
Detecting Container vulnerabilities
leveraging the CICD pipeline

MSc Research Project

Cybersecurity

Preeti Bhardwaj
Student ID: x21139351

School of Computing

National College of Ireland

Supervisor: Arghir Nicolae Moldovan

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Preeti Bhardwaj

Student ID: x21139351

Programme: Cybersecurity

Year: 2022

Module: MSc Research Project

Supervisor: Arghir Nicolae Moldovan

Submission Due Date: 15/12/2022

Project Title: Detecting Container vulnerabilities leveraging the CICD
pipeline

Word Count: 7126

Page Count: 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Preeti Bhardwaj

Date: 29th January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Detecting Container vulnerabilities leveraging the
CICD pipeline

Preeti Bhardwaj
x21139351

Abstract

Docker images are lightweight executable software that contains everything that
is needed to make an application run smoothly. Docker images are a popular choice
over virtual machines. Docker images have multiple vulnerabilities in them such as
Denial-of-services(DoS), Man-in-Middle, etc, which makes it essential to test and
secure these images effectively. There are several tools to test the docker images
Perhaps the limitation comes down to the methodology which in most cases might
not be automated and can be tedious to carry out. Scanning the docker images for
vulnerabilities is essential as any non-detected vulnerability leaked from the image
can corrupt the host system, can lead to the insertion of malicious code in the
image, or can even spoof MAC and IP addresses. We have implemented a CI CD
pipeline with the capability to scan the docker images for CVEs in an automated
test bed for vulnerabilities before deploying them. The setup consists of a pipeline
with the different stages from build to test along with the tools such as Trivy and
Clair to scan the vulnerabilities on the docker images with known vulnerabilities
and CVEs.

1 Introduction

Docker containerisation is the method of packaging the applications requirements into a
single object file consisting of the application’s libraries, binaries and code. Which makes
containers a suitable choice for deployment by a lot of companies and organisations.
Unlike traditional computing, virtualization does not depend on the physical hardware,
firmware or the host which resulted in prolonged and underutilised cycles. Manu et al.
(2016) introduced the concept of virtualization in the 1970’s to overshadow the monolithic
traditional computing practices, later to become the core of cloud computing. Virtual-
ization requires an Operating system supported by virtual hardware resources. On the
other hand containerization uses different technology in comparison to the classic virtu-
alization making a better usage of RAM and CPU processing. Containers consume only
the operating system with relevant libraries to host a program. The deployment process
is relatively faster and lightweight on docker containers. Applications that require scalab-
ility and high performance can be efficiently deployed through container dockers. For the
research Docker images are being used as the containerisation technology for the research
implementation. Giant organisations such as Google, Amazon are leveraging docker ser-
vices especially in their PaaS service model. Open-source docker behaves as a double-edge
sword if security is considered. Docker images are vulnerable and are susceptible to at-
tacks which need immediate attention. A docker image infected with malware/viruses

1



can act as a backdoor for the malicious activities by the attackers to exploit the image.
Reportedly 60% of organisations suffered some kind of attack on their docker Profile
(2016) in which using insecure docker images has been one of the biggest reasons.In May
2019 a shocking discovery was made which claimed that some Alpine docker images were
shipped with no password henceforth as a backdoor for attackers.Seals and Seals (2015)
Scanning docker images for vulnerabilities can be an effective step toward hardening the
security of docker images. This research has worked towards the hardening docker im-
ages security by implementing an automated setup. In this research we implemented an
automated CI CD pipeline which pulls the docker images from the repository and then
the pipelines run with different stages which are: build, test and deploy. During the test
stage we prepared a test bed by incorporating docker scanning tools: Clair and Trivy,
both the tools scanned the vulnerable docker images for known Common vulnerabilities
and Exposures(CVEs). Once after scanning the corrupt docker image we evaluated our
result based on the known vulnerabilities. We evaluated the results of Clair and Trivy
on 2 images to check to analyse how the two tools scan on the images and how different
outputs are produced by both the tools on the basis of the number of vulnerabilities
found and also the severity.

Contributions by the research paper:

• This paper contributed in successfully scanning two different Vulnerable docker
images by Clair and Trivy.

• The pipeline used to achieve the scanning results is entirely automated which is an
efficient contribution for an extensive implementation and process like this.

• We found Clair being used to scan for vulnerabilities on docker however Trivy is
however is uncommon and we could not find any extensive research or analysis
performed on Trivy. Our research is imperative to analyse the results of Trivy tool
on docker in an automated pipeline to harden docker image security.

• Another big contribution is statistical evaluation. While reviewing the literature
work we realised the lack of evaluation on the implementation results which we
tried to achieve in our proposal work.

The later part of this research has been divided and organised into sections. Section
[2] reflects on the research objective, related work in the field is discussed in section [3],
section[4] focuses on the research methodology followed to carry out the research. The
design and implementation has been specified in section [5] and [6]. The analysis of the
outcome and evaluation cover section [7]. The research paper has been concluded in
section [8] along with the future expectation.

Research question: How Container vulnerabilities be detected leveraging the CICD
pipeline?

2 Objectives

The key objective of the research and the technique being used are as follows:

• To implement a test bed for scanning the docker images.

2



• To automate the process from pulling the docker image and scan them for known
vulnerabilities of critical, high, medium and low severity.

• Automating the entire procedure is one of the other essential goals of the research.

• To evaluate the results and outcome of Clair and Trivy on multiple images.

3 Related Work

Cloud computing is a shared responsibility, the security in the cloud is a shared respons-
ibility too of the cloud provider and user. Virtualization is the key enabler of cloud
computing which supports services such as resource sharing, storage, network and data
among different users and stakeholders. Virtualization provides allocation of on-demand
cloud infrastructure services. Still traditional virtualization techniques have many short-
comings and limitations such as cost, cost of assembling, scalability, all these limitations
were tried to be solved with the containerization. A single command can be used to
scale up or down or deploy the containers within seconds. Docker ensures consistency
over several different platforms and environments. When it comes to containers, docker
is a popular choice for docker services among organisations. The security concerns and
vulnerabilities pose a great threat to the underlying system or the environment they are
deployed over. There are several factors responsible for security issues in docker images,
one being the corrupt image which is not scanned for vulnerabilities prior to deployment.
In this research we have followed an automated approach to scan the vulnerable docker
images in continuous integration and continuous deployment pipeline.

In this section of the paper, several research literature has been deeply analysed for
the purpose of literature review to understand the already existing work in this field of
Devsec-ops and how our research is niche in terms of the methodology, research approach
and tools etc. The one question that can be put up over here is that it depends on the
source from where the docker image in question is being extracted, perhaps as per the
studies University et al. (2017a) where almost 356,218 images were examined from both
community and official repository. Henceforth, the challenge of selecting an image for
scanning becomes a critical aspect of the research. University et al. (2017a) focused their
study on docker images and had some important findings, the study claimed to have
found almost 180 vulnerabilities in the images. Beside this, they also found out how
vulnerabilities from parent images can transfer to child images. The study revealed a lot
of security concerns in docker images which can be considered as one of the key evidence
for the need to develop, find and implement some mechanism to secure docker images by
scanning them in the development cycle.

Another study of Computer Forensics et al. (2017) focuses on the security issues
on the fact that docker containers possess a kernel shared architecture which makes it
easy for external malicious security issues to penetrate into the containers. Yang et al.
(2021) also deep dives into the security challenges of containers at different layers in
cloud environments mainly at container, kernels and orchestration layer. The solution
and protection discussed in the study revolves around sandboxing, using namespaces and
limiting resource usage however it lacks any solution or any mechanism to secure docker
container images.There have been several other studies regarding the docker security, one
such security issue has been addressed in Combe et al. (2016), an Orchestrator solution
was proposed to solve some of the security however the study lacks any evidence of the

3



Docker Vulnerability Scanning Techniques

Related Work Docker Detection
Tech

Evaluation Clair Trivy

University et al.
(2017a)

X X

of Computer Forensics
et al. (2017)

X X X

Combe et al. (2016) X

Wenhao and Zheng
(2020)

X

Pathirathna et al.
(2017)

X X

Pinnamaneni et al.
(2022)

X X X

Yang et al. (2021) X X X

Sengupta et al. (2021) X X

Reeves et al. (2021) X X X

Singh et al. (2019) X X X

Mahajan and Mane
(2022)

X X

University et al.
(2017b)

X X X

Abhishek and
Rajeswara Rao (2021)

X X X

Duarte and Antunes
(2018)

X X X

Shameem Ahamed
et al. (2021)

X X

Brady et al. (2020) X X X X

Kwon and Lee (2020a) X X

Tunde-Onadele et al.
(2019)

X X X X

Table 1: Classification of Researches based on scanning techniques

4



testing of the solution. Wenhao and Zheng (2020) points out the vulnerabilities in docker
on several aspects and how the vulnerabilities different on the basis of communication
among the host and images, image transmission and system isolation. However the
vulnerability research lacks audit and mechanism to exploit or scan the present security
vulnerabilities.

The work carried out in Pathirathna et al. (2017) proposes a testing framework for
the developers to scan their docker images having little to no knowledge about the entire
testing process however the framework has been set leveraging Kubernetes mainly and
lacks the deep analysis over docker, along with detention techniques in the work by Ma-
hajan and Mane (2022) on kubernetes. Pinnamaneni et al. (2022) uses machine learning
techniques to implement a mechanism to scan docker images however the implementa-
tion was not successful to find some high priority vulnerabilities in the image such as
DoS which were evident in the docker image, in our research we have tried to implement
an automated testbed which should be able to scan at least the evident high priority
CVEs. Sengupta et al. (2021) Study shows another approach to harden the security of
docker containers where an application is built to incorporate the mandatory security in
the docker containers, however the approach to harden the security of the containers is
quite different then the approach and technique we have taken into consideration , our
research is focused on an active testing environment where the existing vulnerabilities on
a docker container images can be detected and later can be mitigated for better security.

As discussed earlier there could be multiple vectors for container vulnerabilities, the
study in Reeves et al. (2021) has covered container kernel bugs, run time bugs and mis
configuration. The research is conducted on 59 run time vulnerabilities CVEs, the study
lacks the image vulnerabilities. Our study focused on image vulnerabilities CVEs. Our
research in question is implemented using the Gitlab CICD pipeline, study in Singh et al.
(2019) has covered the integration of different tools in Gitlab CICD. Code integration
to automate the process of development, building, testing and deployment, the compar-
ison of Gitlab CICD and jenkins for better usage has been made, in our project we are
using Gitlab CICD with integrated testing tools in it to automate the entire process of
vulnerability scanning.

Static analysis is crucial in detecting vulnerabilities and malicious viruses at an early
stage of the development process. In our research we have built a test bed in CICD
pipeline with scanning tools integrated in the automated pipeline to harden the security
scanning of the vulnerable docker images. In paper University et al. (2017b) a frame
has been provided named as DIVA, the tool to scan statically used in the framework is
Clair, Tunde-Onadele et al. (2019) used Clair tool only, however in our setup we have
used Clair and Trivy to implement the best possible test bed for scanning vulnerable
images. The DIVA tool only scanned for docker community repositories and their corres-
ponding images, in our research we scanned for images from unofficial sources as well to
understand the state of vulnerabilities on the images. Another difference is the approach
and mechanism used to carry out the entire research process, automating the process is
one of the major striking distinguishing factors. Similar research work and study has
been shown in Abhishek and Rajeswara Rao (2021) where tools like SonarQube and
VirusTotal have been used unlike our setup. Compared to our work the implementation
and evaluation lacks an architectural security framework, a better approach could be to
incorporate security at each layer.

Another similar work in Duarte and Antunes (2018) is depicted where not just the
scanning using SCA tools were performed, some patch work work was also analysed. The

5



research revealed how the SCA tools were not effective enough, in our research we have
tried to use a combination of tools which could possibly give some meaningful results. The
tools used in our work can easily be manipulated in any language unlike in Duarte and
Antunes (2018) which was limited to one programming language. Shameem Ahamed et al.
(2021) categorised the images based on operating system, component and language. Later
security issues were identified on the images which can help in security audits; perhaps
there was no solution for the vulnerability. There is no mechanism provided in the study
for the audit. Our research is backed by Brady et al. (2020) in which auditing tools such
as Anchore has been used for testing docker images in Brady et al. (2020) on images from
docker official registry,our research will be exploring other tools from unofficial repository.
A model named DIVDS is proposed by Kwon and Lee (2020a) which follows a different
approach by calculating a vulnerability score of the images for evaluation.

4 Methodology

For research methodology we followed a deep analysis approach to examine the best
resources and practices that can be incorporated to achieve the desired setup for the
research and results. The main concern and focus has always been automation of the
entire process since the initial phase. The methodology phase began by searching about
the open source resources that can easily be practised without any hassle. The field in
which this research falls is cloud plus DevSecOps, where security is tried to be integrated
in the DevOps. The field of research is the joint collaboration between operations, devel-
opment and security. Automating the process in the DevSecOps is entirely essential as
the security. Rangnau et al. (2020)

Jenkins and Gitlab CICD were the options for the pipeline which will be the imple-
mentation for the test bed of the docker image testing for the vulnerabilities. In this
section we will first discuss how Gitlab was selected as a better choice and CI CD for
the purpose of our research. Continuous Integration(CI) and Continuous delivery(CD)
is one the most common and well known practices followed for the swift delivery of new
features. In order to achieve the fast delivery all the stages required to deploy a safe
software are done automatically in a pipeline. Traditional security management is not
enough to support this fast delivery in a pipeline. To secure this pipeline and to secure
the docker images we have built a pipeline with tools incorporated in the CICD pipeline.
While researching about the docker container security we realised the need of automating
the security testing of docker containers and how this area of research is important. Our
research finds about the Gitlab CICD catalyst for all the informed decisions made while
implementing the setup. The automation of the process will majorly unfold in two stages
: Continuous Integration (CI) and Continuous Deployment (CD) :

Continuous Integration(CI): Integration of code from different sources like de-
velopers or different gitlab runners are integrated in this stage. Bugs, errors and security
issues can be detected and fixed at an early stage. The docker images on which scanning
would be performed will be built in this stage, once the build is successful the image will
be pushed to gitlab private registry. This stage which is termed as jobs in teh gitlab will
be triggered only after the code changes has been pushed to the Gitlab repo. Once the
docker image is pulled, scanning tools will be integrated into the pipeline to scan the
docker image against known vulnerabilities and CVEs. The entire process will be auto-
mated. Once the image is scanned and vulnerabilities are detected, evaluation based on

6



our selected parameters will be performed to analyse the results. The results and security
reports generated will decide for the execution of the continuous deployment stage which
is the next stage of the pipeline or the cluster environment.

Continuous Deployment(CD): Docker images once scanned in the Continuous In-
tegration are deployed in this stage only if they pass the previous stage. Set of automated
acceptance tests are also integrated in the deployment pipeline to verify if there is any
regression due to system failure. This stage can also be used to identify if there are any
errors that have occurred by variance in the runtime environment. In our setup we have
automated all the process and testing however some manual testing can also be included
before pipeline shifts to the next stage. When all the stages and jobs are passed the
docker can be automatically deployed to the production environment. We are notified if
any errors occur or the pipeline fails abruptly, in such cases the pipeline is also stopped
automatically.

Another important question was docker images which needs to be researched for
the purpose of research methodology. We built and scanned the docker images in the
pipeline, the choice of docker container images was made consciously. Cern docker image
cc7 and was used for the scanning Further details about the image configuration has been
discussed in section 5. Once the docker image was selected we created a docker file in
our CICD pipeline and incorporated all the tools required for carrying out research. We
researched for Gitlab extension to add docker files and tool code to our pipeline to make
our design setup function. 31 (2011) Once the code was refracted and working we scanned
for the vulnerabilities on the images. The results were analysed. After the implication,
we evaluated the result on the basis of extensive vulnerabilities scanned by both the tools
Clair and Trivy detected vulnerabilities. We evaluated the results and finding of both the
tools based on the vulnerabilities already present on the image, we also analysed how the
tools are different for scanning vulnerability on the docker images. How the results of the
tools differ and which tool might be preferable over the other based on the results drawn
from the tools. Additionally we analysed the scanning results of two different images to
test the accuracy of the design setup of the implementation.

5 Design Specification

The framework or the architecture we researched and set up for the purpose of our research
work mainly revolves around the Gitlab CI CD that we had to build from scratch as per
our requirements and suitable to meet the original research proposal. To lessen the burden
of security concern we had to integrate vulnerability scanning tools Clair and Trivy into
the CI CD pipeline and automating the entire process. The setup is expected to be fully
automated, faster, low cost since all the resources are open source. Moreover the CI CD
pipeline should be able to achieve the static analysis and complete automation for the
developers. This section of the paper will look at some of the requirements necessary for
the design and different components of the framework used. Below are the requirements
for the Gitlab CI CD before any implementation of the security tools:

• Requirement1 Build time: Quick build time is one of the very initial require-
ments, ensuring that every static security scanning and build commit does not
exceed 10 minutes for execution and can allow fast build fixes.

• Requirement2 Parallel Pipeline jobs: CI CD pipeline should be able to run
all the different tests in parallel separate jobs, the test can be Unit, functional,

7



regression or security test at multiple abstraction levels. Parallel running if jobs
can ensure a speedy execution.

• Requirement3 Multi-versions test: The pipeline should be able to smoothly
test multiple versions of branches and commits.

• Requirement4 Testing every commit: Every commit made to the pipeline
should be triggering the pipeline process

• Requirement5 Necessary building: Buggy build and codes should be avoided.
The pre-built images should not require frequent updating.

• Requirement6 Elastic strategy: The deployment should be fully supported by
configuration methods provided by the pipeline. Some systems can be deployed by
some vulnerabilities where build failure is set to true or pass; however systems like
docker images can not be deployed with vulnerabilities. The CI CD pipeline job
failure state can be customised as per need. Other strategies that require attention
are selecting the tests and at which stage of the CI CD process they need to be
executed.

• Requirement7 Vulnerability and Exposures reporting: The pipelines should
not just terminate or fail the job but also provide meaningful, human read errors
that could be fixed.

• Requirement8 Flexible testing and scanning: The pipeline should be able to
integrate the security testing tools easily as per the application of containers.

Once the requirements discussed above are taken care of, we will discuss docker and
the docker container images along with the tool selection. The integration of the scanning
tool in our CICD pipeline is also explained in the later part.

Docker: Docker containers, an open source technology based on the foundations of
advanced container engineers. Docker was developed by DotCloud in 2013. Container
technology overcame some of the limitations and challenges faced in virtualization. Con-
tainers use Linux kernel features, Cgroups and Namespaces to run independently. Ini-
tially Docke was based on Linux Container isolation(LXC). Kwon and Lee (2020a) The
approach followed in the architecture consisting of client and servers are loosely coupled.
All the components of docker being independent makes it a popular choice. Containers
are nothing but a running instance which are termed as docker images. These docker im-
ages build the containers of docker, images are created as per the requirement and usage.
Once an image is created it is uploaded to a trusted docker repository where anyone can
easily access the image hasslefree.

Docker Images Deployment process: As discussed earlier docker containers are
built on the basis of their images. Docker image is nothing but a qualitative package
containing all the files , applications, middleware, OS, library and network configuration.
The built image is uploaded to image repo, which can be used by users. Repositories can
either be public or private. If an image is uploaded without any parameters through a
docker pull image: name tag command then by default it is uploaded to Docker Hub.
Same can be uploaded to private just by providing a private repository information in
command. Diagram shows the process of the docker image being deployed after being
built.Kwon and Lee (2020a) The same image can be created as a container just run
command, after this command when performed through the docker client. Docker makes

8



a copy of the image, adding a layer on top of the base docker image to create the container.
User sees an integrated view of the container as a single file system which is a docker
image structure with multiple layers in it. Tasks that are performed by users such as
apt-get install/upgrade are recorded in the container layer.

Figure 1: Docker container workflow Kwon and Lee (2020b)

Integration of Security scanning tool in CICD Pipeline: This section is an overview
of the approach followed for the integration of the scanning tools in the Pipeline along
with the requirements for a successful integration. The requirement for the security
scanning tools in an iterative process, for initial the basic requirement was to create a
basic initial version of the Gitlab CICD pipeline using .yml file.Rangnau et al. (2020)
The detailed description of the implementation and design architecture is discussed in 7
The requirements for the pipeline to function and the integration of tools are discussed
in the same section. The two security scanning and testing tools are decided for the final
implementation depending on the requirements of the research. Furthermore details of
the tools selected and their setup is discussed in 7. After the implementation of the tools
it was time to test the execution of the pipeline. The evaluation, accuracy and testing
outcomes and results were also the point of concern.

Tool selection: The tools that we used in our research were based on a few require-
ments of our research. The key being CLI(Command line interface), in order to integrate
our pipeline and for the entire process being automated we looked for CLI based tools
and selected which were open source and can easily be used. The first tool is : Trivy:
Trivy is a versatile open source tool from Aqua Security 24 (2019) for scanning docker
images in several OS packages such as Alpine, openSUSE leap, CentOS and Oracle Linux
etc. Aqua Security acquired Trivy in 2019, later they became responsible for developing
and maintaining it. Trivy can easily be integrated in Continuous Integration (CI) like

9



Gitlab, Travis, CircleCI, Jenkins and Github actions. It is also available as an extension
for IDEs such as jetbrains and vim. There are no prerequisites to download libraries or
other to make it work which makes its installation easier. Trivy has also the feature of
scanning in application dependencies such as Bundler, npm, yarn and Pipenv. There has
been several reasons to select Trivy as one of the tools which are discussed below:

Ease of use: Trivy is easy and simple in terms of usability; it does not require any
launching of a database.
Pipeline integration: Trivy can easily be integrated with continuous integration
pipelines such as Gitlab, Jenkins, CircleCI, and TravisCI which makes Trivy a suitable
choice for a research project like ours. Trivy requires only an image or artefact to be
specified to start and is simple. The scanning is fast as well and scans within seconds.
Unlike other tools scanning time is faster in Trivy and does not require any maintenance.
In-Depth Report: Like Clair Trivy also provides an extensive report about the CVE
scanned by the tools and provides the basic information about the found CVEs.
Features: Trivy was found to have scanned extensive and comprehensive vulnerabilities
in comparison to other scanners available. Trivy also has multiple OS packages source
to update the CVE vulnerability database such as CentOS(package image used in our
project), Ubuntu, Red Hat Enterprise Linux, Universal base image, Oracle Linux, etc.
Trivy also supports multiple application dependencies. The accuracy rate of the result
by Trivy was also higher, especially with CentOS package images. One major factor
to choose Trivy as the another scanning tool in our research project was the lack of
literatures on the tool. We researched thoroughly but could not find any solid specific
evidence of Trivy tool evaluation in a CICD pipeline through research papers or academic
literature Trivy is just not limited to Containers but it can also target:

• AWS

• Kubernetes

• Virtual machines

• File system

• Git repository

Trivy can help to find not just containers vulnerabilities but also:

• Misconfiguration and IaC issues

• Sensitive secrets

• Common vulnerabilities and exposures (CVEs)

• Supply chain security (SBOM)

Integration of the tool in our CI CD pipeline and explanation of the artefact is explained
in the section 6.

Clair: Clair is an open source project which provides tools for the monitoring of the
containers security through static scanning of the docker container images. 26 (2019)
While the user is working with containers they are also working with a part of the OS.
It is essential to understand the vulnerabilities present in the libraries on the containers.

10



Vulnerabilities are continuously imported from known sources into the docker images in
order to generate new vulnerabilities that pose a security threat to the docker containers.
Clair scanning works by frequently updating its vulnerability data from different sources
and exposes API for the users to invoke and perform scans on the containers. Clair
scans and provides notifications based on the database from Common vulnerabilities and
Exposures(CVEs) and similar databases from Ubuntu, Debian and RedHat.26 (2019)
Clair supports multiple programming languages such as Python.There has been several
reasons to select Clair as one of the tools which are discussed below:
Ease of Use: Clair requires the launching of the DB and service after the service is
launched the tools are ready to work just by a command however tools like Anchore
additional launching of engineer containers and separately require editing of config scripts
to be connected to CLI Services. Moreover, the integration of tools like Anchore is not
as convenient as Clair. Clair requires few commands to run its service which further
makes it an optimum choice of tools, unlike others that require tons of commands to
work. Integration of Clair is relatively easy and can easily be launched in old containers
in the pipeline. Pipeline integration: Clair requires a single docker-compose file which
launches a DB, and starts scanning just by a single command. The clocked time of
launching Clair in the pipeline and making it run is relatively less and clocked at an
average of 0:45 seconds. It can spin up fast as compared to other tools such as Anchore or
Docker bench which require rewriting of the configuration file and requires a few different
environment variables and several images for launching. In-Depth Report:Clair gives
an extensive in-depth report of the found CVEs with the list of packages and links to
them. Features: Clair can be easily integrated with Jenkins, Gitlab, and Kubernetes.
Clair tool also has GUI, policies can also be applied which are less complicated to use,
unlike other tools. Another major factor that makes Clair our choice of tool for scanning
is its built-in drivers. Clair works with extensive CVE sources such as Ubuntu CVE
tracker, NIST, and Debian. The Clair vulnerability database gets regularly updated with
regard to several built-in drivers such as NIST, Red Hat security data, Debian security
bug tracker, Alpine SecDB, etc. Since the CVE data sources are regularly updated in
sync with the Clair vulnerability database the tool scans updated CVEs as well.

Integration of the Clair tool in the CICD pipeline and the challenges faced are dis-
cussed in the section 6. The figure below captures the entire design :

11



Figure 2: Continuous Integration and Deployment process

6 Implementation

In this section the entire implementation of the research design will be explained, all the
steps taken to make the implementation will also be captured in detail.

Configuration

Gitlab Enterprise edition 15.7.0

Trivy tool Version : v0.35.0

Clair tool Version : v8.0

Docker Image 1 cern/cc7-base

Docker Image 2 centos/httpd-24-
centos7

Table 2: Configuration

Implementation of Gitlab CICD Pipeline:
Some prerequisites for creating a Gitlab pipeline are to have a project created in the

Gitlab after registering an account where we can use the CICD pipeline. Pipelines are
essential for continuous integration, development, delivery and deployment, it compromise
of several components but the ones which are essential to make a pipeline function are:

12



• Pipeline Jobs: Pipeline jobs compile and test the code written. Jobs are respons-
ible for defining the actual goal we are trying to achieve through the pipeline.

• Pipeline Stages: Stages define the order in which the jobs are supposed to run.
32 (2016) In order to run the jobs in the pipeline we need to configure the Gitlab
runner.33 (2019) Runners is an application which works with Gitlab to make its
jobs run, no job can run without a runner which makes it one of the essential steps.
Configuring the Gitlab runner is essential, users get an option to install the runner
on their local machine or to use a shared runner from the browser itself which
does not require any additional installation. For our project we worked with both
shared as well as locally installed runners. However by the end of implementation
the Shared runner from the browser was successful enough to make every job run
in our pipeline. Once the runner was available we created a .gitlab.ci.yml file in our
root repository. 34 (2014) The stages that are defined in the Gitlab yml file are:

• Build: This stage is responsible for building our docker images.

• Test: This stage would be responsible for testing, scanning our images with the
integrated tools. After the pipeline and runner are ready, it’s time to incorporate
the docker image through its docker file into the pipeline. In the repository files we
created a docker file and committed all the changes. Later we wrote the code for
pulling the docker images from the repository into the CICD pipeline. For scanning
we added the code of Trivy and Cair tool in the testing stage of the pipeline through
the CICD pipeline editor . After adding the code of both the tools, it was reflected
for errors and then we moved onto running the pipeline. We ran the pipeline from
the CICD tab. The pipeline reflected a passed status and the Jobs : Container build
and Testing were successful, we critically analysed and evaluated the findings of the
tools. The entire implementation led to an automated pipeline which worked on its
own just by a click after all the requirements and configurations were successfully
met.

7 Evaluation

This section provides a logical analysis on the result of the research carried out. We
have discussed how docker images are vulnerable and need to be scanned before being
deployed. The evaluation section of our design and implementation will provide the final
results and comparison using appropriate parameters to support how our research has
been able to successfully achieve the research question and the initial proposal. For the
purpose of this evaluation we will compare how the two tools Clair and Trivy which are
incorporated in our automated CI CD pipeline as discussed in sections 4 and 6 scanned
the vulnerability on the vulnerable docker images which we have used for scanning. Both
the tools are incorporated in the pipeline and were used to scan the vulnerabilities on the
two images to draw an evaluation comparison and also to analyse how the two tools are
scanning on different images.

• Image 1 : cern/cc7-base

• Image 2 : centos/httpd-24-centos7

13



We evaluated how Trivy and Clair provided different results in terms of the type of
vulnerabilities they scanned depending on their severity level. To our surprise, the Trivy
tool gave commendable results in terms of the number of vulnerabilities and was able to
scan for a good number of vulnerabilities on our base image with some Major, Minor and
Information severity vulnerabilities. Clair tool also detected vulnerabilities but were low
in numbers as compared to the Trivy on the same docker images, however Clair found
some critical vulnerabilities as well. For the evaluation we compared:

• The vulnerabilities discovered by the Trivy and Clair tool from the official repository
of the packages in the docker image to check whether the design implementation is
successful to find the official known vulnerabilities mentioned in the documentation.
26 (2019)

• We analysed the vulnerabilities scanned by the two tools on the basis of their
severity on both the images.

• We also analysed how the two tools Trivy and Clair’s results were different from
each other on the same image in order to find the vulnerabilities.

• We also analysed our design framework on 2 images to evaluate how the imple-
mentation is working for different images.

The docker image file on which the evaluation is performed:
Image 1 : cern/cc7-base Image 2 : centos/httpd-24-centos7

The main findings are from the testing stage, once the container build is successful the
pipeline CI moves onto the next job of testing. Below are the results from Trivy tool on
the docker image :

Figure 3: Test Results - Trivy

14



Above screenshot captures just a section of results with found vulnerability, with the
Trivy tool we could successfully detect a total of 1037 vulnerabilities in which few were
Major, Minor and Informative severity known vulnerabilities that were present on the
Cern/cc7 docker images. On Image 2 centos/httpd-24-centos7 Trivy detected a total of
1174 vulnerabilities in which few were Major, Minor and Informative severity.

Graph1. Shows the total vulnerabilities scanned by Trivy on Image 1 : cern/cc7-base

Figure 4: Graph 1

Graph2. Shows the results of scan by Trivy on Image 2 : centos/httpd-24-centos7

Figure 5: Graph 2

15



The Graph3. Analysis total vulnerabilities scanned by Trivy on Image 1 : cern/cc7-
base and Image 2 : centos/httpd-24-centos7

Figure 6: Graph 3

Clair Tool: Clair tool managed to detect vulnerabilities on both docker images, though
the results of scan on the second image were very low in numbers as compared to Trivy
tool. One thing to note here is in Clair, when the pipeline detected vulnerabilities on
the images, the running job got terminated with an error. On Image 1 cern/cc7 Clair
detected a total of 3 vulnerabilities in which of High Severity, on Image 2 centos/httpd-
24-centos7. Clair detected a total of 80 vulnerabilities, in which few were Critical, high,
medium and low severity.

The Graph4. Shows the total vulnerabilities scanned by Clair on Image 1 : cern/cc7-
base

The Graph5. Shows the results of scan by Clair on Image 2 : centos/httpd-24-centos7

16



Figure 7: Graph 4

Figure 8: Graph 5

The Graph6. Analysis total vulnerabilities scanned by Clair on Image 1 : cern/cc7-
base and Image 2 : centos/httpd-24-centos7

17



Figure 9: Graph 6

Both the tools scanned different number of vulnerabilities on both the images, Trivy
discovered more vulnerabilities then Calir however, surprisingly Clair discovered some
critical vulnerabilities on Image 2 : centos/httpd-24-centos7 which Trivy could not dis-
cover, also Trivy did not detect much vulnerabilities of High severity on Image 1 :
cern/cc7-base as Clair did.

The Graph7. Analyses the vulnerabilities detected by Clair and Trivy as per their
Severity on the Image 1 : cern/cc7-base as Clair

Figure 10: Graph 7

18



The Graph8. Analyses the vulnerabilities detected by Clair and Trivy as per their
Severity on the Image 2 : centos/httpd-24-centos7

Figure 11: Graph 8

Analysis of the result by our design implementation: In the table below we have
taken few of the vulnerabilities majorly of HIGH severity from scanning tools Clair and
trivy, the packages present in the docker image 1(cern/cc7-base) are from redhat official
repository 35 (2015) which is mentioned in the clair vulnerabilities reports and results as
well 12 represents the information about the official location to check for the vulnerability
source, along with the vulnerable package and CVE present in it. For 13 we have analysed
few such vulnerabilities on both the tools from the official repository.

Figure 12: Clair scanning results

19



Figure 13: Examples of Vulnerabilities

Apart from these vulnerabilities there are many more vulnerabilities which were de-
tected by the Trivy and Clair tool as additional vulnerabilities. While doing the literature
survey we found other research work which has used some similar tools in different settings
and environments however to scan docker images. In the next section we will discuss some
of the impacts of these major vulnerabilities detected through our design implementation.
Most of the major attacks detected in the scanning can pose great security concern to the
docker images, on researching deep it was found these issues are common in other docker
images mainly Alpine 3.16 and docker kibana 6.8.16 Synk (2021) Therefore, reminding
the research question again which is to explore docker security through an automated
design implementation.

CVE-2015-8385 Impact Analysis: This vulnerability allows remote users to execute
denial of services on the docker images.

CVE-2016-1568 Impact Analysis: This vulnerability is exploited by malicious actors
who can execute arbitrary code on the host system over which docker image might be
used.

CVE-2022-42898 Impact Analysis: This vulnerability can also execute a denial of
services, and can also let applications crash. The similar vulnerability is detected in
Alpine 3.16 docker image. Dotnet (2020)

8 Conclusion and Future Work

In this research paper we proposed a method to harden the security of vulnerable docker
images through an automated pipeline, which can detect the vulnerabilities on the docker
images. We successfully implemented the pipeline and executed the integration of the
scanning tools to strengthen docker image security. The implementation automates the
process of building, testing/ scanning the docker images, and giving the CVE reports
which make it convenient for anyone to use the setup for scanning the docker images.

Docker images are a popular choice over virtual machines but they still face a lot of
security challenges. The method we have used mainly consists of an automated CI CD
pipeline which has scanning tools Clair and Trivy integrated in it to detect the vulner-

20



abilities present on the vulnerable docker images. Through the implementation setup we
successfully managed to scan the docker images and detected the vulnerabilities present
on both the images which validated that it can be easily used to scan other docker im-
ages as well. The results were imperative from both the scanning tools for Image 2
: centos/httpd-24-centos7, on which Clair tool detected some critical vulnerabilities as
well. However on Image 1 : cern/cc7-base, Trivy gave better scanning and detection
outcomes. This research contributed majorly in automating the process of detecting the
docker vulnerabilities by Trivy and Clair. There is not much research work done us-
ing Trivy, hence this paper can be a great contribution to understanding the scanning
of docker and the implementation, working of Trivy and successfully detected vulnerab-
ilities in the 2 images used which had some critical, high, medium, and low vulnerabilities.

For the future we would like to incorporate a few other tools to improve the detec-
tion and also use multiple vulnerable docker images. We will also consider exploring
dynamic scanning as well on the docker images, it could be something to explore and
learn from. Also in this research we could not implement the dynamic analysis, which
would be something to explore in future. Introducing machine learning techniques for
detection and dynamic analysis can also be a greater extension of the work performed so
far.

References

(2011). Gitlab ci/cd.

(2014). Tutorial: Create and run your first gitlab ci/cd pipeline.

(2015). Access to 24x7 support and knowledge.

(2016). Ci/cd pipelines.

(2019). Gitlab runner.

(2019). Trivy documentation.

(2019). What is clair?

Abhishek, M. K. and Rajeswara Rao, D. (2021). Framework to secure docker containers.
In 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainab-
ility (WorldS4), pages 152–156.

Brady, K., Moon, S., Nguyen, T., and Coffman, J. (2020). Docker container security in
cloud computing. In 2020 10th Annual Computing and Communication Workshop and
Conference (CCWC), pages 0975–0980.

Combe, T., Martin, A., and Di Pietro, R. (2016). To docker or not to docker: A security
perspective. IEEE Cloud Computing, 3(5):54–62.

Dotnet (2020). Alpine 3.16 base image vulnerable to cve-2022-42898 issue 4229
dotnet/dotnet-docker.

21



Duarte, A. and Antunes, N. (2018). An empirical study of docker vulnerabilities and
of static code analysis applicability. In 2018 Eighth Latin-American Symposium on
Dependable Computing (LADC), pages 27–36.

Kwon, S. and Lee, J.-H. (2020a). Divds: Docker image vulnerability diagnostic system.
IEEE Access, 8:42666–42673.

Kwon, S. and Lee, J.-H. (2020b). Divds: Docker image vulnerability diagnostic system.
IEEE Access, 8:42666–42673.

Mahajan, V. B. and Mane, S. B. (2022). Detection, analysis and countermeasures for
container based misconfiguration using docker and kubernetes. In 2022 International
Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS),
pages 1–6.

Manu, A. R., Patel, J. K., Akhtar, S., Agrawal, V. K., and Murthy, K. N. B. S. (2016).
Docker container security via heuristics-based multilateral security-conceptual and
pragmatic study. In 2016 International Conference on Circuit, Power and Computing
Technologies (ICCPCT), pages 1–14.

of Computer Forensics, Z. J. I., Jian, Z., Forensics, I. o. C., of Computer Forensics, L.
C. I., Chen, L., of Posts, C. M. A. Z. J. C. U., Publicati, T., of Posts, Z. J. C. U.,
and counts1Available for Download1Citation count21Downloads (cumulative)1, T. P.
Y. P. (2017). A defense method against docker escape attack: Proceedings of the 2017
international conference on cryptography, security and privacy.

Pathirathna, P. P. W., Ayesha, V. A. I., Imihira, W. A. T., Wasala, W. M. J. C., Koda-
goda, N., and Edirisinghe, E. A. T. D. (2017). Security testing as a service with docker
containerization. In 2017 11th International Conference on Software, Knowledge, In-
formation Management and Applications (SKIMA), pages 1–7.

Pinnamaneni, J., S, N., and Honnavalli, P. (2022). Identifying vulnerabilities in docker
image code using ml techniques. In 2022 2nd Asian Conference on Innovation in
Technology (ASIANCON), pages 1–5.

Profile, T. G. A. V. (2016). 5 container security risks every company faces.

Rangnau, T., Buijtenen, R. v., Fransen, F., and Turkmen, F. (2020). Continuous security
testing: A case study on integrating dynamic security testing tools in ci/cd pipelines.
In 2020 IEEE 24th International Enterprise Distributed Object Computing Conference
(EDOC), pages 145–154.

Reeves, M., Tian, D. J., Bianchi, A., and Celik, Z. B. (2021). Towards improving container
security by preventing runtime escapes. In 2021 IEEE Secure Development Conference
(SecDev), pages 38–46.

Seals, A. T. and Seals, T. (2015). Poorly secured docker image comes under rapid attack.

Sengupta, R., Sai Prashanth, R. S., Pradhan, Y., Rajashekar, V., and Honnavalli, P. B.
(2021). Metapod: Accessible hardening of docker containers for enhanced security. In
2021 IEEE International Conference on Electronics, Computing and Communication
Technologies (CONECCT), pages 01–06.

22



Shameem Ahamed, W. S., Zavarsky, P., and Swar, B. (2021). Security audit of docker
container images in cloud architecture. In 2021 2nd International Conference on Secure
Cyber Computing and Communications (ICSCCC), pages 202–207.

Singh, C., Gaba, N. S., Kaur, M., and Kaur, B. (2019). Comparison of different ci/cd
tools integrated with cloud platform. In 2019 9th International Conference on Cloud
Computing, Data Science Engineering (Confluence), pages 7–12.

Synk (2021). Vulnerability report for docker kibana:6.8.16.

Tunde-Onadele, O., He, J., Dai, T., and Gu, X. (2019). A study on container vulnerab-
ility exploit detection. In 2019 IEEE International Conference on Cloud Engineering
(IC2E), pages 121–127.

University, R. S. N. C. S., Shu, R., University, N. C. S., University, X. G. N. C. S., Gu,
X., University, W. E. N. C. S., Enck, W., University, A. S., Mnchen, T. U., Boston, U.
o. M., and et al. (2017a). A study of security vulnerabilities on docker hub: Proceedings
of the seventh acm on conference on data and application security and privacy.

University, R. S. N. C. S., Shu, R., University, N. C. S., University, X. G. N. C. S., Gu,
X., University, W. E. N. C. S., Enck, W., University, A. S., Mnchen, T. U., Boston, U.
o. M., and et al. (2017b). A study of security vulnerabilities on docker hub: Proceedings
of the seventh acm on conference on data and application security and privacy.

Wenhao, J. and Zheng, L. (2020). Vulnerability analysis and security research of docker
container. In 2020 IEEE 3rd International Conference on Information Systems and
Computer Aided Education (ICISCAE), pages 354–357.

Yang, Y., Shen, W., Ruan, B., Liu, W., and Ren, K. (2021). Security challenges in the
container cloud. In 2021 Third IEEE International Conference on Trust, Privacy and
Security in Intelligent Systems and Applications (TPS-ISA), pages 137–145.

23


	Introduction
	Objectives
	Related Work
	Methodology
	Design Specification
	Implementation
	Evaluation
	Conclusion and Future Work

