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Abstract 

 

With the increase in popularity, gaming has become one of the major industries, and 

cheating in video games is also increasingly common nowadays as everyone wants the 

top spot. Reduced game traffic is usually caused due to the drastic increase in cheaters, 

and, at the same time, cheats sold online, resulting in the lower income generated for the 

studios. 

 

Because of the cheaters in the gaming industry, game developers have developed and 

deployed numerous anti-cheating strategies. Installing an application with kernel-level 

access to the client's system is mandatory for a few anti-cheat strategies, and most 

gamers are concerned about their security and privacy in this aspect. A few issues with 

the OS caused by the anti-cheat software have been documented; the registered users 

have claimed that the application reportedly leads to upgrades failing. 

 

With machine learning methods and statistical analysis, this study seeks to identify 

cheaters from players while protecting one's privacy and personal information. 

 
 

1 Introduction 
 

1.1 Motivation and Goal to be achieved 

 
Selling cheats for gaming is a multi-million-dollar industry. The sellers charge more than 
$500 for an elite cheat, according to Santiago Pontiroli, a security researcher at Kaspersky 
Lab. Santiago Pontiroli began looking into malware-like cheats in video games after 
becoming tired of hackers in online matches. The "as-a-service" model for cheats was a 
prevalent business model for selling malware on dark web underground forums. There are 
certain subscription services that keep the money for the malware authors while giving 
customers updates and new services. In an interview, a man who was involved in using 
cheats told the world that sellers don’t care about the service; in particular, they exaggerate 
about the cheats used on hacked accounts to promote the use of cheats.  
 
Cheats and malware share the same core and are very similar in many aspects. Because, in 
essence, it’s an untrusted code that tries to hide under the radar and exploit information just 
like malware. 
 
Cheat developers must be skilled in coding since they protect and hide unwanted code from 
anti-cheats. Anti-cheats are not only used for gaming but are also used in other areas, such as 
online exams. For example, during exams, anti-cheats can limit the tasks which are 
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performed during the test. If it detects anything suspicious, it reports it to the authority and 
terminates the test. 
 
Most contemporary anti-cheating software may violate players' privacy and are usually 
ineffective. Considering this, this research aims to investigate machine learning methods for 
identifying cheaters and hackers using non-­invasive data sandboxed methods. 
 
The objective is to identify cheaters using machine learning models and game data. Our AI 
model was trained with 400 images of the dataset. This model was trained using YOLOv55 
and can be used to detect enemies and players in real time. The results from this model would 
help add a layer of security checks that helps anti-cheat software’s traditional approach. 
 

1.2 Cheating in online gaming and its impact 

 
Due to the increase in gaming influencers, the online gaming world now has more players 
than ever. And since the number of gamers has bloomed, cheating in these games occurs 
more frequently than before. According to a global survey conducted by Irdeto in 2018, 
approximately 88% of online gamers have experienced foul play, or their gaming experience 
has been negatively impacted due to cheaters at least once in their lifetime.  
 
The results from this survey, which was conducted in six different countries, also show that 
77% of gamers in China would stop playing a game once they realize that the other players 
involved are cheating, and 48% of these gamers are seen to buy less content of the game 
which ultimately shrinks the revenue generation of the gaming companies. 68% of people 
surveyed in South Korea said it’s very frequent to face a cheater in today's online gaming era. 
(Widespread Cheating in Multiplayer Online Games Drives Gamers in Asia Pacific Away - 
Irdeto, n.d.). As a result of widespread cheating, the South Korean government took 
legislative action to make cheating illegal and punishable with fines and prison time (South 
Korea Cracks down on Cheaters with Law Targeting Illicit Game Mo, n.d.). In addition, there 
have been at least a hundred arrests of cheaters in China in 2018. These arrests resulted from 
cooperation between the game company Tencent and the Chinese police. 
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2 Literature Review and Background 
 

2.1 Literature Review and Related Work 

 

To this day, the academic research conducted on the various anti-cheat techniques is 

approximately lower than the amount of research conducted on any other related topics. This 

could be because almost all anti-cheat research is considered a proprietary right in private-

sector companies. Most companies maintain their anti-cheat methods as a secret to ensure 

that it is hard to be hacked; failing to do so could compromise the security of the games 

developed. 

 

In the lack of academic research, many companies like Riot took it upon themselves to 

keep their customers updated about their anti-cheat technologies by sharing general-level 

information through blogs or posts. (Papadopoulos et al., 2017; Thurimella & Mitchell, 2009; 

“Valve Challenged over Anti-Cheating Tools,” 2014) 

 

Websites such as Hackmag discuss cybersecurity in detail. These websites mention 

methods to reverse engineer anti-cheat techniques. (Deceiving Blizzard Warden – HackMag, 

n.d.) 

The writers of these websites always use a pen name to publish their findings since there 

is a high chance of facing legal consequences if the gaming companies ever decide to take 

action on them. The fear of facing legal consequences is one of the other main reasons for not 

having many published academic research papers on this topic. The legal consequences could 

be more difficult to deal with if the findings are about any commercial item.  

 

Because of the low amount of research done directly on anti-cheat methods during 

gaming due to the reasons explained above, this thesis has limited resources to explore. 

 

The authors of the paper "Player behavioural modelling for video games" by Sander C.J. 

Bakkes, Pieter H.M. Spronck, and Giel van Lankveld employ a method to forecast user 

behaviour in various scenarios. Four models—Action, Tactical, Strategic, and Player 

profiling—are used to do this. The authors discovered that while foreseeing a player's next 

move in a board game like chess or ludo may sound intriguing, it is not always possible in 

more complex gameplays like first-person shooters (FPS). (Bakkes et al., 2012) 

 

The authors of another paper on "Behaviour-Based Cheat Detection in Multiplayer 

Games with Event-B," by Tian, H and Brooke, P.J in 2012, used their framework to 

distinguish between biassed and unbiased gameplay players while also providing a proactive 

strategy to defend the gameplay's fairness rather than a passive one. Despite not being cent 

percent accurate, they did demonstrate that behavioural models might be used as an anti-

cheating mechanism and that this strategy will help ban cheaters. (Tian et al., 2012) 
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The paper "Cheat-proof playout for centralised and distributed online games" by N.E. 

Baughman and B.N. Levine discusses real-time cheating detection. However, it has the 

drawback of network lag. This does safeguard distributed server-less architecture as well as 

server-client architecture. An anti-cheating protocol is proposed in the paper. They also 

enhanced the asynchronous synchronisation protocol, which is serverless, has provable anti-

cheating guarantees, is resilient in the face of packet loss, and significantly improves 

communication performance. (Baughman & Levine, 2001) 

 

P. Laurens, R. F. Paige, P. J. Brooke, and H. Chivers published a paper titled "A Novel 

Approach to the Detection of Cheating in Multiplayer Online Games" that included one of 

their efforts on the subject. The authors of this work offered a proof-of-concept approach to 

spot dishonesty and cheating by examining gamers' behaviour. The design has different 

vulnerabilities and attack techniques than other anti-cheat systems. The proof-of-concept 

successfully distinguishes between most cheating and non-cheating players, according to 

their demonstration. (Laurens et al., 2007) 

 

We now have a better grasp of all the anti-cheat methods currently in use thanks to a 

paper by Helsingin yliopisto. The author discusses how all the comparative analyses were 

conducted not only between various techniques but also between different implementations 

of those techniques that were compared and evaluated according to numerous criteria. The 

authors examined how machine learning methods and cloud gaming will impact anti-cheat 

technology in the future. (Lehtonen, n.d.) 

 

2.2 Background 

 

Client-server networking is used in modern first-person shooter games. The server, which 

controls the game and specifies the game's initial state, is an authoritative host. Any player 

who connects to the server to play the game is considered the client. The server's primary 

duty is to maintain the game state up to date; as often as feasible, game state updates are 

made to improve the gaming experience. 

 

2.2.1 Client and Server Example 

 

Most FPS (First Person Shooting) games have similar architecture, as shown in figure 1. 

For instance, let’s take the matchmaking consisting of 10 players, with 5 in each team 

competing against each other for victory. The aim of the game is simple: with 24 rounds, any 

team to win 13 rounds wins the game. Being in a shooting game, each player must try and kill 

the enemy team with a different set of abilities like flash (stun grenade) or shields, etc., and 

are allowed to have various weapons each round as per their budget after each round. The 

game server maintains all this so that fairness is maintained. 

For each winning round or kill, there is a bonus of economy through which they can buy 

expensive guns or gear.  
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Figure 1: Architecture of FPS Game Example 
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3 Research Methodology 
 

Fig 1 Explains the flow and architecture of the game. In steps 1 to 3, Authentication, the 

Player signs in with his unique email and password, which is then authenticated by the server 

and generates a token or UID (unique Identity) to distinguish each player. 

In step 4, matchmaking, the client sends a request to the server that it wants to be placed 

in the matchmaking queue.  In step 5, the player is teamed up with four others and five in the 

enemy team. They must select an agent out of many agents with different abilities. Step 6 

initiates the game, where the server rechecks all the info and ensures fairness is maintained. 

7, the Gameplay loop is the main game loop that consists of constant information sharing 

between the client and the server. Loop is held till the game has reached its conclusion.  The 

server's main task is updating the game state as frequently as possible; the tick rate is 

maintained to do this. Tick Rate controls how frequently the server updates its game state per 

second.  

 

3.1.1 Tick Rate  

  

 A tick rate, for example, a server with a 35 tickrateS , will update its game state every 1 / 

35 ≈ 0.028  seconds.  

A tick is nothing but a single snapshot of the game state. It can be considered a unique 

incremental timestamp where total ticks equal {tick(0) = 1, tick(1) = tick(0)  + 1, …, tick(N)  

= tick(N­1) + 1 }; such that tick(0) gives the initial game state and tick(N) gives the final 

game state.  

 

The client and server will almost always be on separate ticks because of network latency. 

Figure 2 highlights this. Given a server with a tick rate of 35. While the server is at tick 120 

(giving current_tick(S) = 120), the client is still at tick 115 (giving current_tick(C) = 115) due 

to the traversing of previous ticks still happening. 

 

 

Figure 2: The architecture of FPS Game (Example) 

 

Similarly, the server’s latest response received from the client is for tick 115 (response(C) = 

115).  
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This means the total latency between the server and client is: latency(S, C) = current_tickS ­ 

response(C)   = 120 - 115  =  5 ticks. 

 

Elaborating further in this example: for a 35 tick rate server, the amount of time the client has 

to wait before getting a response is 1 / tickrate(S) * latency(S, C) = 1 / 35 * 5  = 0.14 seconds 

Having to wait that long before a game responds to a client’s input makes the experience 

laggy and slow for the player. To counteract this, FPS games implement a feature known as 

the client-side prediction. 

 

3.1.2 Client-side prediction 

 

In client-side prediction, the player's local inputs are simulated by the client while the server 

responds. Let's imagine a client sends information to advance. The client will anticipate the 

game state based on the player's input rather than waiting for the server to react. Any 

discrepancies in the client's prediction will be fixed to match the servers after receiving the 

server's answer. These contradictions often result in jump scenarios but usually only happen 

when the ping or tick rate is very high. 

3.1.3 Recoil Pattern 

 

In almost all FPS games, when the trigger is pulled, it is known to cause recoil and is 

expected to distract the player from their aim. This also reduces the player’s accuracy and is 

measured by the time the gun is fired. This method is considered one to weed out unreliable 

players and keep the more accurate ones in the game. 

 

The game discussed in this thesis is valorant. This game has distinct, yet random recoil 

patterns distinctively set for every weapon. As seen in figure 3 that the recoil pattern from the 

beginning causes the player to focus on the center and then veer in different directions like 

upwards, downwards, and sideways. Figure 3 also shows how the players adjust their focus to 

oppose a gun’s recoil. It has been noted that even if the players are highly skilled, it becomes 

impossible for them to compensate for recoil, and it is a noted difference between a player 

and a cheater since cheaters can compensate for recoil without much trouble. Through a few 

reports, it can be confirmed that cheaters can use AI, which would help them to either predict 

the recoil patterns or, in some cases, even avoid the recoil stage all at once using high-level 

cheats. 
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Figure 3:  Recoil pattern for each gun (source - se7en.ws) 

 

3.1.4 Types of Cheat this thesis aims to counter - 

 

A. Wallhack 

 

Wallhacks gives the cheater the ability to look through the walls, As the AI can detect enemy 

and as it’s running a lightweight model on the client machine, it sees what the cheater can so 

if the cheater is using wallhacks the AI would be able to detect it within seconds. 

 

 

Figure 4: Wallhack (Source- oyunhacker.com) 
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B. Aimbot 

 

Aimbots allow the cheater to always hit a shot with 100% accuracy. AI could detect this by 

simply calculating if the player gun and enemy head were in the range of a one-tap instant 

kill. Most of the weapons are known to decrease the damage if it has been shot from a certain 

distance or if the line of sight matches the enemy head and player gun or vice versa.  

 

In this project, AI was ready to detect enemy heads and player guns. However, the cheat 

detection at this stage couldn’t be completed due to time constraints and lack of information 

availability. 

 

C. Recoil Removal 

 

 

Figure 5: Recoil comparison B/W fair and cheating player 

 

As Fig 3 and 5 above shows, each gun has unique (recoil handling) yet random (bullet spread 

and time) bullet spray; as the player gun is detected, the movement of the player can be 

tracked to see the recoil is happening and is within limits, if not and there’s no recoil even 

when the gun is fired continuously it would be detected easily. 

 

D. Speed Hacks 

 

It gives the user a speed advantage that can be used to gain an advantage over the enemy. It 

can be detected using simple math while detecting enemies and their updated tick rate or even 

from frames per second. 

 

E. Prediction based on statistical analysis 

 

The server can gather a variety of player information, including the number of victories, kills, 

and deaths, as well as any other useful information the game may have. For instance, in the 

first person. 

 

In a shooter, the game server may keep track of the player's kill totals per game and compare 

them to game averages and the player's historical kill totals. The system may flag a player for 

further assessment by a human reviewer if their kill total sufficiently deviates from the 

average for the world or their prior performance. The issue with these systems is that it is 

frequently difficult to draw a firm conclusion from statistical evidence. So, it should only be 

used as a preliminary test, and then other tests should be performed to rule any judgment. 
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One such anti-cheat system that employs these kinds of server-side statistical techniques is 

FairFight. It is highly efficient and included in many well-known games, including Titanfall 

2, Tom Clancy's The Division, and Battlefield V. 

 

 

Figure 6: Theoretical flow for statistics-based anti-cheat layer 

 

3.2 Exploratory Data Analysis: 
 

The dataset used in the research is original and captured from the game called Valorant. It 

comprises 400 total images. To create the AI model, Yolov5 is used; it stands for - You Only 

Look Once. The most popular vision AI in the world, YOLOv5, is a product of Ultralytics 

open-source research on upcoming vision AI techniques. It incorporates best practices 

developed over thousands of hours of research and development. To annotate all the images 

and create a valid data set, MakeSense is used. The following labels were used to annotate 

what AI should look for. 
 

Label Info 

Enemy Detects the enemy with a red aura around them. For Speed or wall hacks, 

Enemy_head Detects the enemy’s head. For any instant, kill without any intended bullet hit. 

Player_Gun Detect the player’s gun to check the player's pointing position and recoil. 

 
Table 1:  Labels 

 

Fig 7 Labels density depicts through a bar graph the total number of labels it found, through 

colorogram concerning xywh space where it found the label, it is density where most of the 

labels are found. In plots.py (Collab notebook by YOLOv5): 
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def plot_labels(labels, names=(), save_dir=Path('')): 
top-right is the rectangles you labelled. (x,y,w,h) is the label of each instance label. 

 
 

 

Figure 7: Labels Density 

 

Folder structure - YOLOv5 to read the data set requires a specific folder structure, as shown 

in figure 8. 
 

 

Figure 8: Folder Structure 

 

The train folder contains training data, and val contains validation data. In this research, each 

folder had 400 different images split between the two folders; these were enough to create a 

good enough model that could detect labels within a reasonable rate. 
 

3.3 YOLOv5 variants 
 

YOLOv5 has four different variants of models — s, m, l, and x. Each model offers a distinct 

detection accuracy and performance, as demonstrated below. 
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Figure 9: Source：(ultralytics, n.d.) 

 

The accuracy (mAP) of v5 s is 55.6 with 17GFlops (computational power). For the research 

testing purpose, the Yolov5s variant is used as it’s the fastest, a 

nd it would work pretty well for just testing just 3 objects detection.  

 

 

Figure 10: YoloV5 command used to train the model 

 

As in fig 10, the command to train the model depicts how many images should be in the 

batch (16), image resolution (640) with 3 epochs and using YOLOV5s. 

 

 

Figure 11: (Source - Ultralytics/Yolov5: YOLOv5         in PyTorch > ONNX > CoreML > TFLite, 

n.d.) 

 

As a comparison, YOLOv3-416 had a mAP of 55.3 for 65.86 GFlops. 
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YOLOv5 s achieves the same accuracy as YOLOv3-416 with about 1/4 of the computational 

complexity. 
 

The output from YOLOv5 
When given a 640x640 input image, the model outputs the following 3 tensors. 
 

(1, 2, 81, 81, 86) # anchor 0 
(1, 2, 41, 41, 86) # anchor 1 
(1, 2, 21, 21, 86) # anchor 2 
 

The breakdown of the output is [cx, cy, w, h, conf, pred_cls(80)]. (ultralytics, n.d.) 
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4 Implementation 
 

The current study focuses on accurately detecting each object in real-time using a custom 

data set with 400 images (frames from a recorded gameplay video, and then all the non-

essential frames are manually deleted for a good data set). Images are stored and annotated 

into subfolders using makesense.ai, as YOLO requires. YOLO detects objects based on 

predictions in a region and then scores them using a pre-trained model. (Redmon & Farhadi, 

2018). 

 

 

Figure 12: Classification of images using Makesense.ai 

After the dataset goes through Yolo, it outputs and weights all the results to the output folder 

after the ai is trained. Weights are then used to run AI locally using a small python script that 

captures the screen and then passes through the AI to detect the Player, Player gun and 

Enemy. Further implementation could not be completed due to the low bandwidth of time 

available and technical disadvantages at this stage. As explained above, each cheats the paper 

tends to solve is possible with more time. 

 

 

Figure 13: Output/ Results folder 
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5 Evaluation 
 

With 200 images in Training folder and 200 in val folder, 400 images with three labels were 

used to train the model, that was manually cleaned for a good result. All the outputs below 

from the same data set. The performance metric used to compute the performance is  

selected as Accuracy along with precision, recall and f1-score for each label class. 

 

 

Figure 14: P Curve 

P curve or precision curve shows positive predictions, that can be calculated by true/ correct 

positives divided by sum of true and false positives. Through the graph – most of the values 

lie between the region 0.8 and 1 (higher the better) so the model is pretty accurate given small 

dataset used. 
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Figure 15: R_Curve 

Just like P-Curve, R Curve can be calculated true positives divided by sum of true positives 

and false negatives. Ranging between 0 and 1 (higher the better), according to the graph 

above it is observed again that the model is very precise. 

 

P-R curve gives the better understanding of the precision by combining both the above 

graphs, with most values above 88%. Enemy head accuracy is low due to its small size on the 

screen compared to other objects. It can be improved over time, but still pretty good. 
 

 

Figure 16: PR Curve 

 
 
 
 
 
 
 
 



17 
 

 

 

With F1 curve same trend is followed, most values above 80% and the best value is 0.89 or 

89% at confidence 0.389. 
 

 

Figure 17: F1 Curve 

 

 

Confusion matrix below helps in visualizing accuracy or performance of the algorithm. It 

again follows the same trend with pretty accurate separated values for each of the three 

labels. 

 

 

 

Figure 18: Confusion Matrix 
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Figure 19: Training Results 

 

5.1 Discussion 
 

Below are the training results, visually showing what AI detects, it is clear in almost all cases 

it accurately detects all the labels even tiny heads of the character in some cases. But during 

the actual live test using training best.pt model, it may sometimes give false positives. 

 

 

Figure 20: Training results 

 

There’s no to almost negligible performance loss when GPU is being used by both AI and the 

game. 
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Figure 21: live capture during match (detections on the top left) 

 

Again, the motive is to implement this using client server architecture or going completely on 

server using cloud gaming that would eliminated even the slightest lag. But that comes with 

its own challenges. These challenges can be resolved with ever growing technologies and 

transfer speeds but it’s a task for future work. 
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6 Conclusion and Future Work 
 

This study presents a practical way to differentiate cheaters from actual gamers using AI. 

The paper it is presented what cheats could be detected, i.e., Wallhack, Aimbot, No Recoil, 

Speed hacks and skill parity or cheater detection using behaviour analysis is also suggested in 

the paper.  

 

Due to a lack of information and papers on anti-cheat, unless the proprietary companies 

implement these methods, it would have to be built on top of anti-cheat by the developers, as 

top multiplayer games use almost no open-source anti-cheat engine. 

 

With the time constraints and lack of information available on the web, this paper 

concludes that with AI, it is possible in future to get rid of all the cheaters and cheat-selling 

organisations that are feeding on the company’s fortune till the cheats get more complex. 

 

Future work would include, writing the code to use the AI data to detect the cheats in real 

time, removing the client server architecture and going only cloud and finally implementing 

behavioural analysis that would help detect and suspicious player. 

 
Opinions: Our research shows that AI holds immense promise in the field of anti-cheat 

and can be a game-changer for the industry. 

 

Considerations: While AI offers a potential solution, the implementation and 

deployment of AI-based anti-cheat systems will require careful consideration and planning, 

especially with regards to privacy and data protection. 

 

Challenges: The implementation of AI-based anti-cheat systems faces several challenges, 

including the need for real-time detection, the requirement for cloud-based architecture, and 

the complexity of behavioural analysis. 

 

Application: AI-based anti-cheat systems have the potential to be applied across various 

gaming platforms and genres, providing a unified solution to the issue of cheating. 

 

Scale of Impact: If successfully implemented, AI-based anti-cheat systems have the 

potential to significantly impact the gaming industry, increasing the fairness and integrity of 

gaming experiences and reducing the financial losses incurred by cheating. 

 

In conclusion, this study highlights the potential for AI to revolutionize the anti-cheat 

landscape. Further research is needed to address the challenges and considerations outlined 

above, but we are optimistic about the future of anti-cheat technology. 
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