 2.12.0 Apache License v2.0 Proxy Free

Nessus Essentials11 10.4.1 Proprietary Tenable, Inc Proxy Free

Arachni12 1.6.1.3 Arachni Public Source

License v1.0

Scanner Free

The first selected tool is OWASP ZAP for which zap.sh file was downloaded for Linux

installer and then provided the suitable permission and installed ZAP in system and then by

setting up the proxy scanned the web application by giving the parameters to zap and started

automatic scan to find Vulnerabilities in application.

The second selected tool is Nessus in which the same Nessus for Linux installer file was

downloaded and then after created an account with the authentication code match and then

scanned the web application by giving an appropriate parameter of the application.

The third selected tool is Arachni which is an open-source scanner using Arachni. For which

the Arachni Linux installer file were downloaded and scaned the web application by giving

specific parameters of the web application to perform scan.

When this scanner tools were scanned on Web Applications at each experimental setup it

generates a scan report which displays the vulnerability present into web applications according

to their severity. These generated reports are available in HTML and XML format which can

be downloaded and saved for further research work. Table 3 illustrates the severity output table

of the selected scanners for research.

Table 3:Severity Table for Scanners

Severity OWSAP ZAP Nessus Essentials Arachni

Critical

High

Medium

Low

Informational

3.5 Analysis & Reporting

This is basically the last step of my methodology, in which the overall obtained results of the

selected scanners were analysed when tested under different experimental setup. This help to

draw the conclusion of the evaluation to restates the objective of the research as mentioned

below,

i) Drawing conclusion by referring scanning results from different scanners at each

experimental setups and manual testing, how many attacks are been prevented without using

WAF and after using reverse proxy and WAF.

ii) Drawing conclusion by referring scanning results to illustrate the importance of custom

rulesets in preventing attacks.

iii) Drawing conclusion how efficient open source WAF detects vulnerability in web

applications.

Considering the above factors into account, it helps in reporting the overall results and conclude

our work precisely in this step.

10 https://www.zaproxy.org/
11 https://www.tenable.com/products/nessus/nessus-essentials
12 https://www.arachni-scanner.com/

https://www.zaproxy.org/
https://www.tenable.com/products/nessus/nessus-essentials
https://www.arachni-scanner.com/

11

4 Design Specification
The Following Figure 3 illustrates the complex design specification of research work. In this

chapter it has been explained the important components of research project and their

specification required for implementation work.

Figure 3:Network Architecture

4.1 VMware Workstation Pro and Ubuntu Linux

To start with the research, work the important factor need to launch the project is deploying

Linux based operating system. For this project, one open-source software called VMware

workstation pro 16.2.4 version was used, and which is configured in the available windows

operating system. It was used because it allows the use of multiple operation system on single

host machine which is most reacquired for my research project. Considering all the parameters

for the project UBUNTU Linux machine has been choose for the project. It is on open source

and consist of various built-in functions which make it feasible for my project. It has been

configured as a virtual machine in VMware Workstation Pro with the following configuration

as mentioned in Table 4. The Linux machine is then powered on and all the necessary

software’s and updates are being made which all are reacquired for the research project.

Table 4:Ubuntu Configuration

Ubuntu Linux Description

Version V22.04.1

Processors 4

RAM 4GB

Hard disk (SCSI) 40GB

4.2 XAMPP server for Apache and MYSQL

To deploy the web application on the Apache server and to add web application database

XAMPP server has been used. XAMPP 8.1.12 Version has been used. As default Apache

server get install at localhost (127.0.0.1) at port number 80, but for the project requirements I

have shifted working of Apache server from port 80 to port 5000 by making changes in

httpd.config file for Apache and then added Web applications database using PhpMyAdmin

and got my web application running on port 5000.

4.3 NGINX server

To provide first level of security to Web Application deployed on Apache server I have

installed NGINX server13 in ubuntu machine through command line. Since the installed

13 https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-source/

https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-source/

12

NGINX server get default deployed on port 80, but as per the project requirements it was made

changes in the NGINX configuration file called sites-available>default and changed its

running port from port 80 to port 3000. NGINX server v 1.18.0 has been installed for this

project.

4.4 Reverse Proxy:

This is the method to provide First level of security to Web Application by establishing Reverse

proxy method between Apache and Nginx server14 each running on different ports. Since the

main motive of reverse proxy is to transfer all the traffic coming to Apache server should first

hit Nginx server and then it will transfer to Apache server to prevent various attacks from

intruder. For Example, if N number of request are been hitting on web by an intruder to gain

access to Apache server here reverse proxy plays an important role where NGINX server will

act as a proxy server for Apache and it will validate all the request coming through it and then

pass only those request which are validated and reject all the invalidated requests and give

client 403 forbidden error and also take the result from the validated request from Apache

server and send back to the appropriate client. So, in this case client will never know the real

IP address of the Apache server and which will on other way prevent the attacks. Prevention

of attack takes place in this method as NGINX will act as a proxy server for Apache server just

by hiding its original IP address. This reverse proxy has been configured by making changes

in the nginx configuration file and had passed the proxy_pass parameters for Apache server.

4.5 Shadow Daemon WAF implementation with PHP connector:

To provide second level of security to the web application by preventing it from getting

attacked shadow daemon WAF has been implemented. Shadow Daemon WAF is basically an

open source WAF and has been deployed to protect the application running on Apache port.

For this GitHub repository of shadow daemon WAF has been cloned and deployed WAF on

port 8080 and created profile for my web application. The installed shadow daemon has version

2 which was released under GNU General Public License. To connect my web application to

shadow daemon WAF PHP connector has been downloaded for WAF which has PHP version

2.2.0. The main specification is that you need to make changes to Apache server to connect

shadow user interface to web application deployed on Apache server which will track all the

request coming in and out through web application which is been done by me in this setup.

4.6 Scanners for Web Application Vulnerability Assessments:

To overcome your manual work and to have strong proof about the detected attacks different

scanners has been used. For this project Three open-source scanners named as OWASP ZAP,

ARACHNI and NESSUS were used and had run this scanner all over at different stages of the

evaluations to get down the results.

5 Implementation
As discussed in the previous section regarding the Design Specifications of the parameters and

software’s used to run the project. Now lets us discuss how it has been used them in the project

and how they are implemented. The complex Implementation process is illustrated in Figure

4.

14 https://www.atatus.com/blog/how-to-set-up-a-reverse-proxy-in-nginx-and-apache/

https://www.atatus.com/blog/how-to-set-up-a-reverse-proxy-in-nginx-and-apache/

13

Figure 4: Implementation Flow Diagram

5.1 Environment Setup:

Step 1: Ubuntu installation using VMware.

Starting with setup of my project my primary operating system is Windows OS which has a

configuration about 8GB RAM and 1TB Hard Disk. But since there are multiple software’s

and configurations needed to proceed with my project Linux system would provide me

flexibility and more functionality. In this way the implementation process starts with the

installation and configuration of UBUNTU virtual machine through VMware Workstation Pro.

For this setup ubuntu-22.04.1-desktop-amd64 .iso image file has been downloaded and setup

the parameters for the UBUNTU machine and get it configured and installed. Now my virtual

machine is ready to run my project with basic configuration of 4GB RAM ,40GB Hard Disk

and 4 Processors.

Step 2: XAMPP and Nginx installation

Second step in my setup installation is to install XAMPP to run my Apache Server and MYSQL

server to add database of my Web Applications and Installation of Nginx server. For this

purpose, XAMPP-linux-installer-8.1.12.0 file has been downloaded and installed in the

system though Terminal by using commands: First giving permission to installation file by

using sudo chmod 777 XAMPP-linux-installer-8.1.12.0 and then running the installation file

to install the XAMPP setup. This will default run the Apache server on

localhost:80/dashboard and MYSQL server to add web application database on

localhost/phpMyAdmin.

After installation of XAMPP next is to install Nginx server on ubuntu machine. For this

installation following command sudo apt install nginx has been used, which will install nginx

sever on port 80 by default.

Step 3: Deployment of Web Apps

Third step is to host my Web applications on Apache server. For this Banking application code

file has been downloaded from 15 and had moved the banking application folder on

15 https://www.sourcecodester.com/php/14868/banking-system-using-php-free-source-code.html

https://www.sourcecodester.com/php/14868/banking-system-using-php-free-source-code.html

14

/opt/lamp/htdocs folder and run my application on http://localhost/banking and then redirect

to http://localhost/phpmyadmin/ and then added banking_db.sql file to run the application.

After this implementation I got my web application running on http://localhost/banking/.

Same procedure has been followed to implement DVWA and Mutillidae II Web Applications.

DVWA16 and Mutillidae 17has been cloned using GitHub Repository and installation has been

done successfully.

Step 4: Manual Testing

Next step in my installation setup is to manual test the application to find out which are the

Vulnerabilities present in the Web Applications. Due to the less time span I have done Manual

testing on Banking Application by passing the following parameters and intersecting it with

proxy tool called as Burp suit. Table 5 defines all the parameters that I have passed to detect

the vulnerability in application:

Table 5:Parameter Passed to detect known Vulnerabilities

Vulnerability Parameters passed/Description Location

SQL Injection admin’ or 1=1# http://localhost/banking/admin/login.php

XSS attack Payload-

<script>alert(document.cookie)</script>

https://localhost/banking/admin/?page=a

ccounts/manage_account&id=7

Lack of password Brute

Force

Unknow credentials and intercept with burp

suit to get parameters

http://localhost/banking

HTML injection attack Payload-

 < a href=https://www.ncirl.ie/>Click

Here

http://localhost/banking/client/?page=use

r

Session fixation attack http://localhost/banking/admin/login.php

and intercept with burpsuit which generates

session cookie PHPSESSID

http://localhost/banking/admin/login.php

Missing Rate Limiters http://localhost/banking/admin/?page=acco

unts/manage_account go to this location

and intercept with burpsuit and add payload

position

http://localhost/banking/admin/?page=ac

counts/manage_account

Insecure session

Termination

Visit to this mentioned location and update

the admin account and intercept with burp

suit

http://localhost/banking/admin/login.php

Account Tampering Go to the mentioned location and intercept

request with burp suit and the tamper the

values of user account.

http://localhost/banking/client/?page=use

r

Weak password policy Go to the mentioned location and intercept

with burp suit and then change the

password for admin user and then again

intercept it will be successful and then try

to login u will get incorrect credentials error

http://localhost/banking/admin/?page=us

er

Directory Listing This location mentioned are unblocked

need to be blocked on application level by

adding parameters in .htaccess files for

Apache and Nginx server

http://localhost/banking/classes

http://localhost/banking/uploads

Clickjacking Security Headers in .htaccess file for

Apache server.

http://localhost/banking/admin

16 https://github.com/digininja/DVWA
17 https://github.com/webpwnized/mutillidae

https://github.com/digininja/DVWA
https://github.com/webpwnized/mutillidae

15

Vulnerability Parameters passed/Description Location

Password transmitted in

plain text

Login to account at given location and

intercept with burp suit u can see password

in clear text

http://localhost/banking/admin/login.php

Missing HTTP

response header

Secure HTTP response headers are not

added in .htaccess files of Apache server

http://localhost/banking/admin/login.php

http://localhost/banking

Step 5: Installing Scanner Tools

Fifth step in setup installation is to download Three selected scanners such as ZAP18, Nessus

Essentials19 and Arachni20. For this purpose, installation files have been downloaded for all the

scanner tools for Linux system from its official websites. After that I have configured them to

setup the proxy for Firefox where my web application is running and with my scanner. After

that I have scanned each scanner with Web application and generated the results for the same.

Step 6: Scanning Web Apps with No security

In this step of implementation, selected Web Apps have been already deployed on Apache

without implementing any security features. In this step each scanner tool were used for

scanning under the different experimental setup of web application with No security and

generated the scanning results of each scanner tool.

Step 7: Installing Reverse Proxy and WAF

Sixth step in my setup installation is to setup reverse proxy between Apache and Nginx server

running on different ports. As default both Apache and Nginx server were running on same

port i.e port 80. So, to setup the reverse proxy I have done changes in the configuration files

for both servers which are as follows:

Apache server: I have made changes in Apache configuration file called httpd.conf and set the

listening port of Apache on port 5000.

Nginx server: I have made changes in Nginx configuration file called sites-availabe >default

and set the listening port to 3000 and restart the XAMPP server and got my both servers running

on different ports. So, to setup Nginx as proxy server for Apache I have made changes again

in sites-available >default file of Nginx and passed the proxy parameters as

 location /banking {

 Proxy_pass http://localhost:5000/banking.

 }

 location /DVWA {

 Proxy_pass http://127.0.0.1:5000/DVWA.

 }

 location /mutillidae {

 Proxy_pass https://127.0.0.1:5000/mutillidae.

 }

And then restarting the XAMPP server and restarting the nginx services my reverse proxy was

successfully setup and in running condition and getting my banking application running on

both ports.

After successfully installing Reverse Proxy next shadow daemon WAF need to be deployed to

detect all the request coming in and out through web application. For this purpose, I have

installed shadow daemon user interface by cloning the shadowd repository from git clone 21and

18 https://www.zaproxy.org/download/
19 https://www.tenable.com/downloads/nessus?loginAttempted=true
20 https://www.arachni-scanner.com/download/
21 https://github.com/zecure/shadowdctl.git

https://www.zaproxy.org/download/
https://www.tenable.com/downloads/nessus?loginAttempted=true
https://www.arachni-scanner.com/download/
https://github.com/zecure/shadowdctl.git

16

then creating up the user and hosting up the shadow_ui interface on http://127.0.0.1:8080 and

creating profile for Web Applications.

Step 8: Installing Reverse Proxy +WAF (default rules)

After successfully deploying web applications, setting up reverse proxy and shadow daemon

WAF next step is to import the default rules for shadow daemon. The default rules for shadow

Daemon WAF are being imported from GitHub repository 22and then scanned each scanner

with web applications to generate the report for the same setup.

Step 9: Installing Reverse Proxy +WAF (Custom rules)

After successfully deploying web application, setting up reverse proxy and shadow daemon

WAF next step is to import the custom rules for shadow daemon to prevent the Banking

application from getting attacked. After checking the above results of scanner and manual

testing I have got PATH and CALLER value to create rules for the Banking application. I have

used various prebuilt shadow daemon regress expression to block the attacks. Table 6 illustrates

Blacklist rules for SQL injection, Table 8 illustrates Blacklist rules for XSS attacks and Table

7 illustrates Blacklist rules for HTML injection.

Table 6: Blacklist Rules for SQL Injection

SQLI PATH CALLER Regular Expression used to create WAF Rules

User Login Page POST|user

name|inclu

de_parame

ters|*

/opt/lampp/htdo

cs/banking/inde

x.php

admin’or 1=1#

‘OR1-- -

\bfind_in_set

\b.*?\(.+?,.+?\)

\bmysql.*?\..*?user\,

 \bunion\b.+?\bselect\b

 \bdelete\b.+?\bfrom\b, --.+?

\[\$(ne|eq|lte?|gte?|n?in|mod|all|size|exists|type|slice|or)\

]

 \/*.*?*\/

 \bbenchmark\b.*?\(.+?,.+?\)

Admin Login Page POST|user

name|inclu

de_parame

ters|*

/opt/lampp/htdo

cs/banking/admi

n/login.php

Table 7: Blacklist Rules for HTML Injection

HTML

INJECTION

PATH CALLER Regular Expression used to create Blacklist

rules

User account Page POST|account

_number|inclu

de_parameters

|*

opt/lampp/htdocs/b

anking/client/?page

=user

Click Here

[\n\r]\s*\b(?:to|b?cc)\b\s*:.*?\@

>.*?<\s*\/?[\w\s]+>

['"]\s*\+\s*['"]

\bfirefoxurl\s*:

&#?(\w+);

<!-.+?--> , ["'].*?>

Table 8: Blacklist Rules for XSS

XSS Attack PATH CALLER Regular Expression used to create Blacklist rules

22 https://github.com/zecure/shadowd_rules

https://github.com/zecure/shadowd_rules

17

Admin Manage

Account Page

POST|acco

unt_numbe

r|include_p

arameters|*

/opt/lampp/h

tdocs/bankin

g/classes/Ma

ster.php

<script>alert(document.cookie)</script>

>.*?<\s*\/?[\w\s]+>

\bfunction\b[^(]*\([^)]*\)

['"]\s*\+\s*['"]

+=\s*\(\s*['"]

=\s*\w+\s*\+\s*['"]

\bdocument\b.*?\.

\bfirefoxurl\s*:

&#?(\w+);

\bon\w+\s*=

<(html|body|meta|link|i?frame|script|map)

<(form|button|input|keygen|textarea|select|option)

<a\b.+?\bhref\b

<base\b.+?\bhref\b.+?>

<!-.+?-->

\$\(.+?\),\)\s*\[,["'].*?>

Directory Listing Attack:

In this attack we directly need to blacklist the entire path from getting access,

http://localhost/banking/classes

PATH= GET|classes

CALLER= /opt/lamp/htdocs/banking/classes

http://localhost/banking/upload

PATH= GET|upload

CALLER= /opt/lamp/htdocs/banking/uploads

Clickjacking Attack:

Need to add following Headers to .htaccess file for Apache server in Banking application

Header set X-Frame-Options “DENY”

Header set X-Frame-Options “SAMEORIGIN”

Header set Content-Security-Policy “frame-ancestors ‘none’;”

Missing Security HTTP Response Header:

Need to add following Headers to .htaccess file for Apache server in Banking application

Header set X-Frame-Options “DENY”

Header set X-Frame-Options “SAMEORIGIN”

Header set Content-Security-Policy “frame-ancestors ‘none’; default-src ‘self’”

Header set X-Content-Type-Options “”

Header set X-XSS-Protection “0”

Header set Strict-Transport-Security “max-age=63072000; includeSubdomains;”

After adding the above rules and making changes in .htaccess file I have scanned my

Banking application with each selected scanners and then have analyse the report generated

from it.

Step 10: Analysing and Reporting

In this step I have Analysed the scanner reports generated at each experimental setup and

reported the vulnerabilities detected and prevented as per my knowledge which is been

illustrated in Evaluation Chapter.

18

6 Evaluation
In this chapter I have presented all findings on the above experimental setup that have

performed throughout research work which was been proposed. I have scanned my web

application at different stages to acquire the results of scanners which has been illustrated

below. This scanner results are going to show the No of vulnerabilities found in the web

application at different stages with count of CRITICAL, HIGH, MEDIUM, LOW,

INFORMATIONAL issues found at each stage. I have also used MS EXCEL to visualize the

obtained results from the scanners and to represent them graphically. At final stage of

experiment, I will be comparing the results of how many attacks are been detected at initial

stage and how many are prevented at final stage of experiment.

6.1 Banking Application

6.1.1 Manual Testing Results

As it has been discussed in the previous section of Methodology, manual testing was done on

Banking application to check which are the vulnerability present after checking out the results

of the scanners and following are the list of 12 vulnerability illustrated in Table 7 that I have

detected manual in Banking web application. CVSS score and Severity has been assigned to

vulnerability by using common vulnerability scoring system calculator V3.123 by passing the

parameters in Base Score Metrics.

Table 7:Manual Testing Results

No. Vulnerability Names CVSS Severity OWASP 2021

1 SQL Injection Attack 9.3 CRITICAL Injection

2 Cross-site scripting XSS Attack 8.4 HIGH Injection

3 Brute Force (Password) Attack 8.1 HIGH Identification &Authentication Failure

4 HTML injection Attack 7.9 HIGH Injection

5 Session Fixation Attack 7.7 HIGH Identification &Authentication Failure

6 Missing Rate Limiters 6.5 MEDIUM Security Misconfiguration

7 Insecure Session Termination 6.2 MEDIUM Identification &Authentication Failure

8 Weak Password Policy 4.4 MEDIUM Broken Access Control

9 Directory Listing 4 MEDIUM Security Misconfiguration

10 Clickjacking Attack 3.6 LOW Security Misconfiguration

11 Password Transmitted in Plain

Text

2.9 LOW Cryptographic Failures

12 Missing Secure HTTP Header 2.9 LOW Security Misconfiguration

6.1.2 Experiment 2: Analyzing Scanner Results

In this step of analysis, the scanner results of selected three tools have been analysed and

compared the results obtained at different stages for Banking Application. Following are the

count illustrated in Table 8 which shows that ZAP count for No security is 30, RP+WAF

(default rules) is 28 and RP+WAF (custom rules) is 12 which is in decreasing order which

states that the vulnerabilities are prevented after applying custom rules for shadow Daemon

WAF against various Web Applications. Same count of calculations goes for Nessus and

Arachni Vulnerability Scanners as illustrated in Table 8.

23 https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

19

Table 8:Scanner Results for Banking Application

Scanner Stages Critical High Medium Low Info Total

ZAP No Security 0 0 10 10 10 30

RP+WAF (default rules) 0 0 9 11 8 28

RP+WAF (custom rules) 0 0 4 5 3 12

Nessus No Security 1 0 7 0 18 26

RP+WAF (default rules) 1 0 3 6 30 40

RP+WAF (custom rules) 0 0 1 2 10 13

Arachni No Security 0 0 6 8 6 20

RP+WAF (default rules) 0 0 6 9 4 19

RP+WAF (custom rules) 0 0 2 2 3 7

The Following Table 9 illustrates the Attacks detected for Web Application with No security

Vs attacks detected for Web Application with Reverse Proxy and WAF (Default rules) Vs

attacks detected for Web Application with Reverse Proxy and WAF (Custom rules) for Each

Scanner.
Table 9:Vulnerabilty Assessment on Banking Application

As per the count of the above scanner results it is seen that when we have scanned the scanner

tools to the experimental setup for Banking application with No security contains

approximately 30-40 numbers of Vulnerabilities in the Banking application as mentioned

above. The same when I have scanned the scanner tool to the experimental setup for web

application with reverse proxy and shadow Daemon with default rules for Banking application

it was seen that there is slight change in vulnerability count as it protects the threats related to

Headers and Directories, no other major attack has been prevented. The same when I have

scanned the scanner tool to the experimental setup for web application with reverse proxy and

shadow Daemon custom rules for Banking application attacks such as SQL injection, cross-

site scripting, HTML injection attack, Directory Listing, clickjacking, and various HTTP

Vulnerabilities

Banking Application Conditions

OWSAP ZAP
NESSUS

ESSENTIAL
ARACHNI

No

Security

RP+

WAF

(defa

ult

rules)

RP+

WAF

(cust

om

rules)

No

Secur

ity

RP+

WAF

(defa

ult

rules)

RP+

WAF

(cust

om

rules)

No

Secur

ity

RP+WA

F

(default

rules)

RP+

WAF

(cust

om

rules)

SQL Injection Attack

Cross-site scripting

XSS Attack

Brute Force (Password)

Attack

HTML injection Attack

Session Fixation

Attack

Missing Rate Limiters

Insecure Session

Termination

Weak Password Policy

Directory Listing

Clickjacking Attack

Password Transmitted

in Plain Text

Missing Secure HTTP

Header

20

headers are being prevented using different rulesets and header files implication on WAF.This

states that custom rules for Web applications plays an important role for preventing attacks

through WAF.

6.2 DVWA Web Application

6.2.1 Experiment 1: Analyzing Scanner Results

In this step of analysis, the scanner results of selected Three tools have been analysed and

compared the results obtained at different stages for DVWA Application. Following are the

count illustrated in Table 10 which shows that ZAP count for No security is 30, RP+WAF

(default rules) is 26 which is in decreasing order which states that the vulnerabilities are

prevented after applying 1st level of security after implementing Reverse proxy which goes

same for Nessus and Arachni Vulnerability scanners.

Table 10:Scanner Results for DVWA Application

Scanner Stages Critical High Medium Low Informational Total

ZAP No Security 0 1 8 11 10 30

RP+WAF (default rules) 0 0 8 10 8 26

Nessus No Security 1 1 9 1 20 32

RP+WAF (default rules) 0 0 3 3 24 30

Arachni No Security 0 0 10 5 2 17

RP+WAF (default rules) 0 0 10 5 3 18

The Following Table 11 illustrates the Attacks detected for DVWA Application with No

security Vs attacks detected for DVWA Application with Reverse Proxy and WAF (Default

rules) for each scanner.

Table 11:Vulnerabilty Assessment on DVWA Application

Since Manual testing was not possible to conduct on DVWA application, creating custom rules

for these applications was not possible which give PATH and CALLER value for the same.

So, when I scanned the scanner tools to the experimental setup for DVWA application with No

security detects almost 30 numbers of Vulnerabilities are present in the web application.

Comparing with the results of deploying DVWA Application under reverse proxy and default

rule set of Shadow Daemon WAF it has been seen that major attacks on DVWA Application

is not prevented. Default rules of WAF only prevent its user interface and some HTTP header

Vulnerabilities

DVWA Application Conditions

OWSAP ZAP NESSUS ESSENTIAL ARACHNI

No

Security

RP+WAF

(default

rules)

No

Security

RP+WAF

(default

rules)

No

Security

RP+WAF

(default

rules)

SQL Injection

Persistent cross site scripting

Command execution

Local file injection

Session Fixation

Password transmitted in

plain text

clickjacking

Missing secure HTTP

response header

Cross-site request Forgery

Directory listing

21

issues has been resolved. So, it is important to add custom rules to WAF to prevent DVWA

Application from getting attacked. It is also seen that from Arachni count that instead of

decreasing the vulnerability count after implementation of security it has added informational

threats which don’t have major impact on web application.

6.3 Mutillidae II Web Application

6.3.1 Experiment 1: Analyzing Scanner results

In this step of analysis, the scanner results of selected tools have been analysed and compared

the results obtained at different stages for Mutillidae II Application. Following are the count

illustrated in Table 12 which shows that ZAP count for No security is 32, RP+WAF (default

rules) is 28 which is in decreasing order which states that the vulnerabilities are prevented after

applying 1st level of security after implementing Reverse proxy which goes same for Nessus

and Arachni Vulnerability scanners.

Table 12:Scanner Results for Mutillidae II Application

Scanner Stages Critical High Medium Low Informational Total

ZAP
No Security 0 1 9 11 11 32

RP+WAF (default rules) 0 1 10 10 7 28

Nessus
No Security 0 0 4 0 27 31

RP+WAF (default rules) 0 0 4 3 22 29

Arachni
No Security 0 17 11 9 3 40

RP+WAF (default rules) 0 0 7 21 6 34

The Following Table 13 illustrates the Attacks detected for Mutillidae Application with No

security Vs attacks detected for Mutillidae Application with Reverse Proxy and WAF (Default

rules) for each scanner.

Table 13:Vulnerabilty Assessment on Mutillidae Application

Vulnerabilities

Mutillidae Application Conditions

OWSAP ZAP NESSUS ESSENTIAL ARACHNI

No

Security

RP+WAF

(default

rules)

No

Security

RP+WAF

(default

rules)

No

Security

RP+WAF

(default

rules)

Persistent(stored)cross-site

scripting

cross-site scripting (XSS)in

script context

Local file Injection

Directory listing

SQL injection

HTML injection

Path Transversal

Missing Security Headers

Missing HTTP response

headers

Private IP Transversal

Remote File Injection

HTTP cookies leading to XSS

attack

22

Since Manual testing was not possible to conduct on Mutillidae application, creating custom

rules for these applications was not possible. So, when I scanned the scanner tools to the

experimental setup for mutillidae application with No security detects almost 40 numbers of

Vulnerabilities are present in the web application. Comparing with the results of deploying

Mutillidae Application under reverse proxy and default rule set of Shadow Daemon WAF it

has been seen that major attacks on Application is not prevented. Default rules of WAF only

prevent its user interface and some HTTP header issues has been resolved. So, it is important

to add custom rules to WAF to prevent DVWA Application from getting attacked.

6.4 Discussion

In this chapter we will discuss the overall results of the N experiments performed above to

clearly define the objective of our research. As for the research project three Web Applications

such as Banking, DVWA and Mutillidae II as demonstrated above for studies were considered

and analysed. When I deployed the First Web Application (Banking) and tested them manually

and by using Automatic Scanners without adding any security features it was seen that there

are n-Number of Vulnerabilities present in web application. When same application was tested

by adding security features to them by implementing them under Reverse proxy and Shadow

Daemon WAF with default and custom rules for the web application it was seen that, critical

threats marked as per the OWAS top 10 were protected when custom rules were implemented

for Banking web application. In second setup when DVWA and Mutillidae II Web Application

were deployed without deploying it under security features and after implementing it under

reverse proxy and WAF default rules it was seen that no major attack was prevented as per the

scanner results. This proves our First objective of research question that security features such

as reverse proxy and custom rules for WAF plays an important role in preventing Web

application from getting attacked.

When we scanned each Web Applications under different experimental setup such as without

Reverse proxy and WAF, with reverse proxy and WAF default rules and with reverse proxy

and WAF custom rules and analyse the scanner results it was seen that it crawls deep into

application while time of scanning the web application to find vulnerabilities and gives all the

detailed information about the vulnerabilities which is not been detected by manual penetration

tester. Which proves second objective of research question that Automatic scanner tools gives

more accurate results and overcomes the manual testing and perhaps make it work more faster

than manual testing. But it is also observed that OWAS ZAP and Arachni gives detailed deep

crawled results of Web Application in comparison to Nessus Essential Web Vulnerability

Scanner. All these factors need to be taken into consideration and further work need to be done

on the above project setup to get an enhanced and clear results for the same.

7 Conclusion and Future Work
The main objective of my research was to implement Reverse proxy and Shadow Daemon

WAF to prevent the Web application from getting attacked. After performing various testing

and analysing the results of different scanners it is been seen that implementation Reverse

Proxy and Shadow Daemon WAF with custom rules for web-based application can enhance

the security features of web application. The attacks such as SQL injection, Cross -site

scripting, clickjacking, HTTP headers, Directory listing, all this threats to the web application

are being prevented by reverse proxy and Shadow Daemon Web application firewall (WAF).

This in turns also states the importance to deploying WAF custom rulesets for any web

application is more important to protect the web-based application over default WAF rules

used to prevent shadow user interface. It also states the importance of open-source scanners for

vulnerabilities detection over manual testing.

23

After analysing the output obtained from the research, it can be stated that there is an

opportunity to improve the research work done. This can add Future Work as, to detect the web

attacks efficiently development can be done to generate attack logs as well as to set an alert

alarm system which will prove beneficial for the program administrator to know if any attempt

is made to attack the web application. Improvement can be done on scanner tools and can also

implement new open-source scanners to compare it with commercial tools for its efficient

working and attack detection functionalities. Ruleset for Shadow Daemon WAF can be

simplified for smooth user experience. Implication of new custom rulesets to prevent DVWA

and Mutillidae II Web Application form getting attacked from different threats.

8 Acknowledgment
I would Specially thank my supervisor Dr. Arghir Nicolae Moldovan who have guided me

thought my research project and pushed me ahead to gain tremendous knowledge in field of

cybersecurity and helped me out to evaluate my research project successfully. Lastly, I express

my gratitude towards my whole family and friends for their great support throughout my whole

process.

References
A survey on web application vulnerabilities and countermeasures | IEEE Conference Publication | IEEE Xplore.

(n.d.). Retrieved 19 December 2022, from https://ieeexplore.ieee.org/document/6316697
Amankwah, R., Chen, J., Kudjo, P. K., & Towey, D. (2020). An empirical comparison of commercial and open-

source web vulnerability scanners. Software - Practice and Experience, 50(9), 1842–1857.

https://doi.org/10.1002/SPE.2870

An Analysis and Classification of Vulnerabilities in Web-Based Application Development | IEEE Conference

Publication | IEEE Xplore. (n.d.). Retrieved 19 December 2022, from

https://ieeexplore.ieee.org/document/9441467

Arnaldy, D., & Hati, T. S. (2020). Performance Analysis of Reverse Proxy and Web Application Firewall with

Telegram Bot as Attack Notification on Web Server. 2020 3rd International Conference on Computer and

Informatics Engineering, IC2IE 2020, 455–459. https://doi.org/10.1109/IC2IE50715.2020.9274592

Clincy, V., & Shahriar, H. (2018). Web Application Firewall: Network Security Models and Configuration.

Proceedings - International Computer Software and Applications Conference, 1, 835–836.

https://doi.org/10.1109/COMPSAC.2018.00144

Fong, E., & Okun, V. (2007). Web application scanners: Definitions and functions. Proceedings of the Annual

Hawaii International Conference on System Sciences. https://doi.org/10.1109/HICSS.2007.611

Ghanbari, Z., Rahmani, Y., Ghaffarian, H., & Ahmadzadegan, M. H. (2016). Comparative approach to web

application firewalls. Conference Proceedings of 2015 2nd International Conference on Knowledge-

Based Engineering and Innovation, KBEI 2015, 808–812. https://doi.org/10.1109/KBEI.2015.7436148

Kiruba, B., Saravanan, V., Vasanth, T., & Yogeshwar, B. K. (2022). OWASP Attack Prevention. 3rd

International Conference on Electronics and Sustainable Communication Systems, ICESC 2022 -

Proceedings, 1671–1675. https://doi.org/10.1109/ICESC54411.2022.9885691

Lewandowski, P., Janiszewski, M., & Felkner, A. (2020). SpiderTrap - An Innovative Approach to Analyze

Activity of Internet Bots on a Website. IEEE Access, 8, 141292–141309.

https://doi.org/10.1109/ACCESS.2020.3012969

Makino, Y., & Klyuev, V. (2015). Evaluation of web vulnerability scanners. Proceedings of the 2015 IEEE 8th

International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology

and Applications, IDAACS 2015, 1, 399–402. https://doi.org/10.1109/IDAACS.2015.7340766

Mburano, B., & Si, W. (2019). Evaluation of web vulnerability scanners based on OWASP benchmark. 26th

International Conference on Systems Engineering, ICSEng 2018 - Proceedings.

https://doi.org/10.1109/ICSENG.2018.8638176

Muzaki, R. A., Briliyant, O. C., Hasditama, M. A., & Ritchi, H. (2020). Improving Security of Web-Based

Application Using ModSecurity and Reverse Proxy in Web Application Firewall. 2020 International

Workshop on Big Data and Information Security, IWBIS 2020, 85–90.

https://doi.org/10.1109/IWBIS50925.2020.9255601

24

Pałka, D., & Zachara, M. (2011). Learning web application firewall - Benefits and caveats. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 6908 LNCS, 295–308. https://doi.org/10.1007/978-3-642-23300-5_23

Razzaq, A., Hur, A., Shahbaz, S., Masood, M., & Ahmad, H. F. (2013). Critical analysis on web application

firewall solutions. 1–6. https://doi.org/10.1109/ISADS.2013.6513431

Valeur, F., Vigna, G., Kruegel, C., & Kirda, E. (2006). An anomaly-driven reverse proxy for web applications.

Proceedings of the ACM Symposium on Applied Computing, 1, 361–368.

https://doi.org/10.1145/1141277.1141361

