

Detect Cheater in Online Gaming using AI

MSc Research Project

MSc. In Cyber Security

Sparsh Bajaj

Student ID: X0228392

School of Computing

National College of Ireland

Supervisor: Dr. Ross Spelman

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Sparsh Bajaj

Student ID:

X0228392

Programme:

MSc. In Cyber Security

Year:

2022

Module:

Research Internship

Supervisor:

Ross Spelman

Submission Due

Date:

15/10/2022

Project Title:

Detect Cheater in Online Gaming using AI

Word Count:

4500 Page Count: 20

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Sparsh Bajaj

Date:

14/12/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Detect Cheater in Online Gaming using AI

Sparsh Bajaj

X2028392

Abstract

With the increase in popularity, gaming has become one of the major industries, and

cheating in video games is also increasingly common nowadays as everyone wants the

top spot. Reduced game traffic is usually caused due to the drastic increase in cheaters,

and, at the same time, cheats sold online, resulting in the lower income generated for the

studios.

Because of the cheaters in the gaming industry, game developers have developed and

deployed numerous anti-cheating strategies. Installing an application with kernel-level

access to the client's system is mandatory for a few anti-cheat strategies, and most

gamers are concerned about their security and privacy in this aspect. A few issues with

the OS caused by the anti-cheat software have been documented; the registered users

have claimed that the application reportedly leads to upgrades failing.

With machine learning methods and statistical analysis, this study seeks to identify

cheaters from players while protecting one's privacy and personal information.

1 Introduction

1.1 Motivation and Goal to be achieved

Selling cheats for gaming is a multi-million-dollar industry. The sellers charge more than
$500 for an elite cheat, according to Santiago Pontiroli, a security researcher at Kaspersky
Lab. Santiago Pontiroli began looking into malware-like cheats in video games after
becoming tired of hackers in online matches. The "as-a-service" model for cheats was a
prevalent business model for selling malware on dark web underground forums. There are
certain subscription services that keep the money for the malware authors while giving
customers updates and new services. In an interview, a man who was involved in using
cheats told the world that sellers don’t care about the service; in particular, they exaggerate
about the cheats used on hacked accounts to promote the use of cheats.

Cheats and malware share the same core and are very similar in many aspects. Because, in
essence, it’s an untrusted code that tries to hide under the radar and exploit information just
like malware.

Cheat developers must be skilled in coding since they protect and hide unwanted code from
anti-cheats. Anti-cheats are not only used for gaming but are also used in other areas, such as
online exams. For example, during exams, anti-cheats can limit the tasks which are

2

performed during the test. If it detects anything suspicious, it reports it to the authority and
terminates the test.

Most contemporary anti-cheating software may violate players' privacy and are usually
ineffective. Considering this, this research aims to investigate machine learning methods for
identifying cheaters and hackers using non-­invasive data sandboxed methods.

The objective is to identify cheaters using machine learning models and game data. Our AI
model was trained with 400 images of the dataset. This model was trained using YOLOv55
and can be used to detect enemies and players in real time. The results from this model would
help add a layer of security checks that helps anti-cheat software’s traditional approach.

1.2 Cheating in online gaming and its impact

Due to the increase in gaming influencers, the online gaming world now has more players
than ever. And since the number of gamers has bloomed, cheating in these games occurs
more frequently than before. According to a global survey conducted by Irdeto in 2018,
approximately 88% of online gamers have experienced foul play, or their gaming experience
has been negatively impacted due to cheaters at least once in their lifetime.

The results from this survey, which was conducted in six different countries, also show that
77% of gamers in China would stop playing a game once they realize that the other players
involved are cheating, and 48% of these gamers are seen to buy less content of the game
which ultimately shrinks the revenue generation of the gaming companies. 68% of people
surveyed in South Korea said it’s very frequent to face a cheater in today's online gaming era.
(Widespread Cheating in Multiplayer Online Games Drives Gamers in Asia Pacific Away -
Irdeto, n.d.). As a result of widespread cheating, the South Korean government took
legislative action to make cheating illegal and punishable with fines and prison time (South
Korea Cracks down on Cheaters with Law Targeting Illicit Game Mo, n.d.). In addition, there
have been at least a hundred arrests of cheaters in China in 2018. These arrests resulted from
cooperation between the game company Tencent and the Chinese police.

3

2 Literature Review and Background

2.1 Literature Review and Related Work

To this day, the academic research conducted on the various anti-cheat techniques is

approximately lower than the amount of research conducted on any other related topics. This

could be because almost all anti-cheat research is considered a proprietary right in private-

sector companies. Most companies maintain their anti-cheat methods as a secret to ensure

that it is hard to be hacked; failing to do so could compromise the security of the games

developed.

In the lack of academic research, many companies like Riot took it upon themselves to

keep their customers updated about their anti-cheat technologies by sharing general-level

information through blogs or posts. (Papadopoulos et al., 2017; Thurimella & Mitchell, 2009;

“Valve Challenged over Anti-Cheating Tools,” 2014)

Websites such as Hackmag discuss cybersecurity in detail. These websites mention

methods to reverse engineer anti-cheat techniques. (Deceiving Blizzard Warden – HackMag,

n.d.)

The writers of these websites always use a pen name to publish their findings since there

is a high chance of facing legal consequences if the gaming companies ever decide to take

action on them. The fear of facing legal consequences is one of the other main reasons for not

having many published academic research papers on this topic. The legal consequences could

be more difficult to deal with if the findings are about any commercial item.

Because of the low amount of research done directly on anti-cheat methods during

gaming due to the reasons explained above, this thesis has limited resources to explore.

The authors of the paper "Player behavioural modelling for video games" by Sander C.J.

Bakkes, Pieter H.M. Spronck, and Giel van Lankveld employ a method to forecast user

behaviour in various scenarios. Four models—Action, Tactical, Strategic, and Player

profiling—are used to do this. The authors discovered that while foreseeing a player's next

move in a board game like chess or ludo may sound intriguing, it is not always possible in

more complex gameplays like first-person shooters (FPS). (Bakkes et al., 2012)

The authors of another paper on "Behaviour-Based Cheat Detection in Multiplayer

Games with Event-B," by Tian, H and Brooke, P.J in 2012, used their framework to

distinguish between biassed and unbiased gameplay players while also providing a proactive

strategy to defend the gameplay's fairness rather than a passive one. Despite not being cent

percent accurate, they did demonstrate that behavioural models might be used as an anti-

cheating mechanism and that this strategy will help ban cheaters. (Tian et al., 2012)

4

The paper "Cheat-proof playout for centralised and distributed online games" by N.E.

Baughman and B.N. Levine discusses real-time cheating detection. However, it has the

drawback of network lag. This does safeguard distributed server-less architecture as well as

server-client architecture. An anti-cheating protocol is proposed in the paper. They also

enhanced the asynchronous synchronisation protocol, which is serverless, has provable anti-

cheating guarantees, is resilient in the face of packet loss, and significantly improves

communication performance. (Baughman & Levine, 2001)

P. Laurens, R. F. Paige, P. J. Brooke, and H. Chivers published a paper titled "A Novel

Approach to the Detection of Cheating in Multiplayer Online Games" that included one of

their efforts on the subject. The authors of this work offered a proof-of-concept approach to

spot dishonesty and cheating by examining gamers' behaviour. The design has different

vulnerabilities and attack techniques than other anti-cheat systems. The proof-of-concept

successfully distinguishes between most cheating and non-cheating players, according to

their demonstration. (Laurens et al., 2007)

We now have a better grasp of all the anti-cheat methods currently in use thanks to a

paper by Helsingin yliopisto. The author discusses how all the comparative analyses were

conducted not only between various techniques but also between different implementations

of those techniques that were compared and evaluated according to numerous criteria. The

authors examined how machine learning methods and cloud gaming will impact anti-cheat

technology in the future. (Lehtonen, n.d.)

2.2 Background

Client-server networking is used in modern first-person shooter games. The server, which

controls the game and specifies the game's initial state, is an authoritative host. Any player

who connects to the server to play the game is considered the client. The server's primary

duty is to maintain the game state up to date; as often as feasible, game state updates are

made to improve the gaming experience.

2.2.1 Client and Server Example

Most FPS (First Person Shooting) games have similar architecture, as shown in figure 1.

For instance, let’s take the matchmaking consisting of 10 players, with 5 in each team

competing against each other for victory. The aim of the game is simple: with 24 rounds, any

team to win 13 rounds wins the game. Being in a shooting game, each player must try and kill

the enemy team with a different set of abilities like flash (stun grenade) or shields, etc., and

are allowed to have various weapons each round as per their budget after each round. The

game server maintains all this so that fairness is maintained.

For each winning round or kill, there is a bonus of economy through which they can buy

expensive guns or gear.

5

Figure 1: Architecture of FPS Game Example

6

3 Research Methodology

Fig 1 Explains the flow and architecture of the game. In steps 1 to 3, Authentication, the

Player signs in with his unique email and password, which is then authenticated by the server

and generates a token or UID (unique Identity) to distinguish each player.

In step 4, matchmaking, the client sends a request to the server that it wants to be placed

in the matchmaking queue. In step 5, the player is teamed up with four others and five in the

enemy team. They must select an agent out of many agents with different abilities. Step 6

initiates the game, where the server rechecks all the info and ensures fairness is maintained.

7, the Gameplay loop is the main game loop that consists of constant information sharing

between the client and the server. Loop is held till the game has reached its conclusion. The

server's main task is updating the game state as frequently as possible; the tick rate is

maintained to do this. Tick Rate controls how frequently the server updates its game state per

second.

3.1.1 Tick Rate

 A tick rate, for example, a server with a 35 tickrateS , will update its game state every 1 /

35 ≈ 0.028 seconds.

A tick is nothing but a single snapshot of the game state. It can be considered a unique

incremental timestamp where total ticks equal {tick(0) = 1, tick(1) = tick(0) + 1, …, tick(N)

= tick(N­1) + 1 }; such that tick(0) gives the initial game state and tick(N) gives the final

game state.

The client and server will almost always be on separate ticks because of network latency.

Figure 2 highlights this. Given a server with a tick rate of 35. While the server is at tick 120

(giving current_tick(S) = 120), the client is still at tick 115 (giving current_tick(C) = 115) due

to the traversing of previous ticks still happening.

Figure 2: The architecture of FPS Game (Example)

Similarly, the server’s latest response received from the client is for tick 115 (response(C) =

115).

7

This means the total latency between the server and client is: latency(S, C) = current_tickS ­

response(C) = 120 - 115 = 5 ticks.

Elaborating further in this example: for a 35 tick rate server, the amount of time the client has

to wait before getting a response is 1 / tickrate(S) * latency(S, C) = 1 / 35 * 5 = 0.14 seconds

Having to wait that long before a game responds to a client’s input makes the experience

laggy and slow for the player. To counteract this, FPS games implement a feature known as

the client-side prediction.

3.1.2 Client-side prediction

In client-side prediction, the player's local inputs are simulated by the client while the server

responds. Let's imagine a client sends information to advance. The client will anticipate the

game state based on the player's input rather than waiting for the server to react. Any

discrepancies in the client's prediction will be fixed to match the servers after receiving the

server's answer. These contradictions often result in jump scenarios but usually only happen

when the ping or tick rate is very high.

3.1.3 Recoil Pattern

In almost all FPS games, when the trigger is pulled, it is known to cause recoil and is

expected to distract the player from their aim. This also reduces the player’s accuracy and is

measured by the time the gun is fired. This method is considered one to weed out unreliable

players and keep the more accurate ones in the game.

The game discussed in this thesis is valorant. This game has distinct, yet random recoil

patterns distinctively set for every weapon. As seen in figure 3 that the recoil pattern from the

beginning causes the player to focus on the center and then veer in different directions like

upwards, downwards, and sideways. Figure 3 also shows how the players adjust their focus to

oppose a gun’s recoil. It has been noted that even if the players are highly skilled, it becomes

impossible for them to compensate for recoil, and it is a noted difference between a player

and a cheater since cheaters can compensate for recoil without much trouble. Through a few

reports, it can be confirmed that cheaters can use AI, which would help them to either predict

the recoil patterns or, in some cases, even avoid the recoil stage all at once using high-level

cheats.

8

Figure 3: Recoil pattern for each gun (source - se7en.ws)

3.1.4 Types of Cheat this thesis aims to counter -

A. Wallhack

Wallhacks gives the cheater the ability to look through the walls, As the AI can detect enemy

and as it’s running a lightweight model on the client machine, it sees what the cheater can so

if the cheater is using wallhacks the AI would be able to detect it within seconds.

Figure 4: Wallhack (Source- oyunhacker.com)

9

B. Aimbot

Aimbots allow the cheater to always hit a shot with 100% accuracy. AI could detect this by

simply calculating if the player gun and enemy head were in the range of a one-tap instant

kill. Most of the weapons are known to decrease the damage if it has been shot from a certain

distance or if the line of sight matches the enemy head and player gun or vice versa.

In this project, AI was ready to detect enemy heads and player guns. However, the cheat

detection at this stage couldn’t be completed due to time constraints and lack of information

availability.

C. Recoil Removal

Figure 5: Recoil comparison B/W fair and cheating player

As Fig 3 and 5 above shows, each gun has unique (recoil handling) yet random (bullet spread

and time) bullet spray; as the player gun is detected, the movement of the player can be

tracked to see the recoil is happening and is within limits, if not and there’s no recoil even

when the gun is fired continuously it would be detected easily.

D. Speed Hacks

It gives the user a speed advantage that can be used to gain an advantage over the enemy. It

can be detected using simple math while detecting enemies and their updated tick rate or even

from frames per second.

E. Prediction based on statistical analysis

The server can gather a variety of player information, including the number of victories, kills,

and deaths, as well as any other useful information the game may have. For instance, in the

first person.

In a shooter, the game server may keep track of the player's kill totals per game and compare

them to game averages and the player's historical kill totals. The system may flag a player for

further assessment by a human reviewer if their kill total sufficiently deviates from the

average for the world or their prior performance. The issue with these systems is that it is

frequently difficult to draw a firm conclusion from statistical evidence. So, it should only be

used as a preliminary test, and then other tests should be performed to rule any judgment.

10

One such anti-cheat system that employs these kinds of server-side statistical techniques is

FairFight. It is highly efficient and included in many well-known games, including Titanfall

2, Tom Clancy's The Division, and Battlefield V.

Figure 6: Theoretical flow for statistics-based anti-cheat layer

3.2 Exploratory Data Analysis:

The dataset used in the research is original and captured from the game called Valorant. It

comprises 400 total images. To create the AI model, Yolov5 is used; it stands for - You Only

Look Once. The most popular vision AI in the world, YOLOv5, is a product of Ultralytics

open-source research on upcoming vision AI techniques. It incorporates best practices

developed over thousands of hours of research and development. To annotate all the images

and create a valid data set, MakeSense is used. The following labels were used to annotate

what AI should look for.

Label Info

Enemy Detects the enemy with a red aura around them. For Speed or wall hacks,

Enemy_head Detects the enemy’s head. For any instant, kill without any intended bullet hit.

Player_Gun Detect the player’s gun to check the player's pointing position and recoil.

Table 1: Labels

Fig 7 Labels density depicts through a bar graph the total number of labels it found, through

colorogram concerning xywh space where it found the label, it is density where most of the

labels are found. In plots.py (Collab notebook by YOLOv5):

11

def plot_labels(labels, names=(), save_dir=Path('')):
top-right is the rectangles you labelled. (x,y,w,h) is the label of each instance label.

Figure 7: Labels Density

Folder structure - YOLOv5 to read the data set requires a specific folder structure, as shown

in figure 8.

Figure 8: Folder Structure

The train folder contains training data, and val contains validation data. In this research, each

folder had 400 different images split between the two folders; these were enough to create a

good enough model that could detect labels within a reasonable rate.

3.3 YOLOv5 variants

YOLOv5 has four different variants of models — s, m, l, and x. Each model offers a distinct

detection accuracy and performance, as demonstrated below.

12

Figure 9: Source：(ultralytics, n.d.)

The accuracy (mAP) of v5 s is 55.6 with 17GFlops (computational power). For the research

testing purpose, the Yolov5s variant is used as it’s the fastest, a

nd it would work pretty well for just testing just 3 objects detection.

Figure 10: YoloV5 command used to train the model

As in fig 10, the command to train the model depicts how many images should be in the

batch (16), image resolution (640) with 3 epochs and using YOLOV5s.

Figure 11: (Source - Ultralytics/Yolov5: YOLOv5 in PyTorch > ONNX > CoreML > TFLite,

n.d.)

As a comparison, YOLOv3-416 had a mAP of 55.3 for 65.86 GFlops.

13

YOLOv5 s achieves the same accuracy as YOLOv3-416 with about 1/4 of the computational

complexity.

The output from YOLOv5
When given a 640x640 input image, the model outputs the following 3 tensors.

(1, 2, 81, 81, 86) # anchor 0
(1, 2, 41, 41, 86) # anchor 1
(1, 2, 21, 21, 86) # anchor 2

The breakdown of the output is [cx, cy, w, h, conf, pred_cls(80)]. (ultralytics, n.d.)

14

4 Implementation

The current study focuses on accurately detecting each object in real-time using a custom

data set with 400 images (frames from a recorded gameplay video, and then all the non-

essential frames are manually deleted for a good data set). Images are stored and annotated

into subfolders using makesense.ai, as YOLO requires. YOLO detects objects based on

predictions in a region and then scores them using a pre-trained model. (Redmon & Farhadi,

2018).

Figure 12: Classification of images using Makesense.ai

After the dataset goes through Yolo, it outputs and weights all the results to the output folder

after the ai is trained. Weights are then used to run AI locally using a small python script that

captures the screen and then passes through the AI to detect the Player, Player gun and

Enemy. Further implementation could not be completed due to the low bandwidth of time

available and technical disadvantages at this stage. As explained above, each cheats the paper

tends to solve is possible with more time.

Figure 13: Output/ Results folder

15

5 Evaluation

With 200 images in Training folder and 200 in val folder, 400 images with three labels were

used to train the model, that was manually cleaned for a good result. All the outputs below

from the same data set. The performance metric used to compute the performance is

selected as Accuracy along with precision, recall and f1-score for each label class.

Figure 14: P Curve

P curve or precision curve shows positive predictions, that can be calculated by true/ correct

positives divided by sum of true and false positives. Through the graph – most of the values

lie between the region 0.8 and 1 (higher the better) so the model is pretty accurate given small

dataset used.

16

Figure 15: R_Curve

Just like P-Curve, R Curve can be calculated true positives divided by sum of true positives

and false negatives. Ranging between 0 and 1 (higher the better), according to the graph

above it is observed again that the model is very precise.

P-R curve gives the better understanding of the precision by combining both the above

graphs, with most values above 88%. Enemy head accuracy is low due to its small size on the

screen compared to other objects. It can be improved over time, but still pretty good.

Figure 16: PR Curve

17

With F1 curve same trend is followed, most values above 80% and the best value is 0.89 or

89% at confidence 0.389.

Figure 17: F1 Curve

Confusion matrix below helps in visualizing accuracy or performance of the algorithm. It

again follows the same trend with pretty accurate separated values for each of the three

labels.

Figure 18: Confusion Matrix

18

Figure 19: Training Results

5.1 Discussion

Below are the training results, visually showing what AI detects, it is clear in almost all cases

it accurately detects all the labels even tiny heads of the character in some cases. But during

the actual live test using training best.pt model, it may sometimes give false positives.

Figure 20: Training results

There’s no to almost negligible performance loss when GPU is being used by both AI and the

game.

19

Figure 21: live capture during match (detections on the top left)

Again, the motive is to implement this using client server architecture or going completely on

server using cloud gaming that would eliminated even the slightest lag. But that comes with

its own challenges. These challenges can be resolved with ever growing technologies and

transfer speeds but it’s a task for future work.

20

6 Conclusion and Future Work

This study presents a practical way to differentiate cheaters from actual gamers using AI.

The paper it is presented what cheats could be detected, i.e., Wallhack, Aimbot, No Recoil,

Speed hacks and skill parity or cheater detection using behaviour analysis is also suggested in

the paper.

Due to a lack of information and papers on anti-cheat, unless the proprietary companies

implement these methods, it would have to be built on top of anti-cheat by the developers, as

top multiplayer games use almost no open-source anti-cheat engine.

With the time constraints and lack of information available on the web, this paper

concludes that with AI, it is possible in future to get rid of all the cheaters and cheat-selling

organisations that are feeding on the company’s fortune till the cheats get more complex.

Future work would include, writing the code to use the AI data to detect the cheats in real

time, removing the client server architecture and going only cloud and finally implementing

behavioural analysis that would help detect and suspicious player.

Opinions: Our research shows that AI holds immense promise in the field of anti-cheat

and can be a game-changer for the industry.

Considerations: While AI offers a potential solution, the implementation and

deployment of AI-based anti-cheat systems will require careful consideration and planning,

especially with regards to privacy and data protection.

Challenges: The implementation of AI-based anti-cheat systems faces several challenges,

including the need for real-time detection, the requirement for cloud-based architecture, and

the complexity of behavioural analysis.

Application: AI-based anti-cheat systems have the potential to be applied across various

gaming platforms and genres, providing a unified solution to the issue of cheating.

Scale of Impact: If successfully implemented, AI-based anti-cheat systems have the

potential to significantly impact the gaming industry, increasing the fairness and integrity of

gaming experiences and reducing the financial losses incurred by cheating.

In conclusion, this study highlights the potential for AI to revolutionize the anti-cheat

landscape. Further research is needed to address the challenges and considerations outlined

above, but we are optimistic about the future of anti-cheat technology.

21

References

Bakkes, S. C. J., Spronck, P. H. M., & van Lankveld, G. (2012). Player behavioural

modelling for video games. Entertainment Computing, 3(3), 71–79.

https://doi.org/10.1016/j.entcom.2011.12.001

Baughman, N. E., & Levine, B. N. (2001). Cheat-proof playout for centralized and

distributed online games. Proceedings IEEE INFOCOM 2001. Conference on

Computer Communications. Twentieth Annual Joint Conference of the IEEE

Computer and Communications Society (Cat. No.01CH37213), 1, 104–113 vol.1.

https://doi.org/10.1109/INFCOM.2001.916692

Deceiving Blizzard Warden – HackMag. (n.d.). Retrieved November 7, 2022, from

https://hackmag.com/uncategorized/deceiving-blizzard-warden/

Laurens, P., Paige, R. F., Brooke, P. J., & Chivers, H. (2007). A Novel Approach to the

Detection of Cheating in Multiplayer Online Games. 12th IEEE International

22

Conference on Engineering Complex Computer Systems (ICECCS 2007), 97–106.

https://doi.org/10.1109/ICECCS.2007.11

Lehtonen, S. (n.d.). Comparative Study of Anti-cheat Methods in Video Games. 128.

Papadopoulos, P., Vasiliadis, G., Christou, G., Markatos, E., & Ioannidis, S. (2017). No

Sugar but All the Taste! Memory Encryption Without Architectural Support. In S. N.

Foley, D. Gollmann, & E. Snekkenes (Eds.), Computer Security – ESORICS 2017

(pp. 362–380). Springer International Publishing. https://doi.org/10.1007/978-3-319-

66399-9_20

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement

(arXiv:1804.02767; Version 1). arXiv. https://doi.org/10.48550/arXiv.1804.02767

South Korea cracks down on cheaters with law targeting illicit game mo. (n.d.). Retrieved

November 7, 2022, from https://www.gamedeveloper.com/console/south-korea-

cracks-down-on-cheaters-with-law-targeting-illicit-game-mods

Thurimella, R., & Mitchell, W. (2009). Cloak and Dagger: Man-In-The-Middle and Other

Insidious Attacks. International Journal of Information Security and Privacy (IJISP),

3(3), 55–75.

Tian, H., Brooke, P. J., & Bosser, A.-G. (2012). Behaviour-Based Cheat Detection in

Multiplayer Games with Event-B. In J. Derrick, S. Gnesi, D. Latella, & H. Treharne

(Eds.), Integrated Formal Methods (pp. 206–220). Springer.

https://doi.org/10.1007/978-3-642-30729-4_15

ultralytics. (n.d.). ultralytics/yolov5: YOLOv5. Retrieved November 7, 2022, from

https://github.com/ultralytics/yolov5

Valve challenged over anti-cheating tools. (2014, February 18). BBC News.

https://www.bbc.com/news/technology-26240140

23

Widespread Cheating in Multiplayer Online Games Drives Gamers in Asia Pacific Away—

Irdeto. (n.d.). Retrieved November 7, 2022, from https://irdeto.com/news/widespread-

cheating-in-multiplayer-online-games-drives-gamers-in-asia-pacific-away/

