*
\ National

College
Ireland

Configuration Manual

MSc Industrial Internship
MSc Cyber Security

Vladyslav Bril
Student ID: x21102872

School of Computing
National College of Ireland

Supervisor: Vikas Sahni

‘*
National College of Ireland \ National

MSc Project Submission Sheet
School of Computing

Student Name: Vladyslav Bril

Student ID: x21102872

Programme: MSc Cybersecurity Year: 2022
Module: MSc Internship

Lecturer: Vikas Sahni

Submission Due

Date: 6t of January

Project Title: Automation of Remediation of Configuration Vulnerabilities

Reported by the DAST Scanning Procedure

Word Count: 2760 Page Count: 17

College
Ireland

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: ﬁ/
Date: 06.01.2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Sighature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Vladyslav Bril
x21102872

1 Introduction

The software developed during the academic research detailed in the main thesis document is
described in this manual along with additional technical specifications and directions for
installing and running the application. This document's subsequent parts include data on the
development environment (hardware and software features), the software components
utilized and their corresponding versions, initial installation instructions, correct development
operation, and a brief description of the application's outcomes. The primary paper on the
chosen topic contains details on the architecture and design phase.

2 System Configuration

The hardware specifications of the device used for the application's development and testing
are briefly described in the part that follows, along with a list of all the software tools,
frameworks, and solutions that were employed in the process.

2.1 Hardware Configuration

Table 1 contains the details regarding the hardware components & features of the system that
was utilized to run the software developed for the corresponding topic.

Table 1: Hardware Specification & Requirements

Item Name Device Configuration
CPU Apple M1 ARM (8 cores)
RAM 8 GB LPDDR4

Disk Space Apple SSD 256 GB

2.2 Software Configuration

Table 2 contains all the details regarding the software components & their details (such as
version and brief description) that were used while developing a new solution to the pre-
defined problem.

Table 2: Software Specification & Requirements

Item Name

Brief Description

Software Version

Operating System

macOS Ventura (22A400)

13.0.1

The main programming language used

DK 19.0.1
lava while developing the application. Open] 20
A IX shell that h th.
UNLX - shell * that enhances: the |70 5 ¢ 1 (x86_64-
Zsh capabilities of bash and is used in a)
. apple-darwin22.0)
development environment.
An add-on to the main OWASP ZAP
OWASP ZAP CLI | application that provides an option to run | OWASP ZAP 2.12.0
the scanner through the CLI.
Selenium A tool that automates the actions inside a Selenium 4.7.2
browser (e.g., Chrome).
A specific executable file that needs to be ChromeDriver

Chrome Driver

addressed in the main code of the
application to run a Chrome instance.

108.0.5359.71

Apache Maven

A dedicated framework for automated
project assembly based on files written in
the POM language.

Maven 3.7.1

TestNG

A testing framework that works with
Selenium and enhances the features such
as verification of data gathering result or
data match.

TestNG 7.7.0

JUnit

A dedicated framework for unit testing
software in Java language.

JUnit 4.13.2

XAMPP

A cross-platform build that supports
running a full-featured web server and
includes Apache, MariaDB, a PHP script
interpreter, the Perl
language, and several more libraries.

programming

XAMPP 8.1.5

3 Application Implementation Guideline

The set of instructions in the next part are intended to show how to install all the required
components, set them up, and start them in order to reproduce the application's testing phase's
outcomes. Each area below is accountable for its portion of the overall roadmap for the
successful launch and confirmation of the built application's correct operation.

3.1 Pre-Requisite Download List

The following software elements must be present on a functioning device in order for it to
interact with the given code before starting the actual program extraction:

Download! and install any IDE that supports Java programming language (the author
tested the application on two of the instances: IntelliJ IDEA CE and Visual Studio
Code)

Download? and install Java (make sure to install the version mentioned earlier in the
Table 2)

Download?® and install XAMPP (or any other platform-oriented build, such as LAMP,
IAMP, WAMP, etc.). Since the program mainly requires the presence of the Apache
Web Server as the main server, there is no difference in the type of web stack
installed (all of them are provided with the Apache Web Server)

Download* and install OWASP ZAP

Download® the ChromeDriver executable file and save it to the Desktop folder of the

operating system (a copy of the driver can be found in the archive with the source
code)

3.2 Installation and Configuration of the Application

It is possible to extract the package containing all the required code from the developed
program after successfully installing every item on the aforementioned list. The purported
content of the downloaded package included with this handbook is seen in Figure 1.

Vladyslav Bril - Thesis - Artefa...

(E— (.
- - .

Test Web Remediation Tool chromedriver
Application

Figure 1: The original content of the archive containing the artifacts

1 https://www .jetbrains.com/idea/

2 https://www.java.com/en/download/

3 https://www.apachefriends.org/index.html

4 https://www.zaproxy.org

5 https://chromedriver.chromium.org/downloads

The web application that will be tested is located in the Thesis-Project folder. The
application is a website built using HTML, CSS, and JS, with the backend components
written in PHP and linked to a MySQL database operated under the XAMPP stack. After
installing XAMPP, this folder (Thesis-Project) has to be placed in the following path:
/Applications/XAMPP/htdocs/.

All of the application's necessary source code may be found in the dast remediation
folder. To inspect the content of the files inside this folder, address it in the previously
installed IDE (such as IntelliJ IDEA) and then open it (see Figure 2).

Project «

v g dast_remediation

.idea
.vscode
2022-12-19-ZAP-Report-
Later Result
src
v main
v java
v org.thesis_project
AppendHeaders
BashExecute
General
MainClass
ReportAnalysis

Figure 2: The overview of the project in the IntelliJ IDEA IDE

To execute the Chrome instance for report scanning tasks, the last file in the archive -
chromedriver executable - should be explicitly specified in the source code and placed in the
OS's Desktop folder.

Launching all XAMPP stack services, particularly Apache Web Server, is the final step
needed before starting the web application scan (see Figure 3). Make sure that the target web
application can be accessed by the device user by typing in the browser the following
address: localhost/Thesis-Project/index.html

o XAMPP 8.1.5-0

Welcome Manage Servers Server Events

Starting all servers...
Starting MySQL Database...

Starting Apache Web Server...
/Applications/XAMPP/xamppfiles/apache2/scripts/ctl.sh : httpd started
Starting ProFTPD...

Checking syntax of configuration file
/Applications/XAMPP/xamppfiles/proftpd/scripts/ctl.sh : proftpd started

Figure 3: A successful launch of the XAMPP services (MySQL DB; ProFTPD and Apache Web
Server)

3.3 Running the OWASP ZAP and Generating the Report

After the application has been installed and set up on the system, the OWASP ZAP scanning
process may be started to provide a report to analyse. There are two methods to carry out this
action: either through the UI (the standard method) or the CLI command (optional way). Due
to access to a better reporting format from the application, the focus of the following
guidance will continue to be on the UI method of executing the scan.

Open the OWASP ZAP, select the Automated Scan option and then paste the URL of the
web application (e.g., localhost/Thesis-Project/). When the OWASP ZAP has finished
scanning and attacking, click the A#tack button. After that, wait until it is time to generate the
report by selecting the top-right icon from the menu toolbar (see Figure 4 for the reference).

B g ZAdXHEEoEEnDE &S 7 O % G m e €@]
% Quick Start # =» Request &= Response ~ Requester + /
< Automated Scan

This screen allows you to launch an automated scan against an application - just enter its URL below and press 'Attack’.

Please be aware that you should only attack applications that you have been specifically been given permission to test.

URL to attack: http://localhost/Thesis-Project/
Use traditional spider: [/]
Use ajax spider: with | Firefox Headless v

> Attack stop

Progress: Not started

Figure 4: Specifying the attacking URL (highlighted textbox) and Generate Report function
(red arrow)

When the scan is finished and the report is being created, open it, and view the report to
examine the content of the Warnings section to find all the missing headers problems that are
connected to the previously provided URL (ignore any occurrences of the tracking URLs,
third-party ads services, etc.). Figure 5 shows an illustration of one of these warnings that
highlights the absence of a Content-Security-Policy header in the Apache Web Server config
file.

http://localhost (5)

Content Security Policy (CSP) Header Not Set (1)

» GET http://localhost/Thesis-Project

Figure 5: Identifying an existing misconfiguration issue related to the absence of the CSP
Header in the Apache Web Server configuration

In order to verify the absence of the header manually, proceed to the index.html page and
open the Network tab in the Developer Tools menu (see the browser specification how to

open that menu). Click on the file with the index.html page and proceed to the Headers tab.
Make sure that there are no headers set that were reported by the OWASP ZAP (Figure 6).

Name X Preview Cookies Sizes Timing

B index.html

D main.css

Response

B fontawesome-all.min.css
D personl.jpeg text/html
. "24c2-5ddcf8d87a880"
B person2.jpeg K
. Fri, 29 Apr 2022 18:53:06 GMT
D person3.jpeg bytes
jquery.scrollex.min.js Mon, 02 Jan 2023 22:29:40 GMT
@ jquery.scrolly.min.js 9410
browser.min.js timeout=5, max=100
Keep-Alive

@] breakpoints.min.js
Apache/2.4.53 (Unix) OpenSSL/1.1.1n PHP

Figure 6: Verifying the non-appearance of the list of headers found by the OWASP ZAP

3.4 Walkthrough on the Application’s Source Code

The following subsection will demonstrate how to run the developed application after
opening it up in the IDE, as well as describe logical modules of the application that
correspond to different actions that will take place while the application is running. First of
all, proceed to the Generaljava interface file and observe the names and values of the
variables (Figure 7). Make sure that you specify the path to the .htaccess file correctly (set by
default for macOS general application directory). Additionally, the HeadersFile variable is
responsible for storing the name of the file that will be created with all the instances of the
found headers issues.

org.thesis_project

General {
String = System.getProperty()
StringBuffer = StringBuffer()

String
String

String

Figure 7: General file with static variables that contain paths to other applications and names of
the files to be produced by the program

Proceed to the MainClass.java file to see the main executable class that operates all other
subcomponents of the application. The first logical part of the application starts from line 9
and ends with line 17 (Figure 8). The purpose of this part is to work with the earlier generated
report in order to extract the headers to a separate file and make sure that there is no
repetition in that file for further goals (line 13 serves the aforementioned purpose).

main(String[] args) I0Exception {

ReportAnalysis.setUp()

ReportAnalysis.ExtractHeaders()
ReportAnalysis.tearDown()
(1= && .contains(
BashExecute.commandExecute (
{
System. .printin(
System.exit()

Figure 8: A code snippet from the MainClass.java file responsible for data extraction from the
previously generated report

Proceed to the ReportAnalysis.java file to view the realisation of the report scanning and
data extracting functionality of the application. This file is logically split on three different
sections by using the TestNG annotations: the first one is labelled as BeforeTest and it is
responsible for specifying the place of the Chrome Driver to the application (make sure to
include a new path), initializes the Chrome Driver object and sets the implicit waiters for the
browser (Figure 9).

@BeforeTest
setUp() {

System.setProperty(

= ChromeDriver()
.manage() .timeouts() .implicitlyWait(Duration.ofSeconds(10))

Figure 9: BeforeTest annotation responsible for setting up the Chrome webdriver

The next annotation is called 7est and works in order to identify the matching headers
from the List collection of WebElements in the generated report by OWASP ZAP (Figure 10).
As for the example, a current version of the application is looking for the issues related to a
poorly configured or entirely missing Content-Security-Policy header, Anti-Clickjacking
header, X-Content-Type-Options header, or a Content-Type header. This method also extracts
all the positively found matches into a separate file with the name specified earlier in the
General.java interface (by default, elements containing headers.txt).

ExtractHeaders() {

.get(
List<WebElement> elements .findElements(By.xpath(

{

File file = File()

BufferedWriter writer = BufferedWriter(FileWriter(file))
(WebElement element : elements) {
writer.write(element.getText())
writer.newLine()

I

writer.close()
(IOException e) {

e.printStackTrace()

Figure 10: Test annotation responsible for scanning the generated report and extracting the
found misconfiguration issues - if found — to a separate file

The last annotation (AfferTest) serves to quit the driver and remove its instance from the
running application. When all three annotations are successfully completed, the operation is
handled to the other part of the program which is responsible for sorting the list of extracted
headers alphabetically and removes the duplicates detected. Additional overview on the
process of executing the command in Zsh to sort the newly created file can be seen in the
BashExecute.java file (Figure 11). Once this class is called, it creates an instance of the shell
process that gets an instruction to execute as a regular shell command in a UNIX system. A
user should be able to see the successful message after applying such an action, otherwise an
error will appear on the screen (line 20).

BashExecute General {
commandExecute(String command) {

Runtime runtime = Runtime.getRuntime()
BufferedReader inputStream =

{

Process process = runtime.exec(String[]{

command
b
inputStream = BufferedReader (InputStreamReader(process.getInputStream()))
inputBuffer
((inputBuffer = inputStream.read()) != -1) {
.append(() inputBuffer)

i

System. .println(

inputStream.close()

process.destroy()

(I0OException exception) {

System. .println(+ exception)

Figure 11: BashExecute.java file containing the realisation of shell commands execution in Zsh

The final class that is triggered from the MainClass.java file is aimed to map the existing
values of the headers from the generated file with the proper parameters that could be stored
into the .htaccess Apache configuration file. In order to view the content of the .Ataccess file
(which is empty by default), proceed to any shell and type in the following command: nano
/Path/To/.htaccess/file (located in Thesis-Project folder copied earlier; see Figure 12 for the
reference).

[2 vladyslav — -zsh — 87x24

~ — -zsh

vladyslav@Vladyslav-MBP ~ % nano /Applicat1ons/XAMPP/htdocs/The51s—Project/.htaccessl

Figure 12: A command to read the content of the .htaccess configuration file

At the beginning of the class, a static Map called HeadersMap is created and filled in
with a set of pre-defined values to identify all the types of headers that are currently
supported by the version of the application (Figure 13).

AppendHeaders General {
Map<String, String>
put(
put(
put(
iy

Figure 13: A static Map collection containing the values to be put into the configuration file

The rest of the code in the class is aimed to read the content of the file that contains all
the unique headers indemnified on the previous steps and match them with the existing ones
from the HeadersMap HashMap collection. If such an occurrence takes place, the .htaccess is
getting populated with the corresponding row of data, matching the header value and a proper
formatting that is supported by the Apache Web Server. If there is no match found in the
HeadersMap, the user will see an error in the console (Figure 14).

{
br = BufferedReader(FileReader (uniqueHeaders))
bw = BufferedWriter(FileWriter(apacheConfig))
String line = br.readlLine()
(line !=) {
(line.contains(N A
bw.write(
bw.flush()
System. .println(
(line.contains(
bw.write(
bw.flush()
System. .println(
(line.contains(
bw.write(
bw. flush()
System. .println(
{

System. .println(

Figure 14: A code snippet responsible for finding the matching pairs of values from the file and
the previously made file with unique headers

3.5 Running the Application and Verifying the Output

In order to successfully launch the application, proceed to the MainClass.java file and run the
main() method. Make sure that the built-in IDE console is visible, since all the text prompts
and additional output will be showed there. If any error occurs while running the application,
the corresponding text message will be displayed in the console window, specifying the
possible root of the problem (e.g., wrongly set path for web driver, error in executing a
certain command, etc.). Figure 15 shows an example of a successful application execution
that is supported by the text messages from the output window.

MainClass

Starting ChromeDriver 108.0.5359.71 (leGe3868eeBbe9ladé36a874420e3cadaed756ac-refs/branch-heads/5359@{#1016}) on port 17847
Only local connections are allowed.
Please see for suggestions on keeping ChromeDriver safe.

ChromeDriver was started successfully.

Successfully applied the sorting command and created a Unique_Headers file

Successfully added CSP

Could not find a proper match for the following header: Content-Type Header Missing
Successfully added Frame-Options

Successfully added X-Content-Type

Process finished with exit code 0

Figure 15: Result of executing the main() method in the MainClass.java file

For additional verification of the obtained results, proceed to the project’s folder
containing the source code. Two newly generated files could be seen in the directory, one of
which contains all the occurrences of the missing headers from the report, while the other one
has sorted them out and contains only unique options sorted alphabetically (Figure 16).

E
Content Security Policy (CSP) Header Not Set
Missing Anti-clickjacking Header
X-Content-Type-Options Header Missing
Content-Type Header Missing
Content Security Policy (CSP) Header Not Set
Missing Anti-clickjacking Header
X-Content-Type-Options Header Missing
Content-Type Header Missing
Content Security Policy (CSP) Header Not Set
Content Security Policy (CSP) Header Not Set
Missing Anti-clickjacking Header
X-Content-Type-Options Header Missing
X-Content-Type-Options Header Missing
Content-Type Header Missing
Content-Type Header Missing

E]
Content Security Policy (CSP) Header Not Set
Content-Type Header Missing
Missing Anti-clickjacking Header
X-Content-Type-Options Header Missing

Figure 16: Two newly generated text files containing the headers from the produced report

Moreover, after executing the command showed in Figure 12 once again, an .htaccess
configuration file should be now populated with three configured server-oriented headers
with a proper formatting style (see Figure 17 for the reference).

vladyslav — nano [Applications/XAMPP/htdocs/Thesis-Project/.htaccess — 87x24

~ — nano [Applications/XAMPP/htdocs/Thesis-Project/.htaccess
UW PICO 5.09 File: /Applications/XAMPP/htdocs/Thesis-Project/.htaccess

Header set Content-Security-Policy "default-src 'self'"
Header set X-Frame-Options SAMEORIGIN
Header set X-Content-Type-Options nosniff

Figure 17: A newly edited .htaccess file with the missing headers reported by the OWASP ZAP

Furthermore, after relaunching the Apache Web Server using the XAMPP ‘Restart Now’
button in the UI and proceeding to the index.html page, the web server will return the
specified headers with the appropriate values. To view that, repeat the steps specified above
Figure 6 (Network tab). The result of successfully changing the configuration settings of the
Apache Web Server is presented on the Figure 18.

Name X Preview Cookies Sizes Timing Security

D index.html

D main.css text/html

D fontawesome-all.min.css timeout=5, max=100

B person’.jpeg Fri, 29 Apr 2022 18:53:06 GMT

D o default-src 'self’
Al Mon, 02 Jan 2023 23:03:04 GMT

D person3.jpeg 9410
@ jquery.scrollex.min.js Keep-Alive

jquery.scrolly.min.js nosniff
"24c2-5ddcf8d87a880"

@ browser.min.js

breakpoints.min.js VL

3 util SAMEORIGIN
ts Apache/2.4.53 (Unix) OpenSSL/1.1.1n PHP/8.1.5 mod

Figure 18: A successful work of the automated script for fixing the headers related issue in the
Apache Web Server configuration

Finally, if the OWASP ZAP scan is retriggered on the current state of the application, the
newly generated report won’t show the instances of missing headers being detected while
investigating the application provided, which makes a point that an automated script is
capable of fixing the reported issues after the DAST scanning procedure by inserting the
changes into the configuration of the software that match the pre-defined pattern in the source
code.

11

4 Monthly Activity Reports

Student Name: Vladyslav Bril Student number: x21102872

Company: Intercept Technologies Month Commencing: September

The first half of the month of the internship was mostly related to the onboarding process,
setting up all the working environments, familiarising myself with working documentation,
as well as highlighting the goals for the industrial internship module to the senior manager.
By the end of the month, | was granted access to the Partner Portal from CheckPoint and
Partner Learning Platform from Fortinet where | had the opportunity to commence my
preparation for passing the NSE 1, NSE 2, and NSE 3 certifications for further work with
clients.

Additionally, while attending the personal sessions led by the Channel Manager in Ireland
from CheckPoint, | had initial exposure to the product suite that the company offers,
including the first two pillars related to Endpoint & Email protection (Harmony) and
Network security (Quantum).

Finally, | started developing the idea for the final assignment while | was given a task
to conduct security testing of the web application that contained a set of security issues
and vulnerabilities.

Employer comments

Student Signature: ﬁ Date: 30/09/2022

Industry Supervisor Signature: %9 % Date: 30/09/2022

12

Student Name: Vladyslav Bril Student number: x21102872

Company: Intercept Technologies Month Commencing: October

The second month of the industrial internship continued with the preparation for passing
both the NSE 2 and NSE 3 certifications which were eventually acquired by the end of

the month after successfully completing the online exams on the Partner Learning Platform
from Fortinet.

Furthermore, | continued attending the personal meetings organized by CheckPoint

to familiarize myself with the rest of the products that the company's clients highly utilize. |
had both theoretical and practical exposure to such technologies as SASE, ZTA/ZTNA,
different types of Firewall appliances, SD-WAN, SOAR, E-Mail SEG, and more.

| also began working with one of the clients from Intercept Technologies that required
both Endpoint and Email protection for their working devices, as well as the MSP/MSSP.
The rest of the month was spent installing, configuring, and monitoring the work of the
CheckPoint solutions in terms of asset security (Harmony Endpoint Protection).

As a result, the majority of the devices that the company was utilizing had security soft
installed and configured which guaranteed a secure workflow on those machines.

Finally, after starting to develop the main concept for the module assignment and
conducting dynamic security testing (DAST) on the web application using the OWASP
ZAP scanner, | realized that the idea of automatic vulnerability remediation should take
place in modern software release cycles.

Employer comments

Student Signature: g Date: 31/10/2022

Industry Supervisor Signature: ”%a A Date: _ 31/10/2022

13

Student Name: Vladyslav Bril Student number: x21102872

Company: Intercept Technologies Month Commencing: November

The third month of the industrial internship kicked off with different workshops and

fast-paced training from both Fortinet and CheckPoint, such as reducing complexity with

Fabric Management Centre, constructing a secure SD-WAN Architecture, improving

'a:pglication access and security with Fortinet ZTNA, creating a comprehensive Security
abric etc.

In terms of working with the company's clients, | continued providing assistance with the
Endpoint protection software, as well as hardware and/or software-related queries,
namely, DHCP/DNS-related issues that affected the network performance of the device,
OS misconfiguration, software components updates, etc.

In addition, | was also issued with the task to track the POV process for the E-Mail security
that took place on the base of the company | was assigned for. During the two-week POV,
| was able to analyze the generated report regarding the attacks that were aimed at the
company through email (phishing, malware, spam, etc.). As a result, over 120+ emails
were identified as potentially dangerous emails, while some contained malware inside.

Finally, after previously conducting the DAST testing, | started working on the literature
review to identify if there are any existing solutions that would match my topic which was
related to the automatic remediation of DAST findings. Moreover, another search was
aimled at pinpointing any existing DevSecOps model that would be able to fit such a
realization.

Employer comments

Student Signature: g Date: 29/11/2022

Industry Supervisor Signature: A Date: __ 29/11/2022

14

Student Name: Vladyslav Bril Student number: x21102872

Company: Intercept Technologies Month Commencing: December

During the last month of the industrial internship, | continued working with the endpoint
protection software, providing all the assistance with the installation & configuration of the
utilized software. Moreover, | had the opportunity to generate and analyze the report
related to the work done by the e-mail security agent that was previously set up for the
client company.

Speaking of the thesis project, | continued programming the implementation part of the
work and defining additional criteria for evaluating the software component produced.
As a result, by the end of the month, a fully working application was delivered as a part
of the master's thesis. The last part of the work was related to conducting a set of testing
activities to verify that the application is working as expected and does not generate any
uncommon errors or additional vulnerabilities.

As for the last two weeks working in the company, | had a couple of overview sessions
related to different platforms that deliver security features through a single cloud
component (e.g., CrowdStrike).

Employer comments

Student Signature: g/ Date: 23/12/2022

2 Wl

Date: 23/12/2022

Industry Supervisor Signature:

15

