

Automation of Remediation of
Configuration Vulnerabilities Reported by

the DAST Scanning Procedure

MSc Industrial Internship
MSc Cyber Security

Vladyslav Bril
Student ID: x21102872

School of Computing
National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Vladyslav Bril

Student ID:

x21102872

Programme:

MSc Cybersecurity

Year:

2022

Module:

MSc Internship

Supervisor:

Vikas Sahni

Submission Due
Date:

6th of January

Project Title:

Automation of Remediation of Configuration Vulnerabilities
Reported by the DAST Scanning Procedure

Word Count:

6996 Page Count 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date:

06.01.2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

R

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies). R

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

R

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Automation of Remediation of Configuration
Vulnerabilities Reported by the DAST Scanning

Procedure

Vladyslav Bril
x21102872

Abstract
Modern security requirements have affected approaches to building a DevOps model,

stimulating the transition to DevSecOps paradigm with the addition of elements of
checking the product for compliance with security criteria. In most cases, the
vulnerabilities found during product testing, described in the generated reports by
dynamic testing tools (DAST), need to be fixed manually which can require a lot of
effort from developers who may not deal with the aspects of secure product creation.

A solution to this problem is a separate module that can automate the process of
fixing vulnerabilities detected, as well as having the ability to be integrated into the
CI/CD pipeline. The concept of dedicating remediation procedures to the pre-defined
scenarios is significant to enhance the overall product security level, as well as release
the developers from the burden of regular vulnerabilities fixes. This work analysed
current trends in building automated DevOps and DevSecOps factories, delivered a
software component that aims to automate the remediation activities after conducting the
DAST operations, and also proposed an optimal DevSecOps scheme for which it is
possible to introduce such software.

1 Introduction

Over the past ten years, companies developing their own digital product have begun to realize
that the volume and intensity of work is growing with the expansion of new technologies.
The on-premises scenario that existed at that time, when the consumer received software
directly to his device, began to hamper the ability of developers to release regular technical
updates and optimization patches, and project managers were forced to resort to stricter
prioritization of released features (Al Hayek and Abu Odeh, 2020). In order to solve this
problem, with the development of cloud technologies, the Software-as-a-Service business
model developed, which involved deploying a product in a cloud infrastructure with further
provision of access to users through a single-entry point (e.g., web browsers) (Mell and
Grance, 2011). This approach to implementation has become a sensation, and according to
the Gartner research, by the end of 2022, revenue for SaaS products will reach the peak1 at
140.6 billion U.S. dollars (Figure 1).

1 https://www.statista.com/statistics/505243/worldwide-software-as-a-service-revenue/

2

Figure 1: Public SaaS-based revenue indicators worldwide

The transition to the as-a-Service model freed the hands of developers, who were able to
regularly release updates and control that users are working with the most up-to-date version
of their product (Rangnau et al., 2020). An additional component of success was the
popularization of the DevOps approach, as an agile method of developing and delivering
applications to the end user. Its main concept is to automate the process of building, testing,
deploying, and assessing the compliance of the application according to previously identified
metrics (Ahmed and Francis, 2019). Over time, it was necessary to introduce elements into
the classic DevOps loop that could analyze and accompany all stages of product development
from a security point of view. Formerly established classical approaches could not match the
pace with which the application went through the stages of the DevOps cycle. Based on this,
a new approach was developed that combines elements of DevOps and Security –
DevSecOps (Rangnau et al., 2020; Sen, 2021). From now on, each phase of DevOps has been
accompanied by a characteristic security-related phase, whether it was threat planning at the
initial stage; static and dynamic testing at the assembly stage; or conducting more generic
penetration testing techniques, as well as monitoring the occurrence of incidents in the
system.

According to a study published by Forbes2, in 2021 the average number of attacks and
attempts to compromise the system increased by 15% compared to 2020. In addition, as the
authors of the article mentioned: "The main causes of these attacks will come from
misconfigurations, human error, poor maintenance, and unknown assets.". The previously
mentioned testing approaches are intended to minimize the occurrence of risks due to the
above conditions, especially when it comes to misconfiguration or human error. Testing tools
such as SAST and DAST have already been analysed in research papers quite a lot, including
for their operational potential (Pinconschi, Abreu and Adao, 2021; Huang et al., 2022).
However, until now, according to the author of this work, the issue of automation of error
correction, according to the results of testing, remains open. Often, developers are forced to
manually fix the found misconfiguration vulnerabilities themselves in order to ensure the safe
operation of the product. In this regard, is it possible to analyze how it is feasible to automate
the process of fixing such vulnerabilities found as a result of scanning a software product for
errors?

2 https://www.forbes.com/sites/chuckbrooks/2022/06/03/alarming-cyber-statistics-for-mid-year-2022-that-you-need-to-know/

3

As a subject of research, approaches for conducting dynamic testing (DAST) at the pre-
production stage will be further analysed. In addition, a supplementary goal of the work is to
build a model of the factory based on the DevSecOps approach, into which subsequent
developments could be integrated without loss in output quality.

The remainder of the work is structured as follows: Section 2 provides additional details
regarding dynamic testing approaches, and also demonstrates a literature analysis of existing
solutions regarding building DevSecOps models. Section 3 contains a description of the
author's approach to the study of the task, and also creates the basis for further experiment
described in Sections 4 and 5. In addition, Section 5 contains the results obtained during the
development of an auxiliary software product. Section 6 conducts an analytical comparison
of the main characteristics of the development, according to the previously stated criteria.
The last Section 7 summarizes all the work done, and also indicates possible next steps to
develop the affected problem in order to find a more optimal and optimized solution.

2 Related Work

The following section contains the analysis of the current state-of-art of the research related
topics, such as different approaches to security testing that are being incorporated into the
DevSecOps pipeline. In addition, DevOps similar to DevSecOps does not dictate any
particular strict realization and the whole CI/CD factory building process is in the hands of
system engineers. With that being said, an exhaustive analysis of the most common and
widely used DevSecOps models should be conducted in order to determine whether it is
possible to integrate the after-testing issue resolving components without breaking the core
principle of continuous integration and delivery.

2.1 Security Testing Approach in DevSecOps
As mentioned earlier, the infosystem is evolving from a single, straightforward, independent
structure to a complete approach with a complicated architecture based on microservices, and
the scale of software is growing, making the challenge of proper quality assurance thought-
provoking (Sun et al., 2021). On the other hand, such cloud-based technologies as IaaS,
PaaS, and SaaS are rapidly advancing, changing the way traditional system architectural
design is thought of while also introducing new security concerns (Chen and Suo, 2022).
Since the beginning of the development cycle, a DevSecOps model has implemented network
security practices. To find security flaws, the code is examined, audited, scanned, and tested
throughout the development cycle (Simonjan, Taurer and Dieber, 2020).

According to Zech (2011), whenever an software product meant to be launched, an
exhaustive testing should be conducted in order to cover both functional and non-functional
requirements that come from formerly composed testing scenarios. However, when the
application is delivered under Software-as-a-Service (or any other as-a-Service type), security
considerations should play a major role in product delivery chain.

Observing the core concepts of DevSecOps model, security testing (in terms of code &
application as a whole) is mainly conducted on stages when developers try to integrate their
solutions into the existing application. Due to the fact that vulnerabilities can arise at any
stage of the traditional DevOps model, different number of security testing took place in the

4

DevSecOps model, including SAST (static application software testing) and DAST (dynamic
application software testing). Both these approaches have also adapted to the transition into
more Agile SDLC models. For example, Faber (2020) justifies how different testing
approaches combined in the single paradigm, including their scope and responsibilities, may
enhance the overall security of the product released through the latter DevSecOps model.

In another paper, Rahman and Williams (2016) pinpoint to the fact that under rapid
delivery model that DevOps offers to the organization to deliver their service to the
customers, a big security related issues may arise, since there is a possibility of ignoring such
problems in favour of releasing the product on time and meeting the clients demands.
Speaking more on the aforementioned topic, Mohan and Othmane (2016) makes a statement
that the lack of adequate security testing and absence of security team in the software
delivery chain would affect the overall security factors of the product delivered. However,
such activities as automated code review, static and dynamic testing, as well as automated
monitoring may enhance the overall level of application’s security. Moreover, such an
attitude should not interfere the Agile model utilized in the company.

Chen et al. (2022) conducted research analysing the majority of the stages that occur in
the SDLC and attempted to implement security related scenarios in each of them to enhance
the overall security of the delivered product. The group of authors showed that such phase as
“Coding and Unit Testing” can incorporate different security testing techniques, namely
software composition analysis (SCA) and static application security testing (SAST). Similar
to the latter stage, the “Testing” phase in the majority of cases involves types of security
testing that can be conducted on stage environments, when there hasn’t been any public
release done so far, but the application is already running for being checked by the Quality
Assurance team. Such tests involve dynamic application security testing (DAST), or a hands-
on penetration testing conducted by a third-party or an authorized insider.

There are also a certain number of papers (Arnold and Qu, 2020) that analysed the
approach to conduct white-box testing (static testing) and black-box testing (dynamic testing)
in a traditional and DevSecOps models. According to the previously mentioned authors, even
though such testing as a black box is preferred to be conducted in a manual way, the certain
requirements that a DevOps model demands from the system engineers make it necessary to
transfer the manual testing workflow into the automated alternative.

2.2 Existing DevSecOps Model
Approach to Agile development maintains the effort on replying to user requests and
comprises self-organization and adaptation to specific demands.

A more recent strategy called DevOps tries to integrate both aspects of software
development and operations. DevOps' primary characteristic is the automation of numerous
software testing and integration processes, which enables businesses to build and deliver new
software releases quickly and smoothly. Although the software development industry has
benefited from both Agile and DevOps approaches, security is sometimes overlooked in
either strategy (Lee, 2018). Figure 2 indicates a simplified version of the build & release
phases of the aforementioned model.

5

Figure 2: Simplified schematic version of the DevOps model (build & release phases)

Based on the previous statement, DevSecOps tries to integrate security related aspects

into each standard DevOps phase with the aim to enhance the overall safety of the product
delivered. DevSecOps offers the ability to boost the velocity of the process of integrating
alterations into production while maintaining high standards for both quality and security.
Collaborations across various IT work groups or disciplines (development, security, and
operations/implementation) must be given more attention if DevSecOps is to be effectively
incorporated into the existing work cycle (Lee, 2018; Ibrahim, Yousef and Medhat, 2022).
Figure 3 describes a simplified version of the previously showed DevOps model with
addition of extra security related components that enables the transition from DevOps to
DevSecOps model (build & release phases only).

Figure 3: Simplified schematic version of the DevSecOps model (build & release phases)

In general, the demand for quick deployment of safe and secure software outputs is
driving up interest in DevSecOps in both business and academics (Rajapakse et al., 2022).
The expanding corpus of formal literature in this field demonstrates that a big number of
literature sources emphasizes the necessity of adopting the DevSecOps concept into the
SDLC model (Anjaria and Kulkarni, 2021; Almeida, Simões and Lopes, 2022). Furthermore,
such big domains as cloud migration and integrating IoT devices have already been brought
to the light in terms of existing academic resources (Carturan and Goya, 2019; Sojan, Rajan
and Kuvaja, 2021). However, as it was stated in Section 2.1, there are no separate works
related to the adaptation of the existing model that would facilitate the automation of the

6

security operations inside the DevSecOps model, for instance DAST scanning results
remediation in particular.

2.3 Literature Analysis Results
Table 1 down below indicates the analysis of some of the different literature sources that
were mentioned earlier in the previous sections. The main aim of such investigation is to
determine the drawbacks or flaws of different kind in the examined papers and how the
further proposed solution could facilitate the overall process of releasing a secure software
and build a reliable DevSecOps model that includes new aspects in it.

Table 1: Literature analysis results per source

Author Title Approach Discussed Improvements Required

Ahmed, Z. and
Francis,

Shoba. C.
(2019)

Integrating
Security with
DevSecOps:

Techniques and
Challenges

The paper discusses the
practical approach
towards implementing
the DevOps and
DevSecOps models into
the development
lifecycle. The result
demonstrates that by
implementing different
security aspects from the
earlies stage of software
development, it is
possible to increase the
total level of security of
the application on each
phase of development.

Even though the testing
procedure was discussed
in the course of the work,
a more detailed approach
is required to verify the
necessity of implementing
the SAST/DAST tools
into the DevSecOps
model, as well as how
these tools could be
automated to maintain the
velocity of the product
being delivered.
Furthermore, additional
attention should be
pointed out to the
possibility of vulnerability
remediation by utilizing
an automated approach.

Chen, T. and
Suo, H. (2022)

Design and
Practice of

Security
Architecture via

DevSecOps
Technology

The authors describe the
advantages and key
points on DevSecOps
model and what benefits
can it deliver to both the
developing team and the
product released. As a
result, it was mentioned
that the DevSecOps has
the highest percentage of
issue findings in a
production environment
comparing to other
models and approaches.

While discussing the
testing phase of the
DevSecOps model, it
would be beneficial to
demonstrate how different
testing approaches (e.g.,
SAST or DAST) can alter
the overall workflow of
the development
paradigm, as well as how
the idea of automating
everything in the work
phase can be transferred
to testing & after-testing
remediation procedures.

7

Sun, X. et al.
(2021)

Design and
Implementation
of Security Test
Pipeline based
on DevSecOps

The paper demonstrates
the realisation of a
security testing pipeline
that aims on source code
testing for verifying the
overall reliability of the
software released.

While the work mainly
discusses the approach to
a source code testing in a
dedicated pipeline, extra
research is required to
identify how to implement
a dynamic or a runtime
application testing into the
developed model that
would facilitate the
overall quality of the
software being released.

Simonjan, J.,
Taurer, S. and

Dieber, B.
(2020)

A Generalized
Threat Model

for Visual
Sensor

Networks

The paper shows a
strategical threat model
for the visual sensor
networks (VSN) while
examining some of the
most impactful threats
aimed onto it. It was
mentioned how to
deduct and proceed with
the threats once they
have been found.

As the outcome of the
work mentions, a
DevSecOps approach
should be considered for
further research, since its
capabilities are matching
the expectations for
continuous security
implementation in all
phases of development,
including the testing
phase.

Faber (2020) Testing in
DevOps

Different testing
techniques and
approaches that can be
used under the DevOps
paradigm to maintain the
secure release of the
software components;
the main motive says
that DevOps should
implement as much
automation as possible.

Even though the role of
testing automation is
discussed throughout the
work, there is no idea
delivered regarding the
transition to the
DevSecOps model (at
least partial), plus the
automation is not
considered for the test
findings & remediation
procedures.

As a conclusion on the Subsection 2.1, it can be said that all the previously mentioned

works in Table 1 present different approaches to the aspects of testing that need to be
implemented in the DevSecOps model in order to achieve high product security criteria.
However, none of the aforementioned articles, as well as other publications that were
analyzed but not included in this section, did not contain a study whose purpose would be to
provide a solution or a practical realization with which developers could not only analyze the
results of scans and security tests, but still capable of automating the process of fixing
detected problems during the testing phase (in particular, during DAST, provided that the
application has already been compiled).

Similar to Subsection 2.1, while conducting the DevSecOps model analysis, it was clear
that there are no separate works related to the adaptation of the existing model that would

8

facilitate the automation of the security operations inside the DevSecOps model, for instance
DAST scanning results remediation in particular.

3 Research Methodology

Based on the preceding literature review, it could be expected that a solution that could
automate methods for repairing problems after dynamic testing is required. This solution
should also be able to be included into the DevSecOps paradigm without going against its
tenets. Similar to the previous section, the research methodology is divided into two sections.
The first part describes the DAST tool and how its results will be automatically extracted,
examined, and adjusted. The second section evaluates the DevSecOps model in order to adapt
it to the integration capabilities of the solution created in the first paragraph of the approach,
in line with the previously specified goals of the work.

3.1 General Approach to the Research
The research methodology for creating a solution that can automate the process of repairing
vulnerabilities discovered by the use of a DAST scanner and verifying the possibility of its
integration into the DevSecOps model is shown in Figure 4. The main phases of the latter
consisted of the following steps: analysis of the previously done research in the field; identify
(if possible) existing software-based solutions to the established research aim; select the core
issue type that was being focused throughout the rest of the research cycle; breakdown of the
DevSecOps requirements; actual realisation of the software component for automating
remediation phase in CI/CD; evaluation of the developed product and further additional
aspects related to future work and potential enhancement of the software delivered.

Figure 4: Defining stages of the research methodology

The following section contains the descriptive details regarding Stages 1–4, while Stage

5, 6 and 7 are thoroughly described in the later parts of the work. While Stage 1 was covered
in the previous sections of the work (as part of the literature review), Stage 2 of the research
process began with an analysis and determination of the existing alternatives to the proposed
scheme of the software that could potentially automate the remediation procedure of the
DAST scanning. As it was mentioned in the latest section of the literature review, the lack of

9

existing solutions that fall under these requirements made it reasonable to assume the fact that
this field hasn’t been properly researched and no solutions have been developed so far.

3.2 Identifying the Target Issue Type
A web-product may be examined for more than 150 vulnerabilities3 of varied severity and
complexity using one of the commonly4 used DAST scanner called OWASP ZAP. It was
required to identify the kind of vulnerability that would subsequently be goal to verification
and automatic remediation in order to reduce and focus the subject area of this work. Since
2021, according to data provided by the OWASP resource known as OWASP Top-105, the
following vulnerability categories have occupied the top five positions: access control issues
(A01), cryptographic failures (A02), injection problems (A03), insecure design concerns
(A04), and security configuration issues (A05). Since the majority of the vulnerabilities
discovered using OWASP ZAP fall into the A05 category, the latter is most suited for the
primary objective of this paper. Therefore, in the further development of this work, the main
focus was on vulnerabilities of category A05: Security Misconfiguration, which include
configuration errors for the secure use of web services, the use of outdated or insecure
components, the use of standard passwords and security certificates, non-closed ports, as well
as displaying errors with sensitive information for the end user.

3.3 Analysing the Format for Presenting Data
According to the preferences of the author, the OWASP ZAP dynamic scanner has a function
that allows a user to create a report on the scanning that has been done. HTML and JSON
files are two of the most popular file types that the application standard supports6. At the
same time, HTML files are created as local web pages, where the scanner creates a large list
of sections in which it indicates things like the vulnerabilities found, their severity and risk
for the application, options for resolving them, links to helpful sources for fixing them,
constructed graphs and diagrams according to the vulnerabilities found etc. Additionally,
customers have the option to modify the generated report utilizing a space designated for
unique add-ons. While working on the project, it was determined to further examine reports
in the common HTML format and choose technological tools that could access the data in the
web files produced by OWASP ZAP.

3.4 Breakdown of the Enhanced DevSecOps Model’s Requirements
The outcomes of the performed literary analysis were examined for the notion of the
DevSecOps model in addition to creating a software component capable of automating the
remedy of discovered configuration vulnerabilities in web applications. In order to ensure the
possibility of the developed product's implementation in the pipeline in the event of potential
model integration, it was essential to consider the specifics of building the CI/CD model
during the design stage. These considerations include taking into account the interaction of
different components presented, offering flexibility in settings, and optimizing operating time

3 https://www.zaproxy.org/docs/alerts/
4 https://brightsec.com/blog/owasp-zap/#owasp-zap-tutorial
5 https://owasp.org/www-project-top-ten/
6 https://www.zaproxy.org/docs/desktop/addons/report-generation/templates/

10

for this software. In light of the aforementioned primary requirements, it was identified that
the DevSecOps concept can include an additional module compatible with DAST scanning.
This unit would have the ability analyze any vulnerabilities discovered, attempt to fix them,
and initiate a subsequent DAST check to ensure that there are no new vulnerabilities.
Additionally, it was essential to structurally allow for manual confirmation of vulnerabilities
by users, as well as the capability to turn off this functionality in the event that the developer
is accountable for omitting a product version with a known vulnerability (for example, low
priority and severity).

The suggested model idea is further described under Section 4.2, which also takes into
consideration the integration of the created software module for automating the repair of
configuration problems.

3.5 Defining the Evaluation Criteria for Software
The techniques for assessing the generated program for conformity with different standards,
measuring technical qualities, and performing comparative analysis are one of the last steps
of the research approach. It is not feasible to conduct a fair comparison analysis because no
analogues for the produced software component were discovered throughout the course of the
literature review. However, the essential technical aspects that may be utilized for a
comparison assessment with a more sophisticated solution in the future were represented in
the performance evaluation stage of the developed program. The program's speed, precision,
versatility, adaptation to different systems and launch settings, resource consumption, and
other factors were among the primary suggestive qualities found at the stage of establishing a
study methodology. Section 6 provides more information regarding the outcomes of the
program's performance review.

4 Design Specification

This section describes how a developed software can automatically assess live scan results
for a web product, interpret them for future usage, conduct adjustments to fix
misconfiguration issues, and then retest the changes implemented into the configurational
files. Additional information about the roadmap workflow that was followed during the
development of the software component is provided in Section 4.1, and the architecture of the
DevSecOps model is described in Section 4.2, with the option of incorporating the
component from Section 4.1 into its design scheme.

4.1 Automated Remediation Tool Design
In order to narrow down the research scope and define the exact implementation features, a
workflow roadmap was created that is shown on Figure 5. The main steps of the research
route involved selecting a DAST tool from the available options, evaluating its features and
the format in which results were presented, choosing an object for testing, picking a
technology stack for putting a software solution into practice, and considering metrics that
could be used to demonstrate the benefits of the developed approach.

11

Figure 5: The overall roadmap for specifying the workflow of the application developed

While the majority of the aforementioned stages have been discussed earlier in the

previous sections of this work, a separate accent was made to analyse the capabilities of
different frameworks that provide a toolset to work with different data formats supported by
OWASP ZAP (such as .html or .xml), as well as the server-side stack that was aimed to get
changed while the ZAP scanner detects any misconfiguration issues. As a result, the final
architecture is described on Figure 6: a separate CI/CD pipeline component is created to run
the DAST scan using the OWASP ZAP tool and analyse results of the generated report. The
rest of the work relies on a set of scripts that extract the misconfiguration issues into a
separate file, apply additional changes (validation of the findings) and pass the valid options
to a separate module that applies new configuration settings through the Apache server using
both Bash and Java capabilities. After that, the ZAP scanning procedure is re-initiated in
order to verify that the previously found issues are no longer exist in the new scan.

Figure 6: Architecture of the proposed Java and Selenium based solution to automate the

remediation of the OWASP ZAP scanning results

In addition, every time the report is being analysed for the presence of misconfiguration
issues, it pushes a status code to the main pipeline, indicating whether the current scanning

12

result obtains any flaws or if it is free to proceed with the application deployment in the
DevSecOps model.

4.2 Enhanced DevSecOps Model Design
Speaking of the DevSecOps model, Figure 7 shows an improved scheme on how a previously
mentioned software could fit with its own architecture and the defined workflow into the
existing standards of the DevSecOps loop. For instance, the settings could be set in such a
way to permit OWASP ZAP to start scanning the application after the job is being passed to
the Code Deployment phase. As it was mentioned previously, by referring to the report
analysis status, the pipeline decides whether it needs to proceed with the release or wait until
the software conducts the remediation procedure to ensure that the build has no flaws
documented.

Furthermore, the proposed design of the enhanced DevSecOps model brings the idea to
manually skip the report checking phase and proceeding with the release, when such actions
need to take place in the pipeline (e.g., in case of hotfixes or continuous loops being made in
the remediation software part of the pipeline).

Figure 7: Proposed DevSecOps model including vulnerability remediation component

5 Implementation

The implementation phase of software for the automatic remediation of vulnerabilities and
configuration errors discovered using the OWASP ZAP scanner are shown in this section.
Based on the previously built architecture and logical model, a list of main tools and
approaches is stated in the following roster:

• Selenium framework and Chrome WebDriver are two of the primary technologies
used to efficiently extract information from a report in the .html format. The
application may analyze a previously created OWASP ZAP report for vulnerabilities
linked to missing response headers by combining the skills of this tool with the web

13

driver. For further processing, the results of this function are written to a different file
stored in the same directory, as the main program;

• The produced file is analysed by a second Java-based module, which is also in charge
of removing any instances of the headers that were extracted in the previous phase
that were repeated. With this strategy, the developers have the chance to have access
to a special set of headers that must be added to the web server configuration that
hosts the web application. The present realization entails executing a bash-oriented
line of code that alphabetically sorts the file and eliminates any duplicate rows,
leaving just one instance of each header missing;

• The information on the available headers and their initial default settings is being
stored via the final Java-based module. The next component of the software ensures
that all pertinent headers are added to the .htaccess file (Apache web server
configuration file) and saves the modified settings when a file with unique headers is
produced in the previous stage. The BufferReader and BufferWrite methods, which
are included in the Java language, constitute the foundation for all file-related
operations under this step;

• The application comes with an optional add-on that may be activated if necessary to
start the scanning process both before and after changing the configuration file (by
using the OWASP ZAP CLI command set).

While combining all the aforementioned libraries and tools under the single module, an
independent application was written that addresses the issues related to setting the
configuration headers in the Apache web-server settings (Figure 8). The OWASP ZAP
scanner was initialized, scanning settings were established, and the address to be scanned was
supplied using a command that was defined in the application code.

Figure 8: Realization of automatic addition of missing headers to solve the misconfiguration

issues raised by the OWASP ZAP scanner

6 Evaluation

The findings of the critical analysis performed about the creation of a software solution that
may automate the process of correcting misconfiguration issues discovered by the OWASP
ZAP scanner are presented in this section. It was already indicated earlier in the course of the

14

study that existing solutions covering this area and addressing previously given issues were
not identified when assessing existing realisations. As a result, it is impossible to carry out a
practical comparison study. In this case, a single produced software was examined by the
author of this work in order to determine whether this product complied with numerous pre-
established features.

6.1 Case Study 1: Technical-Oriented Features
Analyzing the technical characteristics, one can express an assessment of such parameters as
performance, speed, the load on system resources, and the accuracy of the execution of given
commands. Since the developed program is written mostly in the Java programming
language, all the main limitations on the performance of this program depend on the Java
virtual machine (JVM), which interprets the bytecode with the written program. In addition,
the program itself performs only simple operations with input and output streams, working
with files at the level of reading and writing information, as well as working with the
Selenium library and the Chrome web driver, which does not imply the occurrence of critical
errors associated with the program environment.

As for the coverage of the previously set condition for the program to work, the main
emphasis in the work of the component was on fixing misconfiguration errors associated with
missing headers in the Apache web server settings. Other vulnerabilities found during the
operation of the OWASP ZAP scanner are ignored because they do not have an
implementation for their remediation. Figure 9 displays the outcome of the program's
successful execution, with an emphasis on the primary text prompts that were produced
during the processing of each distinct function in the sequence they were invoked.

Figure 9: Example of successful software execution and vulnerability remediation

Despite the fact that the coverage of fixing the found vulnerabilities comes down to

problems with setting headers in the Apache configuration file, the program detects missing
headers with absolute accuracy, organizes them in a separate file, and also controls the
absence of duplicates in the web server configuration file, which means that it can an error
occurs on startup.

6.2 Case Study 2: Usability and Versatility
One of the important characteristics is the overall usability and user friendliness of the

developed application. Since the current development assumed its subsequent integration into
the DevSecOps model, there was no native UI interface, and all work was carried out through

15

the command line and the development environment console. In fact, the initial parameters
were set in the source code, since when this software is connected to the CI/CD pipeline,
different values are transferred to these fields each time a new build is generated.

Speaking of the platforms supported by the developed application, one of the main pre-
requisite checks requires to verify the origin of the operation systems that hosts the program.
As per initial design, a UNIX-based platform (namely macOS) was used while developing
and testing the aforementioned application. Due to the fact that other OS (such as Windows)
implement altered shell syntax, it was decided that the main aim would be focused on the
UNIX-based OS because of the potential integration into the CI/CD pipeline.

6.3 Research Discussion
During the critical evaluation of the software component, it was proved that this
implementation covers the gap found in the current DevSecOps development trend, namely
the lack of a solution for automating error correction after DAST scanning, as part of the
CI/CD architectural solution.

Despite the relative ease of implementation of the program, as well as its clear focus on
one of the types of vulnerabilities - misconfiguration issues, this approach has a number of
limitations. For example, the implementation of a program made through bash scripts implies
the execution of this program only on UNIX-like systems. In addition, the parameter values
for the web server response headers, like other parameters, are set manually when working
with the HashMap collection.

Notwithstanding these limitations, the current implementation is able to improve the
designated DevSecOps model not only by increasing the level of security of the released web
application, but also by relieving the developer’s task of fixing the vulnerabilities found
manually, but only to audit and control the operation of automatic error correction and, if
necessary, to make their own manual changes.

7 Conclusion and Future Work

To put it concisely, it can be implied that the designed, programmed and evaluated solution is
able to increase the percentage of implementation of secure software by correcting a category
of misconfiguration errors related to the absence of the necessary headers in the responses of
the web server to the client. Moreover, according to the previously set tasks and research
questions at the beginning of this work, the option of developing a DevSecOps model was
considered, which could implement the realized software product, thereby increasing the
level of security in delivery architecture by totally solving the issues related to response
headers misconfiguration.

Speaking of the future work aspects, the application could be adapted for usage for
different platforms as a standalone program with its own user interface, or practically
implemented into the existing DevSecOps model. Moreover, another subcategory of
misconfiguration issues could be addressed in order to increase the coverage of the software
capabilities.

16

References

Ahmed, Z. and Francis, Shoba.C. (2019) ‘Integrating Security with DevSecOps: Techniques
and Challenges’, in 2019 International Conference on Digitization (ICD). Sharjah, United
Arab Emirates: IEEE, pp. 178–182. Available at:
https://doi.org/10.1109/ICD47981.2019.9105789.

Al Hayek, W.Y. and Abu Odeh, R.A. (2020) ‘Cloud ERP VS On-Premise ERP’,
International Journal of Applied Science and Technology, 10(4). Available at:
https://doi.org/10.30845/ijast.v10n4p7.

Almeida, F., Simões, J. and Lopes, S. (2022) ‘Exploring the Benefits of Combining DevOps
and Agile’, Future Internet, 14(2), p. 63. Available at: https://doi.org/10.3390/fi14020063.

Anjaria, D. and Kulkarni, M. (2021) ‘Effective DevSecOps Implementation: A Systematic
Literature Review’, Revista Gestão Inovação e Tecnologias, 11(4), pp. 4931–4945. Available
at: https://doi.org/10.47059/revistageintec.v11i4.2514.

Arnold, B. and Qu, Y. (2020) ‘Detecting Software Security Vulnerability during an Agile
Development by Testing the Changes to the Security Posture of Software Systems’, in 2020
International Conference on Computational Science and Computational Intelligence (CSCI).
Las Vegas, NV, USA: IEEE, pp. 1743–1748. Available at:
https://doi.org/10.1109/CSCI51800.2020.00323.

Carturan, S. and Goya, D. (2019) ‘Major Challenges of Systems-of-Systems with Cloud and
DevOps – A Financial Experience Report’, in 2019 IEEE/ACM 7th International Workshop
on Software Engineering for Systems-of-Systems (SESoS) and 13th Workshop on Distributed
Software Development, Software Ecosystems and Systems-of-Systems (WDES). Montreal,
QC, Canada: IEEE, pp. 10–17. Available at:
https://doi.org/10.1109/SESoS/WDES.2019.00010.

Chen, S.-J. et al. (2022) ‘The Impact of the Practical Security Test during the Software
Development Lifecycle’, in 2022 24th International Conference on Advanced
Communication Technology (ICACT). PyeongChang Kwangwoon_Do, Korea, Republic of:
IEEE, pp. 313–316. Available at: https://doi.org/10.23919/ICACT53585.2022.9728868.

Chen, T. and Suo, H. (2022) ‘Design and Practice of Security Architecture via DevSecOps
Technology’, in 2022 IEEE 13th International Conference on Software Engineering and
Service Science (ICSESS). Beijing, China: IEEE, pp. 310–313. Available at:
https://doi.org/10.1109/ICSESS54813.2022.9930212.

Faber, F. (2020) ‘Testing in DevOps’, in S. Goericke (ed.) The Future of Software Quality
Assurance. Cham: Springer International Publishing, pp. 27–38. Available at:
https://doi.org/10.1007/978-3-030-29509-7_3.

Grishina, A. (2022) ‘Enabling automatic repair of source code vulnerabilities using data-
driven methods’, in Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings. Pittsburgh Pennsylvania: ACM, pp. 275–
277. Available at: https://doi.org/10.1145/3510454.3517063.

17

Huang, K. et al. (2022) ‘Repairing Security Vulnerabilities Using Pre-trained Programming
Language Models’, in 2022 52nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W). Baltimore, MD, USA: IEEE, pp.
111–116. Available at: https://doi.org/10.1109/DSN-W54100.2022.00027.

Ibrahim, A., Yousef, A.H. and Medhat, W. (2022) ‘DevSecOps: A Security Model for
Infrastructure as Code Over the Cloud’, in 2022 2nd International Mobile, Intelligent, and
Ubiquitous Computing Conference (MIUCC). Cairo, Egypt: IEEE, pp. 284–288. Available at:
https://doi.org/10.1109/MIUCC55081.2022.9781709.

Lee, J.S. (2018) ‘The DevSecOps and Agency Theory’, in 2018 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW). Memphis, TN: IEEE,
pp. 243–244. Available at: https://doi.org/10.1109/ISSREW.2018.00013.

Mell, P.M. and Grance, T. (2011) The NIST definition of cloud computing. 1 edn. NIST SP
800-145. Gaithersburg, MD: National Institute of Standards and Technology, p. NIST SP
800-145. Available at: https://doi.org/10.6028/NIST.SP.800-145.

Mohan, V. and Othmane, L.B. (2016) ‘SecDevOps: Is It a Marketing Buzzword? - Mapping
Research on Security in DevOps’, in 2016 11th International Conference on Availability,
Reliability and Security (ARES). Salzburg, Austria: IEEE, pp. 542–547. Available at:
https://doi.org/10.1109/ARES.2016.92.

Pinconschi, E., Abreu, R. and Adao, P. (2021) ‘A Comparative Study of Automatic Program
Repair Techniques for Security Vulnerabilities’, in 2021 IEEE 32nd International Symposium
on Software Reliability Engineering (ISSRE). Wuhan, China: IEEE, pp. 196–207. Available
at: https://doi.org/10.1109/ISSRE52982.2021.00031.

Rajapakse, R.N. et al. (2022) ‘Challenges and solutions when adopting DevSecOps: A
systematic review’, Information and Software Technology, 141, p. 106700. Available at:
https://doi.org/10.1016/j.infsof.2021.106700.

Rangnau, T. et al. (2020) ‘Continuous Security Testing: A Case Study on Integrating
Dynamic Security Testing Tools in CI/CD Pipelines’, in 2020 IEEE 24th International
Enterprise Distributed Object Computing Conference (EDOC). Eindhoven, Netherlands:
IEEE, pp. 145–154. Available at: https://doi.org/10.1109/EDOC49727.2020.00026.

Sen, A. (2021) ‘DevOps, DevSecOps, AIOPS- Paradigms to IT Operations’, in P.K. Singh et
al. (eds) Evolving Technologies for Computing, Communication and Smart World. Singapore:
Springer Singapore (Lecture Notes in Electrical Engineering), pp. 211–221. Available at:
https://doi.org/10.1007/978-981-15-7804-5_16.

Simonjan, J., Taurer, S. and Dieber, B. (2020) ‘A Generalized Threat Model for Visual
Sensor Networks’, Sensors, 20(13), p. 3629. Available at: https://doi.org/10.3390/s20133629.

Sojan, A., Rajan, R. and Kuvaja, P. (2021) ‘Monitoring solution for cloud-native
DevSecOps’, in 2021 IEEE 6th International Conference on Smart Cloud (SmartCloud).
Newark, NJ, USA: IEEE, pp. 125–131. Available at:
https://doi.org/10.1109/SmartCloud52277.2021.00029.

Sun, X. et al. (2021) ‘Design and Implementation of Security Test Pipeline based on
DevSecOps’, in 2021 IEEE 4th Advanced Information Management, Communicates,

18

Electronic and Automation Control Conference (IMCEC). Chongqing, China: IEEE, pp. 532–
535. Available at: https://doi.org/10.1109/IMCEC51613.2021.9482270.

Ur Rahman, A.A. and Williams, L. (2016) ‘Software security in DevOps: synthesizing
practitioners’ perceptions and practices’, in Proceedings of the International Workshop on
Continuous Software Evolution and Delivery. Austin Texas: ACM, pp. 70–76. Available at:
https://doi.org/10.1145/2896941.2896946.

Zech, P. (2011) ‘Risk-Based Security Testing in Cloud Computing Environments’, in 2011
Fourth IEEE International Conference on Software Testing, Verification and Validation.
Berlin, Germany: IEEE, pp. 411–414. Available at: https://doi.org/10.1109/ICST.2011.23.

