

Configuration Manual

MSc Research Project MSc Cybersecurity

Samuel Avwerosughene Arhore Student ID: x21134502

> School of Computing National College of Ireland

Supervisor: Dr Vanessa Ayala-Rivera

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Samuel Avwerosughene Arhore
Student ID:	x21134502
Programme:	MSc Cyber Security Year:2022/2023
Module:	MSc Research Project/Internship
Lecturer:	Dr Vanessa Ayala-Rivera
Due Date:	15 th December 2022
Project Title:	Intrusion Detection in IoT using Machine Learning
Word Count:	530

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Samuel Avwerosughene Arhore
Date:	14 December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Samuel Avwerosughene Arhore x21134502

1 Introduction

A detailed description of the steps and processes involved in detecting intrusions in IoT systems is provided in this Configuration Manual. For the replication of the experimental setup, this document describes all the necessary software settings and tools.

2 System Specification

The configuration of the system used in this project is:

- Operating System: MacOS Ventura 13.0
- Processor: Apple M2
- Hard drive: 256GB
- RAM: 8GB

3 Software Tools

This project was implemented using the following software tools:

- Jupyter Notebook
- Python
- Anaconda Navigator

3.1 Software Installation

A detailed description of the steps taken in installing the tools is presented here.

- Python 3.11.1 can be downloaded and installed from https://www.python.org/downloads/macos/
- Visit Anaconda's website to download and install it

4. Implementation

In order to implement this project, the following Python libraries were used:

- Scikit-Learn
- Numpy

- Seaborn
- Pandas
- Matplotlib

Implementation on the Network Intrusion Detection dataset:

1. For all analyses, visualizations, and models in this paper, Python libraries were imported

```
In [1]: #importing required libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import accuracy_score
from xgboost import XGBClassifier
from sklearn.svm import SVC
from sklearn.metrics import plot_confusion_matrix
from sklearn import model_selection
```

Fig 1: Importing the libraries

2. The data was loaded on the notebook

```
In [2]: #importing the dataset to build model
    df_train = pd.read_csv("Train_data.csv")
```

Fig 2: Importing the dataset

In [4]:	<pre>#checking the columns in the dataframe df_train.columns</pre>
Out[4]:	<pre>Index(['duration', 'protocol_type', 'service', 'flag', 'src_bytes',</pre>

In [6]:	<pre>#Checking for null values in df_train.isnull().sum(axis =</pre>	the 0)	dataframe
Out[6]:	duration protocol_type service	0 0 0	
	flag	0	
	dst bytes	0	
	land	ő	
	wrong_fragment	0	
	urgent	0	
	hot	0	
	num_failed_logins	0	
	logged_in	0	
	root shell	0	
	su attempted	0	
	num root	õ	
	num_file_creations	0	
	num_shells	0	
	num_access_files	0	
	num_outbound_cmds	0	
	is_host_login	0	
	is_guest_login	0	
	count	0	
	server rate	0	
	sry serror rate	0	
	rerror rate	õ	
	srv rerror rate	õ	
	same_srv_rate	0	
	diff_srv_rate	0	
	<pre>srv_diff_host_rate</pre>	0	
	dst_host_count	0	
	dst_host_srv_count	0	
	dst_host_same_srv_rate	0	
	dst_nost_diff_srv_rate	0	
	dst_nost_same_src_port_rate	0	
	dst host serror rate	0	
	dst host srv serror rate	0 0	
	det host rerror rate	â	

Fig 4: Checking for null values in the Dataset

3. Visualization of the data

Fig 5: Data Visualization of the percentage of the anomalous packet and normal packet

Fig 6: Data Visualization of the number of connection by the protocol type

4. Label Encoding the categorical features in the dataset to numerical values

```
In [17]: #Label encoding the categorical features in the dataset
from sklearn.preprocessing import LabelEncoder
enc = LabelEncoder()
df_train['flag'] = enc.fit_transform(df_train['flag'])
df_train['service'] = enc.fit_transform(df_train['service'])
df_train['protocol_type'] = enc.fit_transform(df_train['protocol_type'])
#df_train['class'] = enc.fit_transform(df_train['class'])
```

Fig 7: Label Encoding

In [20]: #setting the flag for the target feature df_train['class'].replace(['normal', 'anomaly'], [0, 1], inplace=True)

Fig 8: Label Encoding

5. The following showed the use of correlation coefficient for feature Selection

In [22]:	<pre>#Pearson correlation Index df_train.corr()['class']><</pre>	on i	nitial	dataframe			
In [22]: Out[22]:	<pre>#Pearson correlation index df_train.corr()['class']>< duration protocol_type service flag src_bytes dst_bytes land wrong_fragment urgent hot num_failed_logins logged_in num_compromised root_shell su_attempted num_root num_file_creations num_shells num_access_files num_outbound_cmds is_host_login is_guest_login count srv_count serror_rate srv_serror_rate rerror_rate same_srv_rate diff_srv_rate srv_diff host rate</pre>		0.0509 0.2836 0.2704 0.6513 0.0057 0.0109 0.0006 0.0076 0.0028 0.0000 0.6880 0.0185 0.0185 0.0183 0.0134 0.0258 0.0197 0.0183 0.0258 0.0197 0.0183 0.0258 0.0197 0.0386 0.0386 0.0386 0.0369 0.0386 0.0386 0.0386 0.0386 0.0386 0.0386 0.0386 0.0258 0.0258 0.0258 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0257 0.0277 0.0277 0.0277 0.0277 0.0277 0.0278 0.0258 0.0258 0.0257 0.0258 0.0257 0.0258 0.0257 0.02588 0.02588 0.02588 0.02588 0.02588 0.02588 0.02588 0.02588 0.02588	data frame 01 53 94 09 43 49 05 25 43 39 28 84 20 79 51 53 22 54 99 28 43 39 28 44 90 70 52 17 58 52 37 28 49			
	dst_host_count		0.3688	28			
	dst_host_srv_count	-	0.7192	92			
	dst_host_same_srv_rate	_	0.6922	12			
	dst_host_diff_srv_rate		0.2381	70			
	dst_host_same_src_port_rate		0.0929	74			
	dst_host_srv_diff_host_rate	_	0.0629	28			
	Fig 9: Feature Selection						

In [23]: #dropping the negative features and features with weights over 0.5 df_train = df_train.drop(['num_compromised', 'root_shell','su_attempted','num_root', 'num_file_creations', 'num_shel
 'is_guest_login', 'srv_count', 'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate', 'duration_minutes',

Fig 10: Removing the negative and heavy features

6. The following show the different machine learning algorithms used in my model

##Random Forest Algorithm

```
In [32]: #Importing randomforest classifier and fitting it on the data
          from sklearn.ensemble import RandomForestClassifier
          clf = RandomForestClassifier()
          clf.fit(train_features, train_labels)
Out[32]:
          RandomForestClassifier
          RandomForestClassifier()
In [33]: %%time
          clf = RandomForestClassifier()
          clf.fit(train_features, train_labels)
          pred_clf= clf.predict(test_features)
          CPU times: user 380 ms, sys: 4.04 ms, total: 384 ms
          Wall time: 385 ms
In [34]: pred_train = clf.predict(train_features)
          pred_test = clf.predict(test_features)
          RFCaccuracy_train = (accuracy_score(pred_train,train_labels)) * 100
          RFCaccuracy_test = (accuracy_score(pred_test,test_labels)) * 100
In [35]: #Random forest model evaluation
          print('Training Accuracy is ' + str(round(RFCaccuracy_train, 4)) + '%')
print('Test Accuracy is ' + str(round(RFCaccuracy_test, 4)) + '%')
          Training Accuracy is 99.7155%
```

Test Accuracy is 99.4046%

Fig 12: Random Forest Model

```
In [36]: #Classification Report for random forest
print('Accuracy Score')
            print(accuracy_score(test_labels, pred_test),'\n')
            print('Precision Score')
            print(precision_score(test_labels, pred_test,average = None),'\n')
            print('Confusion Matrix')
            array = confusion_matrix(test_labels, pred_test)
columns = ['Normal','Anomaly']
print(pd.DataFrame(array,columns = columns, index = columns),'\n')
            print('Classification Report')
print(classification_report(test_labels, pred_test),'\n')
            Accuracy Score
0.9940458469782674
            Precision Score
[0.99275362 0.99552716]
            Confusion Matrix
                      Normal Anomaly
            Normal
                        5343
39
                                        21
                                     4674
            Anomaly
            Classification Report
                             precision
                                              recall f1-score support
                                    0.99
                                                1.00
                                                             0.99
                                                                           5364
                          0
                         1
                                    1.00
                                                 0.99
                                                             0.99
                                                                          4713
                accuracy
                                                             0.99
                                                                         10077
                                    0.99
                                                 0.99
                                                              0.99
                                                                          10077
            macro avg
weighted avg
                                    0.99
                                                 0.99
                                                             0.99
                                                                         10077
```

Fig 13: Classification Report for Random Forest

In	[38]:	<pre>from IPython.display import Image</pre>
In [39]:		<pre>%%time xgb = XGBClassifier(random_state=0) xgb.fit(train_features, train_labels) predict_xgb = xgb.predict(test_features)</pre>
		CPU times: user 1.85 s, sys: 268 ms, total: 2.11 s Wall time: 305 ms
In	[40]:	<pre>pred_train_xgb=xgb.predict(train_features) # predict test set pred_test_xgb=xgb.predict(test_features)</pre>
In	[41]:	<pre>XGBaccuracy_train = (accuracy_score(pred_train_xgb,train_labels)) * 100 XGBaccuracy_test = (accuracy_score(pred_test_xgb,test_labels)) * 100</pre>
In	[42]:	<pre>#train_features_balanced, train_labels_balanced print('Training Accuracy is ' + str(round(XGBaccuracy_train, 4)) + '%') print('Test Accuracy is ' + str(round(XGBaccuracy_test, 4)) + '%')</pre>
		Training Accuracy is 99.6957%

Test Accuracy is 99.4443%

Fig 14: XGBoost Model

In [44]: print('Accuracy Score') print(accuracy_score(test_labels, pred_test_xgb),'\n') print('Precision Score') print(precision_score(test_labels, pred_test_xgb,average = None),'\n') print('Confusion Matrix') array = confusion_matrix(test_labels, pred_test_xgb)
columns = ['Normal','Anomaly'] print(pd.DataFrame(array,columns = columns, index = columns),'\n') print(confusion_matrix(test_labels, pred_test_xgb))
print(classification_report(test_labels, pred_test_xgb)) Accuracy Score 0.9944427905130495 **Precision Score** [0.99330855 0.99574196] Confusion Matrix Normal Anomaly Normal 5344 20 4677 Anomaly 36 [[5344 20] [36 4677]] precision recall f1-score support 0 0.99 1.00 0.99 5364 1.00 0.99 4713 0.99 1 0.99 10077 accuracy 0.99 macro avg 0.99 0.99 10077 weighted avg 0.99 0.99 0.99 10077

Fig 15: Classification Report for XGBoost

- In [45]: ##SVM
- In [46]: clfsvm = SVC(kernel = 'rbf', random_state = 0)

clfsvm.fit(train_features, train_labels)

```
pred_trainsvm = clfsvm.predict(train_features)
pred_testsvm = clfsvm.predict(test_features)
```

In [47]: svmaccuracy_train = (accuracy_score(pred_trainsvm,train_labels)) * 100
svmaccuracy_test = (accuracy_score(pred_testsvm,test_labels)) * 100

```
In [48]: #SVM model evaluation
print('Training Accuracy is ' + str(round(svmaccuracy_train, 4)) + '%')
print('Test Accuracy is ' + str(round(svmaccuracy_test, 4)) + '%')
```

```
Training Accuracy is 53.953%
Test Accuracy is 53.5973%
```

Fig 16: SVM Model

```
In [49]: #Classification Report for SVM
         print('Accuracy Score')
         print(accuracy_score(test_labels, pred_testsvm),'\n')
         print('Precision Score')
         print(precision_score(test_labels, pred_testsvm,average = None),'\n')
         print('Confusion Matrix')
         array = confusion_matrix(test_labels, pred_testsvm)
         columns = ['Normal', 'Anomaly']
         print(pd.DataFrame(array,columns = columns, index = columns),'\n')
         print('Classification Report')
         print(classification_report(test_labels, pred_testsvm),'\n')
         Accuracy Score
         0.5359730078396349
         Precision Score
         [0.53437937 0.76056338]
         Confusion Matrix
                  Normal Anomaly
         Normal
                    5347
                                17
         Anomaly
                    4659
                                54
         Classification Report
                                     recall f1-score
                        precision
                                                         support
                             0.53
                                       1.00
                                                 0.70
                                                            5364
                     0
                             0.76
                                       0.01
                                                            4713
                    1
                                                 0.02
                                                 0.54
                                                           10077
             accuracy
                                       0.50
                                                           10077
            macro avg
                             0.65
                                                 0.36
                                                           10077
         weighted avg
                             0.64
                                       0.54
                                                 0.38
```

Fig 17: Classification report for SVM

Implementation on the IoT Device Network Logs dataset:

1. Import the libraries for all analyses, visualizations, and models in this paper, Python libraries were imported

```
In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import accuracy_score
from xgboost import XGBClassifier
from sklearn.svm import SVC
from sklearn.metrics import plot_confusion_matrix
from sklearn import model_selection
```

Fig 18: Importing libraries to be used

2. The data was loaded on the notebook

In [2]: df = pd.read_csv('Preprocessed_data.csv')

Fig 19: Importing the dataset to the notebook

3. Data analysis and visualization

In [3]:	df.head()												
Out[3]:		frame.number	frame.time	frame.len	eth.src	eth.dst	ip.src	ip.dst	ip.proto	ip.len	tcp.len	tcp.srcport	tcp.dstport
	0	1	123722736684743	54	87971959760497	167275820076079	192168035	1921680121	6.0	40.0	0.0	49279.0	80.0
	1	2	123722736773147	62	87971959760497	167275820076079	192168035	1921680121	6.0	48.0	0.0	56521.0	80.0
	2	3	123722736824792	62	167275820076079	87971959760497	1921680121	192168035	6.0	48.0	0.0	80.0	56521.0
	3	4	123722736836228	54	167275820076079	87971959760497	1921680121	192168035	6.0	40.0	0.0	80.0	49279.0
	4	5	123722749684991	54	87971959760497	167275820076079	192168035	1921680121	6.0	40.0	0.0	56521.0	80.0

Fig 20: Top 5 records of the dataset

In [4]:	df[<mark>'normality'].</mark> value_counts()						
Out[4]:	1 82285 4 79052 0 79035 5 79032 2 79020 3 79002						
	Name: normality, dtype: int64						

Fig 21: Visualization of the target variable in a pie chart

4. Label Encoding the different attacks into numerical figures

```
In [20]: def normality_label(df):
    if df['normality'] == 0:
        return 'normal'
    elif df['normality'] == 1:
        return 'wrong setup'
    elif df['normality'] == 2:
        return 'ddos'
    elif df['normality'] == 3:
        return 'data type probing'
    elif df['normality'] == 4:
        return 'scan attack'
    else:
        return 'man in the middle'
```

Fig 22: Label Encoding

```
In [15]: df['normality_label'].value_counts()
Out[15]: wrong setup 82285
scan attack 79052
normal 79035
man in the middle 79032
ddos 79020
data type probing 79002
Name: normality_label, dtype: int64
```

Fig 23: Visual representation of the Labels Encoded

5. Using the correlation coefficient for feature Selection

In [14]:	df.corr()['normality']					
In [14]: Out[14]:	<pre>df.corr()['nor frame.number frame.time frame.len eth.src eth.dst ip.src ip.dst ip.proto</pre>	-mality'] -0.021738 -0.036645 -0.473391 0.141900 0.187007 -0.154404 -0.172763 -0.760546				
	<pre>ip.len tcp.len tcp.srcport tcp.dstport Value normality Name: normalit</pre>	-0.540205 -0.397025 -0.459901 -0.426248 0.000068 1.000000 ty, dtype: float64				


```
In [15]: #dropping some of the high negative features
df_filtered = df.drop(['frame.number', 'frame.time', 'frame.len', 'ip.proto', 'ip.len', 'tcp.len', 'tcp.srcport', 't
```

Fig 25: Dropping some high negative features

In [16]:	<pre>df_filtered.corr()['normality']</pre>				
Out[16]:	eth.src eth.dst ip.src ip.dst normality Name: normal	0.141900 0.187007 -0.154404 -0.172763 1.000000 .ity, dtype: f	loat64		

Fig 26: The used features in the model

In [22]: #Setting the train test split to 70:30 percent of the dataframe
train_features, test_features, train_labels, test_labels = train_test_split(X,y, test_size=0.4, random_state=41)

Fig 27: Splitting the data into 70% test and 30% train

6. The following show the different machine learning algorithms used in my model

```
In [23]: #Importing randomforest classifier and fitting it on the data
           from sklearn.ensemble import RandomForestClassifier
           clf = RandomForestClassifier()
           clf.fit(train_features, train_labels)
           pred_train = clf.predict(train_features)
           pred_test = clf.predict(test_features)
          RFCaccuracy_train = (accuracy_score(pred_train,train_labels)) * 100
RFCaccuracy_test = (accuracy_score(pred_test,test_labels)) * 100
In [45]: %%time
           clf = RandomForestClassifier()
           clf.fit(train_features, train_labels)
           pred_clf= clf.predict(test_features)
           CPU times: user 5.38 s, sys: 121 ms, total: 5.5 s
           Wall time: 5.74 s
In [24]: #Random forest model evaluation
          print('Training Accuracy is ' + str(round(RFCaccuracy_train, 4)) + '%')
print('Test Accuracy is ' + str(round(RFCaccuracy_test, 4)) + '%')
           Training Accuracy is 83.1094%
```

```
Test Accuracy is 82.999%
```


١

Accuracy Score 0.8299898937535019)						
Precision Score [0.99540542 0.6797	8856 0.9	9765913	0.655	92551 (0.9937931	0.9999682	8]
Confusion Matrix							
No rmol	Normal	Wrong S	Setup	DDOS	Data typ	e Probing	Scan Attack
Wrong Setup	12205		22703	201		447	198
	0	-	0	15895		15922	0
Data type Probing	Ő		168	0		31205	õ
Scan Attack	71		0	0		0	31702
Man in the Middle	0		0	0		0	0
	Man in	the Mide	11e				
Normal			0				
Wrong Setup			0				
DDOS			0				
Data type Probing			0				
Scan Attack		215	1				
Man in the Middle		315	527				
Classification Rep	ort						
prec	ision	recall	f1–s	core	support		
0	1.00	0.49		0.65	31687		
1	0.68	1.00		0.81	32793		
2	0.98	0.50		0.66	31817		
3	0.66	0.99		0.79	31373		
4	0.99	1.00		1.00	31774		
C	1.00	1.00		1.00	3122/		
accuracy				0.83	190971		
macro avg	0.88	0.83		0.82	190971		
weighted avg	0.88	0.83		0.82	190971		

Fig 29: Classification Report of the Random Forest algorithm

In	[28]:	from IPython.display import Image							
In [44]:		<pre>%%time xgb = XGBClassifier(random_state=0) xgb.fit(train_features, train_labels) predict_xgb = xgb.predict(test_features)</pre>							
		CPU times: user 1min 33s, sys: 9.88 s, total: 1min 42s Wall time: 13.7 s							
In	[30]:	<pre>pred_train_xgb=xgb.predict(train_features) # predict test set pred_test_xgb=xgb.predict(test_features)</pre>							
In	[31]:	<pre>XGBaccuracy_train = (accuracy_score(pred_train_xgb,train_labels)) * 100 XGBaccuracy_test = (accuracy_score(pred_test_xgb,test_labels)) * 100</pre>							
In	[32]:	<pre>#train_features_balanced, train_labels_balanced print('Training Accuracy is ' + str(round(XGBaccuracy_train, 4)) + '%') print('Test Accuracy is ' + str(round(XGBaccuracy_test, 4)) + '%')</pre>							

Training Accuracy is 83.1094% Test Accuracy is 82.999%

Fig 30: XGBoost Model

Accuracy Score 0.8299898937535019

Precision Score [0.99540542 0.67978856 0.9765913 0.65592551 0.9937931 0.99996828]

Confusion Mat	rix							
Normal Wrong Setup DDOS Data type Pro Scan Attack Man in the Min	Normal 15382 0 0 bing 0 71 ddle 0	Wrong S 1 3	etup 5279 2793 0 168 0 0	DDOS 381 0 15895 0 0 0	Data type	e Probing 447 0 15922 31205 0 0	Scan Attack 198 0 0 31702 0	\
Normal Wrong Setup DDOS Data type Prod Scan Attack Man in the Min	Man in bing ddle	the Midd 315	le 0 0 0 1 27					
[[15382 15279 [0 32793 [0 0 [0 168 [71 0 [0 0	381 447 0 0 15895 15922 0 31205 0 0 0 0	198 0 0 31702 0 31	0] 0] 0] 1] 527]]					
0 1 2 3 4 5	precision 1.00 0.68 0.98 0.66 0.99 1.00	recall 0.49 1.00 0.50 0.99 1.00 1.00	†1–s	core 0.65 0.81 0.66 0.79 1.00 1.00	support 31687 32793 31817 31373 31774 31527			
accuracy macro avg weighted avg	0.88 0.88	0.83 0.83		0.83 0.82 0.82	190971 190971 190971			

Fig 31: Classification Report of the XGBoost algorithm

Fig 32: Setting only 10% of the dataset to be used

1	In [39]:	<pre>clfsvm = SVC(kernel = 'rbf', random_state = 2)</pre>						
		<pre>clfsvm.fit(train_features_svm, train_labels_svm)</pre>						
Out[39]:		• SVC						
		SVC(random_state=2)						
1	En [40]:	<pre>pred_trainsvm = clfsvm.predict(train_features_svm) pred_testsvm = clfsvm.predict(test_features_svm)</pre>						
1	In [41]:	<pre>svmaccuracy_train = (accuracy_score(pred_trainsvm,train_labels_svm)) * 100 svmaccuracy_test = (accuracy_score(pred_testsvm,test_labels_svm)) * 100</pre>						
In [42]:	<pre>#SVM model evaluation print('Training Accuracy is ' + str(round(svmaccuracy_train, 4)) + '%') print('Test Accuracy is ' + str(round(svmaccuracy_test, 4)) + '%')</pre>							
		Training Accuracy is 67.4568% Test Accuracy is 67.7505%						

Fig 33: SVM Model

Accuracy Score 0.67750549795790	14							
Precision Score [0.75 0.64	40404 0.6	5913758	0.603	51148	0.9849018	86 0.672348	06]	
Confusion Matrix								
	Normal	Wrong S	etup	DDOS	Data typ	e Probing	Scan Attack	١
Normal	63		1544	37		55	30	
Wrong Setup	0		3188	0		0	0	
DDOS	0		0	1605		1622	0	
Data type Probin	g 0		35	0		3128	0	
Scan Attack	19		0	793		378	1957	
Man in the Middl	e 2		183	0		0	0	
	Man in	the Midd	le					
Normal		14	37					
Wrong Setup			0					
DDOS			0					
Data type Probin	g		0					
Scan Attack			24					
Man in the Middl	e	2998						
Classification R	eport							
pr	ecision	recall	f1–s	core	support			
0	0.75	0.02		0.04	3166			
1	0.64	1.00		0.78	3188			
2	0.66	0.50		0.57	3227			
3	0.60	0.99		0.75	3163			
4	0.98	0.62		0.76	3171			
5	0.67	0.94		0.78	3183			
accuracy				0.68	19098			
macro avg	0.72	0.68		0.61	19098			
weighted avg	0.72	0.68		0.61	19098			

Fig 34: Classification Report for the SVM algorithm