

Configuration Manual

MSc Research Project Cyber Security

Benetto George Student ID: x21124485

School of Computing National College of Ireland

Supervisor: Imran Khan

National College of Ireland

MSc Project Submission Sheet

School of Computing

	Benetto George	
Student Name:		
Student ID:	X21124485	
Drogramma	MSc Cybersecurity	2022 -2023
Programme:	MSc Research Project	•
Module:	Imran Khan	
Lecturer:		
Submission Due Date:	15 December 2022	
Project Title	AdaBoost IDS to detect Zero Day attacks and reduce f	false positives
Froject fille:	691	
Word Count:	Page Count:7	

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

. .	Benetto George
Signature:	
	15-12-2022
Date:	

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office	Jse	Only	1
--------	-----	------	---

Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Benetto George Student ID: x21124485

1 Introduction

This document discusses how the AdaBoost Intrusion Detection System code should be implemented and executed. The project has been coded in Python programming language.

2 System Requirements

Code Editor: Visual Studio Code Python Version: version3 Operating System Windows 7 or later

Anaconda software has been downloaded and installed on the system. It can be downloaded from the official website given below ("Anaconda | Anaconda Distribution," n.d.),

(https://www.anaconda.com/products/individual)

At the stage given in the image below check both checkboxes

Figure 1: anaconda installation

2.1 Package details

Here in this project, Anaconda software is also used, which is a distribution for Python programming languages for data science. It simplifies package management and deployment. An environment, named "ml_env" is created. It consists of the necessary machine learning python libraries that are custom installed which in turn help to run the whole code. A small number of libraries that are present in the environment are:

- Numpy: Used for array operations
- Sklearn: Used for selection of features and for train-test splitting
- Pandas: Used to read the dataset
- Matplotlib: Is used for data visualization

3 Setting up the environment

- Extract IDS_FULLCODE.zip folder given at the end of the Thesis report. If you are downloading the artefact from moodle, make sure to download the dataset from Kaggle and paste it in the **Project_Dataset** folder of IDS_FULLCODE > Machine Learning.
- Extract the ml_env.zip folder from the OneDrive link and paste it into OS(C:) > users > user (it may vary depending on your system) > anaconda3 > envs
- Open anaconda prompt or Windows Command Prompt (cmd) in the project folder
- In the prompt, type command "activate ml_env" (in windows command prompt), or,
- In the anaconda prompt, type "conda activate ml_env"

4 Dataset Source

Dataset used in this research project is taken from an online platform named Kaggle which allows users to access and download various dataset samples. The dataset used has been downloaded and added in the IDS_FULLCODE folder named Project_Dataset.

5 Code Execution

Anaconda prompt or cmd has been opened. Now, run the following commands,

• Run command: python train.py || To train the model

\blacksquare C\Windows\System32\cmd.e \times + \vee	- 🗆 X				
D:\NCI\Research MEthods\Thesis Proj\IDS_FULLCODE\Machine Learning>activate ml_env					
(ml env) D:\NCI\Research MEthods\Thesis Proi\IDS FULLCODE\Machine Learning>python train.py					
DoS attacks-Slowloris 10990					
DoS attacks-GoldenEye 41508					
Benign 996077					
Name: Label, dtype: int64					
Malicious 52498					
Benign 996077					
Name: Label, dtype: int64					
Flow Byts/s 4921					
dtype: int64					
Series([], dtype: float64)					
Dst Port Protocol Flow Duration Tot Fwd Pkts Idle Std Idle Max Idle Min	Label				
5000 80 6 12000099 4 0.0 6994310 6994310 M	Malicious				
5001 80 6 11999501 4 0.0 6994337 6994337 M	Malicious				
5002 80 6 12000439 4 0.0 6995703 6995703 M	Malicious				
5003 80 6 11999660 4 0.0 6994306 6994306 M	Malicious				
5004 80 6 12001203 4 0.0 7000221 7000221 M	Malicious				
799995 53 17 2529 1 0.0 0 0	Benign				
799996 53 17 357 1 0.0 0 0	Benign				
799997 53 17 457 1 0.0 0 0	Benign				
799998 3389 6 2085036 8 0.0 0 0	Benign				
799999 53 17 370 1 0.0 0 0	Benign				
Maticious 4/851					
Benign 747449					
Name: Labet, dtype: int64					

Figure 2 running train.py

• Run command: python predict.py || To predict whether the packet is Malicious or Benign based on the trained model.

To add the data shown below and in the GUI, there is text file called Test.txt with the values of the 20 features.

$\overline{\mbox{cx}}$ C:\Windows\System32\cmd.e $ imes$ + $ imes$	—	×
(ml_env) D:\NCI\Research MEthods\Thesis Proj\IDS_FULLCODE\Machine Learning>		
(ml_env) D:\NCI\Research MEthods\Thesis Proj\IDS_FULLCODE\Machine Learning>		
(ml_env) D:\NCI\Research MEthods\Thesis Proj\IDS_FULLCODE\Machine Learning>python predict.py		
Enter Dst Port : 0		
Enter Protocol : 0		
Enter Tot Fwd Pkts : 3		
Enter Tot Bwd Pkts : 0		
Enter Bwd IAT Min : 0		
Enter Bwd IAT Mean : 0		
Enter Bwd IAT Max : 0		
Enter Idle Max : 56321077		
Enter Idle Mean : 56320579		
Enter Idle Min : 56320081		
Enter Fwd IAT Max : 56321077		
Enter Flow IAT Max : 56321077		
Enter Flow IAT Std : 704.27835		
Enter Fwd IAT Min : 56321077		
Enter Fwd IAT Mean : 56320579		
Enter Bwd IAT Std : 0		
Enter Idle Std : 704.27835		
Enter Bwd IAT Tot : 0		
Enter Flow Duration : 112641158		
Enter Fwd IAT Tot : 112641158		
0		
***********Result************		
Benign		
(ml_env) D:\NCI\Research MEthods\Thesis Proj\IDS_FULLCODE\Machine Learning>		

Figure 3 running predict.py

• Run command: python gui.py || To show the Graphical User Interface which takes user input and displays the result.

Intrusion Detection			
Home Check			
		INPUT	
Dst Port :	80	Fwd IAT Max :	53247583
Protocol :	6	Flow IAT Max :	53247583
Tot Fwd pkts :	15	Flow IAT Std :	13431392.2
Tot Bwd Pkts :	3	Fwd IAT Min :	192
Bwd IAT Min :	30997119	Fwd IAT Mean :	7643258.42
Bwd IAT Mean :	52991401	Bwd IAT Std :	31104611.9
Bwd IAT Max :	74985683	Idle Std :	20661603
Idle Max :	53247583	Bwd IAT Tot :	105982802
ldle Mean :	23674282	Flow Duration :	107005621
Idle Min :	6655865	Fwd IAT Tot :	107005618
		Predict	

Figure 4: GUI 1

Figure 5: GUI 2

6 References

Anaconda | Anaconda Distribution [WWW Document], n.d. . Anaconda. URL https://www.anaconda.com/products/distribution (accessed 12.6.22).