

Configuration Manual

MSc Industrial Internship
MSc Cyber Security

Vladyslav Bril
Student ID: x21102872

School of Computing
National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Vladyslav Bril

Student ID:

x21102872

Programme:

MSc Cybersecurity

Year:

2022

Module:

MSc Internship

Lecturer:

Vikas Sahni

Submission Due
Date:

6th of January

Project Title:

Automation of Remediation of Configuration Vulnerabilities
Reported by the DAST Scanning Procedure

Word Count:

2760 Page Count: 17

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date:

06.01.2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

R

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

R

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

R

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Configuration Manual

Vladyslav Bril
x21102872

1 Introduction

The software developed during the academic research detailed in the main thesis document is
described in this manual along with additional technical specifications and directions for
installing and running the application. This document's subsequent parts include data on the
development environment (hardware and software features), the software components
utilized and their corresponding versions, initial installation instructions, correct development
operation, and a brief description of the application's outcomes. The primary paper on the
chosen topic contains details on the architecture and design phase.

2 System Configuration

The hardware specifications of the device used for the application's development and testing
are briefly described in the part that follows, along with a list of all the software tools,
frameworks, and solutions that were employed in the process.

2.1 Hardware Configuration
Table 1 contains the details regarding the hardware components & features of the system that
was utilized to run the software developed for the corresponding topic.

Table 1: Hardware Specification & Requirements
Item Name Device Configuration

CPU Apple M1 ARM (8 cores)
RAM 8 GB LPDDR4

Disk Space Apple SSD 256 GB

2.2 Software Configuration
Table 2 contains all the details regarding the software components & their details (such as
version and brief description) that were used while developing a new solution to the pre-
defined problem.

2

Table 2: Software Specification & Requirements
Item Name Brief Description Software Version

Operating System macOS Ventura (22A400) 13.0.1

Java The main programming language used
while developing the application. OpenJDK 19.0.1

Zsh
A UNIX shell that enhances the
capabilities of bash and is used in a
development environment.

Zsh 5.8.1 (x86_64-
apple-darwin22.0)

OWASP ZAP CLI
An add-on to the main OWASP ZAP
application that provides an option to run
the scanner through the CLI.

OWASP ZAP 2.12.0

Selenium A tool that automates the actions inside a
browser (e.g., Chrome). Selenium 4.7.2

Chrome Driver
A specific executable file that needs to be
addressed in the main code of the
application to run a Chrome instance.

ChromeDriver
108.0.5359.71

Apache Maven
A dedicated framework for automated
project assembly based on files written in
the POM language.

Maven 3.7.1

TestNG

A testing framework that works with
Selenium and enhances the features such
as verification of data gathering result or
data match.

TestNG 7.7.0

JUnit A dedicated framework for unit testing
software in Java language. JUnit 4.13.2

XAMPP

A cross-platform build that supports
running a full-featured web server and
includes Apache, MariaDB, a PHP script
interpreter, the Perl programming
language, and several more libraries.

XAMPP 8.1.5

3

3 Application Implementation Guideline

The set of instructions in the next part are intended to show how to install all the required
components, set them up, and start them in order to reproduce the application's testing phase's
outcomes. Each area below is accountable for its portion of the overall roadmap for the
successful launch and confirmation of the built application's correct operation.

3.1 Pre-Requisite Download List
The following software elements must be present on a functioning device in order for it to
interact with the given code before starting the actual program extraction:

• Download1 and install any IDE that supports Java programming language (the author
tested the application on two of the instances: IntelliJ IDEA CE and Visual Studio
Code)

• Download2 and install Java (make sure to install the version mentioned earlier in the
Table 2)

• Download3 and install XAMPP (or any other platform-oriented build, such as LAMP,
IAMP, WAMP, etc.). Since the program mainly requires the presence of the Apache
Web Server as the main server, there is no difference in the type of web stack
installed (all of them are provided with the Apache Web Server)

• Download4 and install OWASP ZAP
• Download5 the ChromeDriver executable file and save it to the Desktop folder of the

operating system (a copy of the driver can be found in the archive with the source
code)

3.2 Installation and Configuration of the Application
It is possible to extract the package containing all the required code from the developed
program after successfully installing every item on the aforementioned list. The purported
content of the downloaded package included with this handbook is seen in Figure 1.

Figure 1: The original content of the archive containing the artifacts

1 https://www.jetbrains.com/idea/
2 https://www.java.com/en/download/
3 https://www.apachefriends.org/index.html
4 https://www.zaproxy.org
5 https://chromedriver.chromium.org/downloads

4

The web application that will be tested is located in the Thesis-Project folder. The

application is a website built using HTML, CSS, and JS, with the backend components
written in PHP and linked to a MySQL database operated under the XAMPP stack. After
installing XAMPP, this folder (Thesis-Project) has to be placed in the following path:
/Applications/XAMPP/htdocs/.

All of the application's necessary source code may be found in the dast_remediation
folder. To inspect the content of the files inside this folder, address it in the previously
installed IDE (such as IntelliJ IDEA) and then open it (see Figure 2).

Figure 2: The overview of the project in the IntelliJ IDEA IDE

To execute the Chrome instance for report scanning tasks, the last file in the archive -

chromedriver executable - should be explicitly specified in the source code and placed in the
OS's Desktop folder.

Launching all XAMPP stack services, particularly Apache Web Server, is the final step
needed before starting the web application scan (see Figure 3). Make sure that the target web
application can be accessed by the device user by typing in the browser the following
address: localhost/Thesis-Project/index.html

Figure 3: A successful launch of the XAMPP services (MySQL DB; ProFTPD and Apache Web

Server)

5

3.3 Running the OWASP ZAP and Generating the Report
After the application has been installed and set up on the system, the OWASP ZAP scanning
process may be started to provide a report to analyse. There are two methods to carry out this
action: either through the UI (the standard method) or the CLI command (optional way). Due
to access to a better reporting format from the application, the focus of the following
guidance will continue to be on the UI method of executing the scan.

Open the OWASP ZAP, select the Automated Scan option and then paste the URL of the
web application (e.g., localhost/Thesis-Project/). When the OWASP ZAP has finished
scanning and attacking, click the Attack button. After that, wait until it is time to generate the
report by selecting the top-right icon from the menu toolbar (see Figure 4 for the reference).

Figure 4: Specifying the attacking URL (highlighted textbox) and Generate Report function

(red arrow)

When the scan is finished and the report is being created, open it, and view the report to
examine the content of the Warnings section to find all the missing headers problems that are
connected to the previously provided URL (ignore any occurrences of the tracking URLs,
third-party ads services, etc.). Figure 5 shows an illustration of one of these warnings that
highlights the absence of a Content-Security-Policy header in the Apache Web Server config
file.

Figure 5: Identifying an existing misconfiguration issue related to the absence of the CSP

Header in the Apache Web Server configuration

In order to verify the absence of the header manually, proceed to the index.html page and
open the Network tab in the Developer Tools menu (see the browser specification how to

6

open that menu). Click on the file with the index.html page and proceed to the Headers tab.
Make sure that there are no headers set that were reported by the OWASP ZAP (Figure 6).

Figure 6: Verifying the non-appearance of the list of headers found by the OWASP ZAP

3.4 Walkthrough on the Application’s Source Code
The following subsection will demonstrate how to run the developed application after
opening it up in the IDE, as well as describe logical modules of the application that
correspond to different actions that will take place while the application is running. First of
all, proceed to the General.java interface file and observe the names and values of the
variables (Figure 7). Make sure that you specify the path to the .htaccess file correctly (set by
default for macOS general application directory). Additionally, the HeadersFile variable is
responsible for storing the name of the file that will be created with all the instances of the
found headers issues.

Figure 7: General file with static variables that contain paths to other applications and names of

the files to be produced by the program

Proceed to the MainClass.java file to see the main executable class that operates all other
subcomponents of the application. The first logical part of the application starts from line 9
and ends with line 17 (Figure 8). The purpose of this part is to work with the earlier generated
report in order to extract the headers to a separate file and make sure that there is no
repetition in that file for further goals (line 13 serves the aforementioned purpose).

7

Figure 8: A code snippet from the MainClass.java file responsible for data extraction from the

previously generated report

Proceed to the ReportAnalysis.java file to view the realisation of the report scanning and
data extracting functionality of the application. This file is logically split on three different
sections by using the TestNG annotations: the first one is labelled as BeforeTest and it is
responsible for specifying the place of the Chrome Driver to the application (make sure to
include a new path), initializes the Chrome Driver object and sets the implicit waiters for the
browser (Figure 9).

Figure 9: BeforeTest annotation responsible for setting up the Chrome webdriver

The next annotation is called Test and works in order to identify the matching headers

from the List collection of WebElements in the generated report by OWASP ZAP (Figure 10).
As for the example, a current version of the application is looking for the issues related to a
poorly configured or entirely missing Content-Security-Policy header, Anti-Clickjacking
header, X-Content-Type-Options header, or a Content-Type header. This method also extracts
all the positively found matches into a separate file with the name specified earlier in the
General.java interface (by default, elements_containing_headers.txt).

8

Figure 10: Test annotation responsible for scanning the generated report and extracting the

found misconfiguration issues - if found – to a separate file

The last annotation (AfterTest) serves to quit the driver and remove its instance from the
running application. When all three annotations are successfully completed, the operation is
handled to the other part of the program which is responsible for sorting the list of extracted
headers alphabetically and removes the duplicates detected. Additional overview on the
process of executing the command in Zsh to sort the newly created file can be seen in the
BashExecute.java file (Figure 11). Once this class is called, it creates an instance of the shell
process that gets an instruction to execute as a regular shell command in a UNIX system. A
user should be able to see the successful message after applying such an action, otherwise an
error will appear on the screen (line 20).

Figure 11: BashExecute.java file containing the realisation of shell commands execution in Zsh

9

The final class that is triggered from the MainClass.java file is aimed to map the existing
values of the headers from the generated file with the proper parameters that could be stored
into the .htaccess Apache configuration file. In order to view the content of the .htaccess file
(which is empty by default), proceed to any shell and type in the following command: nano
/Path/To/.htaccess/file (located in Thesis-Project folder copied earlier; see Figure 12 for the
reference).

Figure 12: A command to read the content of the .htaccess configuration file

At the beginning of the class, a static Map called HeadersMap is created and filled in

with a set of pre-defined values to identify all the types of headers that are currently
supported by the version of the application (Figure 13).

Figure 13: A static Map collection containing the values to be put into the configuration file

The rest of the code in the class is aimed to read the content of the file that contains all

the unique headers indemnified on the previous steps and match them with the existing ones
from the HeadersMap HashMap collection. If such an occurrence takes place, the .htaccess is
getting populated with the corresponding row of data, matching the header value and a proper
formatting that is supported by the Apache Web Server. If there is no match found in the
HeadersMap, the user will see an error in the console (Figure 14).

10

Figure 14: A code snippet responsible for finding the matching pairs of values from the file and
the previously made file with unique headers

3.5 Running the Application and Verifying the Output
In order to successfully launch the application, proceed to the MainClass.java file and run the
main() method. Make sure that the built-in IDE console is visible, since all the text prompts
and additional output will be showed there. If any error occurs while running the application,
the corresponding text message will be displayed in the console window, specifying the
possible root of the problem (e.g., wrongly set path for web driver, error in executing a
certain command, etc.). Figure 15 shows an example of a successful application execution
that is supported by the text messages from the output window.

Figure 15: Result of executing the main() method in the MainClass.java file

For additional verification of the obtained results, proceed to the project’s folder

containing the source code. Two newly generated files could be seen in the directory, one of
which contains all the occurrences of the missing headers from the report, while the other one
has sorted them out and contains only unique options sorted alphabetically (Figure 16).

Figure 16: Two newly generated text files containing the headers from the produced report

Moreover, after executing the command showed in Figure 12 once again, an .htaccess

configuration file should be now populated with three configured server-oriented headers
with a proper formatting style (see Figure 17 for the reference).

11

Figure 17: A newly edited .htaccess file with the missing headers reported by the OWASP ZAP

Furthermore, after relaunching the Apache Web Server using the XAMPP ‘Restart Now’

button in the UI and proceeding to the index.html page, the web server will return the
specified headers with the appropriate values. To view that, repeat the steps specified above
Figure 6 (Network tab). The result of successfully changing the configuration settings of the
Apache Web Server is presented on the Figure 18.

Figure 18: A successful work of the automated script for fixing the headers related issue in the

Apache Web Server configuration

Finally, if the OWASP ZAP scan is retriggered on the current state of the application, the
newly generated report won’t show the instances of missing headers being detected while
investigating the application provided, which makes a point that an automated script is
capable of fixing the reported issues after the DAST scanning procedure by inserting the
changes into the configuration of the software that match the pre-defined pattern in the source
code.

12

4 Monthly Activity Reports

13

14

15

