

Securing the End Points of Microservices

using Gitlab Client-Based Authentication

MSc Industrial Internship

Cyber Security

Rohit Anand Ahuja

Student ID: 21168296

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Rohit Anand Ahuja

……. ………

Student ID:

21168296

………..……

Programme:

MSc in CyberSecurity

………………………………………………………………

Year:

2022-23

…………………………..

Module:

MSc Industrial Internship

…….………

Supervisor:

Vikas Sahni

…….………

Submission

Due Date:

06/01/2023

…….………

Project Title:

Securing the End Points of Microservices using Gitlab Client-Based

Authentication

…….………

Word Count:

5927 21

……………………………………… Page Count…………………………………………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Rohit Anand Ahuja

……

Date:

06/01/2023

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Securing the End Points of Microservices

using Gitlab Client-Based Authentication

Rohit Anand Ahuja

21168296

Abstract

The integration of GitLab and Kubernetes has become increasingly important as

organizations seek to streamline their application development and deployment

processes. However, ensuring the connection between these two systems is secure is a

key concern, as any vulnerabilities could potentially expose sensitive information or

compromise the stability and security of the system. This research proposes a

comprehensive study on how to securely integrate GitLab with an AWS Elastic

Kubernetes Service (EKS) cluster for the purpose of managing cluster applications built

on GitLab. The GitLab Kubernetes agent is proposed as a solution and can be configured

using standard Kubernetes Role-Based Access Control (RBAC) rules to ensure secure

access to the cluster. Additionally, the research aims to provide a comprehensive

solution for implementing appropriate Kubernetes security controls and GitLab security

to maintain a safe environment for the cluster. According to the research proposed and

analysis, implementing certain design and security controls can decrease the number of

potential attack vectors and reduce the risk exposure of deployed microservices using

Kubernetes and GitLab.

1 Introduction

Cloud computing has become a dominant force in the way applications are designed,

developed, and deployed. According to a recent Gartner Hype Cycle report (STAMFORD,

2022), cloud computing has reached the stage of Slope of Enlightenment, as the demands of

the market have changed the landscape for software companies due to emerging technology

and various factors such as business competitiveness, digital disruptions, and digital

reinventions.

One technology that is widely used in cloud computing for the automated deployment of

containerized applications is Kubernetes, a container orchestration platform. Kubernetes

allows users to launch, scale, and manage containerized applications with ease. Modern

development practices also rely on Continuous Integration and Continuous Delivery (CI/CD)

tools like GitLab, which focus on creating and running tests for every commit to keep the test

environment updated. Thus, the integration of GitLab and Kubernetes has become

increasingly important as organizations seek to streamline their application development and

deployment processes. Ensuring that the connection between these two systems is secure is a

key concern, as any vulnerabilities could potentially expose sensitive information or

compromise the stability and security of the system. In the past, certificate-based integration

was used to connect Kubernetes clusters to GitHub for the deployment of containerized

applications, but this method exposed direct access to the Kubernetes API to the outside

world. According to a recent report (Montalbano, 2022) and (Shodan Facet Analysis, 2022),

2

around 380,000 Kubernetes APIs were exposed to the public internet. It is crucial to properly

secure the Kubernetes API server to prevent unauthorized access and protect against

malicious actors modifying the state of the cluster. If the Kubernetes API server is exposed to

the public internet without proper protection, it could potentially be accessed by anyone with

an internet connection, allowing attackers to gain access to sensitive information, perform

unauthorized actions, or compromise the stability and security of the cluster. Additionally,

the certificate-based integration with Kubernetes adds additional attack surfaces.

In this research, a comprehensive study on how to securely integrate GitLab with an AWS

Elastic Kubernetes Service (EKS) cluster for the purpose of managing cluster applications

built on GitLab has been proposed. To achieve this, the GitLab Kubernetes agent can be

used. It can be configured using standard Kubernetes Role-Based Access Control (RBAC)

rules to ensure secure access to the cluster. Additionally, it is important to implement

appropriate Kubernetes security controls to maintain a safe environment for the cluster. The

research aims to provide a comprehensive solution for securely integrating GitLab with EKS

clusters, ensuring the stability and security of the cluster and the applications it hosts.

1.1 Research Question

Taking into consideration the crucial aspect investigated in the research problems, the

primary research question for the study would be:

• How can an application based on microservices be securely deployed in a cloud-

native environment using Kubernetes and Gitlab?

This question aims to explore the use of Kubernetes and GitLab for deploying microservices-

based applications in a cloud-native environment in a secure manner. The research will

explore tools and approaches that can be used to facilitate the integration of GitLab and

Kubernetes, and it will examine the benefits and challenges of using these two systems

together. The goal is to provide a comprehensive solution for securely deploying

microservices-based applications in a cloud-native environment using Kubernetes and

GitLab.

1.2 Paper Structure

The remaining structure of this research paper is as follows:

In Section 2, related work on the topics of microservices and Kubernetes is discussed. Section

3 outlines the methodology for implementing the proposed approach. Section 4 presents the

design specification of the given approach. Section 5, provide a detailed description of the

implementation process. Finally, in Section 6 and 7, the evaluation results and conclusions

based on findings is discussed.

3

2 Related Work

In recent years, there has been a growing interest in using GitLab and Kubernetes together to

manage and deploy containerized applications. In this section, the related work on

Kubernetes, GitLab, Kubernetes security, and microservices will be reviewed.

(Sultan et al., 2019), the authors have discussed how much container security is important

and what are the issues currently faced during the container security and how the issues can

be remediated. The research helped to understand the container security requirements and get

a better understanding of potential attacks and vulnerabilities. (Poniszewska-Marańda and

Czechowska, 2021), the authors have discussed methods for deploying application to the

Kubernetes clusters in cloud for automating software production environment. The paper has

focused on fulfilling the needs of the production environment, also comparing two methods

of deploying the Kubernetes cluster in the cloud.

(Bose, Rahman and Shamim, 2021) authors discussed the under reported security defects in

Kubernetes which are very important to be addressed otherwise such security flaws could

inspire attackers, which could have detrimental effects. (Дарвеш, Хаммуд and Воробьева,

2022), the authors have discussed based on practitioner reports, there are 10 security best

practices such as RBAC, namespace separation in the Kubernetes cluster that users should

adhere to in order to safeguard the infrastructure. (Giangiulio and Malmberg, 2022), the

author have discussed various attacks which can be carried out on the Kubernetes cluster

running containerized application, notably on an AKS platform. and how these attacks can be

saved by providing recommended solutions. (Agrawal and Abhijeet, 2020), the authors have

discussed the different security vulnerabilities that might occur related to Kubernetes-based

container deployments and outlined the best practices to adopt when setting up the

infrastructure for deployment using a set of guidelines to allow businesses to run cloud-based

systems without being concerned about cyber security attacks.

Another study that purposed a solution for securing a Kubernetes cluster on google cloud

platform (Autio, 2021), the authors have discussed the steps for securing the Kubernetes

cluster, also how the databases can be secured and how the cost can be reduced.(Dakic,

Redzepagic and Basic, 2022), the authors have focused on the security of CI/CD which is

important when developing a cloud infrastructure. (Sinde et al., 2022) proposed how the

application can be deployed in the Kubernetes cluster using GitHub actions as a continuous

integration and delivery solution but the authors have focused less on the security

purpose.(Gupta et al., 2022), the authors have discussed the benefits of implementing GitOps

in the Kubernetes environment and how to implement Kubernetes on AWS also how Git's

adoption standardizes the Git-centric workflow, boosts output by enabling continuous

delivery and deployment, improves dependability due to the rollback features, and promotes

visibility.

(Ramadoni, Utami and Fatta, 2021), the authors have used Argo CD for pull based

deployments and Kubernetes as a platform for deploying container-based applications. The

4

authors have focused more on the deployment than the security of the container-based

applications. (Felix, Garg and Dikaleh, 2019), the authors have focused on the security of the

kubernetes clusters, a thorough knowledge of the interrelationships between Role Based

Access Control (RBAC), resource quotas, pod security rules, namespaces, network policies,

and image generation and scanning policies to provide a safer environment for operating

shared services. (Throner et al., 2021) have discussed the steps to setup the DevOps

environment and have focused on the CI/CD pipeline and the security of the environment

against different attack vectors, however there is less focus on secure connection between

CI\CD pipeline and DevOps environment.

3 Research Methodology

In this section, the method used for conducting the research is described. The steps followed

in the research process are outlined in section 3.1.

In this study, a technique for establishing a secure connection between a Kubernetes cluster

comprising microservices using Gitlab client authentication is presented, specifically the

Gitlab Kubernetes Agent. The primary focus is on securing the connection between Gitlab

and the Kubernetes cluster, with a secondary focus on the separating the application build and

application environment projects. This research proposes a solution to the problem of

exposing the Kubernetes Control API to the network in order to connect with GitLab for

push-based approaches. The proposed method also enhances the performance and security of

the application by separating the application build project and application environment

project into different GitLab repositories, and conducting security testing and container

testing to identify vulnerabilities in the application.

3.1 Research Flow

For the purpose of this research, a Kubernetes cluster was deployed on AWS Elastic

Kubernetes Service (EKS), GitLab agent was deployed on Kubernetes cluster and three

GitLab repositories were utilized: one for Kubernetes cluster management, one for

application build, and one for application environment. The research flow is depicted in the

below figure:

Figure 1: Research Methodology

4 Design Specification

This section covers the design specifications for the research. It includes a discussion of the

system requirements for running the implementation (in Subsection 4.1) and a description of

the proposed system architecture (in Subsection 4.2).

5

4.1 System Specifications

In this section, the outline for required specifications of the system that is being developed is

described. These specifications will ensure that the system is able to function effectively and

meet the needs of its intended users. It is important to carefully consider and define these

requirements upfront, as they will serve as a guide for the design and development of the

system.

Kubernetes Cluster on AWS EKS

EC2 type t3.micro

No. of nodes 2

Operating System Amazon Linux 2

Kubernetes Version v1.21

Memory 10 GB

vCPU 2

RAM 1.0 GB

Docker on AWS

EC2 type m5.large

Operating System Amazon Linux 2

Docker Version 20.10.17

Memory 10 GB

vCPU 2

RAM 8.0 GB

4.2 Proposed System Architecture

The proposed system architecture identifies the technology stack for installing and

configuring the GitLab agent in a Kubernetes cluster. This design includes four key

components: AWS EC2- Bastion Host, AWS Elastic Kubernetes Service, a Kubernetes

cluster, and the GitLab agent itself.

The EC2 Bastion host was deployed to access and manage the Kubernetes cluster remotely

securely, such as a laptop or desktop. This is particularly useful when the Kubernetes cluster

runs in a private subnet and is not directly accessible from the internet. Second, the AWS

Elastic Kubernetes Service (EKS) offers a fully managed solution for deploying, scaling and

managing Kubernetes clusters in the cloud. EKS simplifies running a Kubernetes cluster by

automating many underlying tasks and providing built-in monitoring and logging capabilities.

Kubernetes clusters have been used to create a group of virtual machines that are used to run

containerized applications. Kubernetes clusters is consisting of at least one master node,

which is responsible for overseeing the cluster, and 4 worker nodes that host and run

containerized applications. This structure is used for the efficient deployment, scaling, and

management of containerized applications within the cluster.

6

The application build project and application environment project were kept in different

GitLab repositories so that it is easy to test and deploy, it improves scalability and enhances

security. For this research, GitLab agent was deployed in one of the Kubernetes Pod situated

in deployment namespace which is responsible for continuously monitoring the git repository

and if any changes are made in git repository, the agent will do a git pull and deploy the

application in the containerized application securely without exposing the Kubernetes API

and maintaining RBAC rules.

The Gitlab agent has been deployed considering some potential points:

• Integration with GitLab: The agent is deployed in such way that it is able to connect

to a GitLab instance and communicate with it in order to trigger deployments and

other actions based on events in the GitLab workflow.

• Management of applications: The agent is able to deploy and manage applications

in a Kubernetes cluster as it is been deployed in one of the deployment namespaces

pods.

• Monitoring and logging: The agent provide monitoring and logging capabilities to

help track the status and performance of deployed applications, as well as

troubleshoot any issues that may arise.

• Security: The agent is installed with security in mind, including measures to protect

against unauthorized access and ensure the confidentiality and integrity of data

transmitted between the agent and GitLab or other systems.

Figure 2: Proposed System Architecture

7

5 Implementation

In this section, the implementation and the steps taken to carry out the study and achieve the

research objections is discussed. The proposed system architecture was completed with the

implementation figure depicted below, taking into account security aspects. This means that

the system architecture was designed with security in mind and includes measures to protect

the system from potential security threats or vulnerabilities. The implementation figure shows

how the various components of the system are integrated and how they work together to

provide the desired functionality while also maintaining a high level of security. This figure

includes details such as the software used, the network architecture, and the roles and

responsibilities of different system components. By considering security aspects in the design

of the system architecture, the proposed system aims to provide a secure and reliable solution

that meets the needs and requirements of the users or an organization for deploying secure

microservices.

Figure 3: Implemented System Architecture

8

5.1 Tools and Technologies Used

For this research, the implementation was carried out using two Amazon Web Services

(AWS) EC2 instances: a t3.micro EKS Bastion (Linux) and a m5.large Linux Docker, as

well as an EKS cluster with Kubernetes v1.21. The Gitlab Kubernetes Agent was deployed

in one of the Kubernetes cluster pods. The microservice application was developed using

frontend HTML, and Python was used as the micro server backend.

Demonstrating the technologies and tools used:

• AWS Elastic Kubernetes Service (EKS): Kubernetes v1.21 has been deployed using

AWS EKS, which automatically deploys a Kubernetes cluster.

• Kubectl: kubectl is a command-line tool for interacting with a Kubernetes cluster.

kubectl allows you to run commands against a Kubernetes cluster, such as deploying

applications, inspecting the status of components, and viewing logs. EC2 Bastion

Host is deployed for firing kubectl commands.

• Docker: Docker is used to run and deploy GitLab runner for the research Also,

docker is used for microservices-based applications, enabling to scale and update

individual services independently and deploy the overall application with all

necessary dependencies to different environments. Docker version 20.10.17 has been

used for the research.

• GitLab: GitLab platform is used for storing and managing code repositories (using

Git technology) through a web interface.

• GitLab Runner: GitLab Runner is a tool used to run jobs and execute scripts in

GitLab as part of CI/CD pipelines and has been configured with AWS for the

research.

• GitLab Kubernetes Agent: To securely connect Kubernetes cluster with GitLab

without exposing the Kubernetes API, we have deployed the GitLab Kubernetes

Agent. This agent ensures that the connection between the cluster and GitLab is

secure and that only authorized users and processes have access to the cluster

maintaining the RBAC rules.

• HTTP and Python: A simple HTTP page has been set up as a frontend using Python

HTTP server.

• YAML: YAML manifests have been used for defining state of resources, such as

pods, services, and deployment strategies, allowing easy deployment and management

of applications.

5.2 Deploying the Gitlab Agent for Kubernetes.

After the deployment of the EKS and Docker, the Gitlab Agent for Kubernetes is deployed in

one of the pods of the Kubernetes Cluster. To deploy the Agent, the following commands

were fired into the EKS Bastion Host:

9

Figure 4: Code to Deploy Gitlab Kubernetes Agent

This code will add the GitLab Helm repository to the local Helm configuration, update the

local repository list to include the latest versions of the charts from the GitLab repository, and

then install a Helm release called "spot2azuseast2-agent1" from the GitLab chart for the

GitLab Agent.

The upgrade command includes several flags and arguments:

• --install: This flag tells Helm to install the chart if it is not already installed, or

upgrade it if it is already installed.

• --namespace gitlab-agent-spot2azuseast2-agent1: This flag specifies the namespace

in which the GitLab Agent should be deployed.

• --create-namespace: This flag tells Helm to create the specified namespace if it does

not already exist.

• --set image.tag=v15.7.0: This flag sets the image tag for the GitLab Agent Docker

image. This determines which version of the GitLab Agent will be deployed.

• --set

config.token=6ym1kUJYtiAyWnkNWmkoZXFudKMymsm3DCN1SRziuNfmAP

xBkg: This flag sets the GitLab token that will be used to authenticate the GitLab

Agent with the GitLab instance.

• --set config.kasAddress=wss://kas.gitlab.com: This flag sets the address of the

Kubernetes API Server (KAS) that the GitLab Agent will use to communicate with

the Kubernetes cluster.

5.3 Isolating the Application Build and Application Environment.

To ensure the security and isolation of the "Application Build - Hello World" and

"Application Environment - Hello World" projects, separate nodes were chosen for their

deployments. This allowed the projects to run independently and potentially scale differently,

while also preventing potential security vulnerabilities or resource contention between the

two. In this approach, the "Application Build" repository contains the source code and build

configuration for the application, while the "Application Environment" repository contains

the configuration and resources needed to deploy the application to a Kubernetes Cluster.

10

5.4 Running the Pipeline and Deploying the Application.

The “Application Build – Hello World” runs the CI/CD pipeline and as part of this process,

the pipeline builds a container image for the application. This registry can be accessed by the

application environment in order to retrieve the necessary container image for deployment.

The container image contains all of the code, dependencies, and other resources required to

run the application, and is stored in a portable package that can be easily deployed by the

application environment. By using the container image stored in the registry, the application

environment can ensure that it is deploying the correct and updated version of the application.

The "Application Environment - Hello World" is responsible for deploying the application to

a live staging or production environment by running a CI/CD pipeline. To do this, it uses a

GitLab Kubernetes Agent which was deployed in one of the Kubernetes pods. The GitLab

Kubernetes Agent uses a pull-based approach to deploy applications to the Kubernetes

cluster. This means that the Agent sends a request to the Kubernetes cluster to pull the

necessary container image from a container registry and deploy the application within the

cluster. To deploy the application, the "Application Environment - Hello World" will use a

configuration file written in the YAML (YAML Ain't Markup Language) format. This file

specifies the details of the deployment, such as the container image to use and the resources

that the application will need. To retrieve the container image for the application, the

"Application Environment - Hello World" will access the container registry where the image

is stored. Once the container image has been retrieved from the registry and the YAML

configuration file has been applied, the "Application Environment - Hello World" will use the

GitLab Kubernetes Agent to deploy the application live in the staging and production

environment.

Overall, isolating the build and environments can also help to improve the overall security

posture of the application by making it easier to apply security patches and updates. By

isolating the build environment, developers can update and test the patches and updates

without affecting the running application, which can help to reduce the risk of downtime or

other disruptions caused by security issues.

5.5 Adding the Security Scanning for Application, Kubernetes Manifests

and Container.

Application Build Security Scanning was added to ensure that the integrity and stability of

the application remains intact by identifying and addressing potential vulnerabilities and to

Protect sensitive data from being accessed or compromised by unauthorized parties.

Kubernetes Manifests security was added to ensure that they are configured in a secure

manner. This includes checking for the use of secure protocols, the use of strong passwords

or keys, and the proper configuration of access controls.

Container Scanning was done with the help of Gitlab Agent for Kubernetes. Using the GitLab

Agent for Kubernetes to scan container images helped ensuring that the security and stability

11

of the Kubernetes cluster remains intact by identifying and addressing potential security

vulnerabilities before they can be exploited. It also helped to comply with security and

compliance standards by ensuring that only secure container images are deployed in the

Kubernetes cluster.

6 Evaluation

For the evaluation, the assessment of the GitLab Kubernetes Agent, including authentication,

pull-based approach, environmental isolation, and security scanning features, has been done.

The effectiveness of these features was determined and their suitability for use in various

scenarios was evaluated. The aim was to provide a comprehensive evaluation of the GitLab

Kubernetes Agent and to provide insights and recommendations for its use in managing

applications on a Kubernetes cluster.

6.1 Case Study 1: Control Node API Exposure

There are several potential risks associated with using the old method i.e., certificate-based

integration for accessing the Kubernetes API. One of the main risks is that it relies on direct

access to the API which must be set to global IP and on public internet, and that’s a big

security vulnerability as discussed earlier.

To mitigate this risk, the Gitlab Kubernetes Agent has been used in the proposed architecture.

Using the GitLab Kubernetes Agent can help to mitigate the risks associated with exposing

the Kubernetes API. Gitlab Kubernetes Agent has been installed in of the Kubernetes cluster

pod, where there is no need to exposed the API to the public internet, which can remove the

risk of unauthorized access to the cluster and the resources within it. Also, the Kubernetes

cluster has been installed in an AWS VPC which has been created with an aspect of a secure,

isolated network environment that is separate from the public internet.

Deployed Kubernetes API: https://B0BEE1E43CAACF664ACCD160F5FFBB6C.gr7.us-

east-2.eks.amazonaws.com/

Accessing Kubernetes API through EKS Bastion Host, i.e., Internal Network:

Figure 5: Accessing Kubernetes API through EKS Bastion Host

https://b0bee1e43caacf664accd160f5ffbb6c.gr7.us-east-2.eks.amazonaws.com/
https://b0bee1e43caacf664accd160f5ffbb6c.gr7.us-east-2.eks.amazonaws.com/

12

Accessing Kubernetes API through Kali OS i.e., External Network:

Figure 6: Accessing Kubernetes API through Kali OS

6.2 Case Study 2: Agent Authentication

For the Agent Authentication, the AAA (Accounting, Authentication and Authorization)

method has been used in the research. The AAA (Accounting, Authentication, and

Authorization) method is a security model that is used to verify the identity of a user or

system and grant it access to resources based on its permissions.

In the context of the GitLab Kubernetes Agent, the AAA method involves the following

steps:

Authentication: The GitLab Kubernetes Agent authenticates using a Kubernetes Service

Account token. This token is used to verify the identity of the agent and establish its

credentials. Authorization: The agent's permissions are determined by the RoleBinding that

is created when setting up the GitLab Kubernetes Agent. This RoleBinding grants the agent

the necessary permissions to access the resources on the cluster, such as pods, services, and

deployments. Accounting: The actions performed by the GitLab Kubernetes Agent on the

cluster are tracked and logged to ensure accountability and visibility.

The authentication and authorization can be viewed by using the ‘kubectl get logs’ command:

Figure 7: Agent Authentication

The figure shows that the agent first checks the permissions before proceeding with any

further actions. If the necessary permissions are granted, the agent will continue with the

intended actions.

6.3 Case Study 3: Pull-Based GitOps

Using the Kubernetes API to update the Kubernetes cluster through GitLab CI/CD's push-

based approach carries potential security risks. One of the main risks is that the K8s

credentials used to access the API could be exposed in GitLab, potentially allowing

unauthorized access to your cluster. Additionally, storing the kubeconfig file containing the

13

API on the GitLab server side could also pose a security risk, as it could potentially be

accessed by anyone with access to the repository if the file is accidentally committed and

pushed to a public repository.

In the research setup, a pull-based approach has been implemented. The GitLab agent,

located within the cluster, initiates change from within the cluster to avoid exposing cluster-

admin level credentials to GitLab.com. The GitLab agent is responsible for pulling updates

from the GitLab repository and applying them to the cluster. This ensures that the Kubernetes

cluster-admin level credentials are not exposed in GitLab. The agent also reads updates from

the YAML manifests file stored in the "Application Environment" project, and if any updates

are found, it pulls and applies them to the Kubernetes cluster. The figure below illustrates the

method clearly:

Figure 8:Pull-Based Approach

Figure 9: Gitlab Agent Pulling Changes

From the above logs, it can be seen that the agent is pulling changes and deploying the

application into staging environment successfully.

6.4 Case Study 4: Environment Isolation

The “Application Build – Hello World” and “Application Environment – Hello World” are

both isolated from each other. To ensure the security and isolation of the "Application Build -

14

Hello World" and "Application Environment - Hello World" projects, separate nodes were

chosen for their deployments.

Figure 10: Isolated Pods

Figure 11: Isolated Nodes

The above figure shows pods were deployed in different nodes for the “Application Build –

Hello World” and “Application Environment – Hello World” GitLab repositories.

6.5 Case Study 5: Security Scanning using GitOps

The GitLab platform offers a feature called a "dashboard" where developers can see a report

that details any vulnerabilities present in their project. By reviewing this report, the

developers can identify and fix any issues before the project is deployed as a product. This

helps to ensure that the application is secure and free of vulnerabilities when it is released to

users.

Figure 12: Application Build Security Scanning

15

Figure 13: Application Environment Security Scanning

Figure 14: Container Scanning

6.6 Scanning using Kube-Hunter and Kube-Scape Tool.

The Kubernetes API and cluster were scanned using open-source tools to determine that the

API is not exposed to the outside world when connecting Kubernetes and GitLab.

Additionally, several other important tests were conducted to ensure that the Kubernetes

cluster is protected from potential attack vectors and risk exposure.

6.6.1 Kube-Hunter

Kube-Hunter is a tool that can be used to scan a Kubernetes API and cluster for

vulnerabilities. After running Kube-Hunter, no significant vulnerabilities were found in the

API or cluster, indicating that the architecture is secure against API exposure. While there are

some vulnerabilities present that should be addressed, but they are not considered to be major

attack vectors. One of them is Kubernetes API version disclosure but that’s internal to the

Kubernetes cluster not to the outside world as the API is not exposed publicly . Considering

the experiential setup to align with our research methodology, the tool produces the following

output regarding to Kubernetes API and cluster, along with the other warnings which are not

in the scope of the research.

16

Figure 15:Kube-Hunter Results

6.6.2 Kube-Scape

Kube-Scape offers security scanning as a feature to help users identify and fix potential

vulnerabilities in their Kubernetes clusters. This can include checks for misconfigurations,

insecure resource settings, exposed secrets, and API exposure. With Kube-Scape, users have

the ability to customize their own framework for security scanning. This allows them to

choose specific controls or areas to focus on during the scan. The K8s_api_scan framework

was created within the Kube-Scape portal and includes important API scanning controls. This

framework, when applied to an experiential setup, produces output related to the Kubernetes

API and cluster, as well as any other warning messages that fall outside the scope of the

research. Out of 27 controls, 3 failed in the K8s_api_scan framework.

Figure 16: Kube-Scape Portal Results

17

6.7 Discussion

After conducting various case studies, it was determined that the most effective security

measures involve preventing API exposure to the public internet, implementing a pull-based

approach, and implementing additional security controls such as isolating the application

build and environment and adding security scans. These measures were found to be

particularly beneficial in reducing risk exposure for the application.

Case Study 1 demonstrates that the API is not publicly exposed when using the method,

which helps to keep the deployed application secure. If a hacker were able to access the

Kubernetes API, they could potentially compromise the security of the entire system by

modifying or deleting resources, escalating their privileges, or executing malicious code

within containers. This could lead to various security incidents, such as data breaches,

unauthorized access to sensitive systems, or disruption of critical services. On the other hand,

if a hacker is unable to access the Kubernetes API, they will be unable to take any action on

it. Case Studies 2 and 3, shows how the Gitlab Agent uses RBAC rules and AAA

authorization to grant only the necessary permissions. Additionally, it employs a pull-based

approach instead of a weaker push-based approach. Case Study 4 shows that the application

build and application environments are isolated by being deployed in different pods and

nodes, which adds a layer of security to the implementation. Case Study 5 demonstrates the

use of the Gitlab Agent to perform security scans and identify vulnerabilities that must be

addressed before the application is moved to production in order to reduce the risk of

exposure.

Talking about the improvement, network segmentation can be added to Kubernetes cluster in

which the developer can specify rules for which pods are allowed to communicate with each

other and with other resources in the cluster. This can help prevent unauthorized access and

reduce the attack surface of the cluster.

7 Conclusion and Future Work

The research described aimed to address the issue of securely deploying microservices in a

cloud-native environment using GitLab client-based authentication and Kubernetes. To

achieve this, the GitLab agent was deployed in a Kubernetes pod and other necessary

implementations were deployed. The evaluation of the proposed solution demonstrated that

the API was not exposed to the public internet and the use of a pull-based approach,

environment isolation, and security scanning added an extra layer of security.

However, the limitation of this work is that it is only designed for use with the AWS cloud

provider, as there are many other cloud providers available. As a result, future work could

include deploying the GitLab agent to different Kubernetes cloud service providers to assess

how efficiently they integrate and work together. Additionally, creating a helm package of

the GitLab Agent and limited RBAC rules could make it easier to deploy in the future.

18

References

Agrawal, M. and Abhijeet, K. (2020) ‘Security Audit of Kubernetes based Container

Deployments: A Comprehensive Review’, 07(06), p. 6.

Autio, T. (2021) Securing a Kubernetes Cluster on Google Cloud Platform. Available at:

http://www.theseus.fi/handle/10024/501918 (Accessed: 24 November 2022).

Bose, D.B., Rahman, A. and Shamim, S.I. (2021) ‘“Under-reported” Security Defects in

Kubernetes Manifests’, in 2021 IEEE/ACM 2nd International Workshop on Engineering and

Cybersecurity of Critical Systems (EnCyCriS). 2021 IEEE/ACM 2nd International Workshop

on Engineering and Cybersecurity of Critical Systems (EnCyCriS), pp. 9–12. Available at:

https://doi.org/10.1109/EnCyCriS52570.2021.00009.

Dakic, V., Redzepagic, J. and Basic, M. (2022) ‘CI/CD Toolset Security’, in B. Katalinic

(ed.) DAAAM Proceedings. 1st edn. DAAAM International Vienna, pp. 0161–0164.

Available at: https://doi.org/10.2507/33rd.daaam.proceedings.022.

Felix, C., Garg, H. and Dikaleh, S. (2019) ‘Kubernetes security and access management: a

workshop exploring security & access features in Kubernetes’, in Proceedings of the 29th

Annual International Conference on Computer Science and Software Engineering. USA:

IBM Corp. (CASCON ’19), pp. 395–396.

Giangiulio, F. and Malmberg, S. (2022) Testing the Security of a Kubernetes Cluster in a

Production Environment. Available at: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-

319492 (Accessed: 23 November 2022).

Gupta, S. et al. (2022) ‘Prevalence of GitOps, DevOps in Fast CI/CD Cycles’, in 2022

International Conference on Machine Learning, Big Data, Cloud and Parallel Computing

(COM-IT-CON). 2022 International Conference on Machine Learning, Big Data, Cloud and

Parallel Computing (COM-IT-CON), pp. 589–596. Available at:

https://doi.org/10.1109/COM-IT-CON54601.2022.9850786.

Montalbano, E. (2022) 380K Kubernetes API Servers Exposed to Public Internet. Available

at: https://threatpost.com/380k-kubernetes-api-servers-exposed-to-public-internet/179679/

(Accessed: 20 December 2022).

Poniszewska-Marańda, A. and Czechowska, E. (2021) ‘Kubernetes Cluster for Automating

Software Production Environment’, Sensors, 21(5), p. 1910. Available at:

https://doi.org/10.3390/s21051910.

Ramadoni, Utami, E. and Fatta, H.A. (2021) ‘Analysis on the Use of Declarative and Pull-

based Deployment Models on GitOps Using Argo CD’, in 2021 4th International Conference

on Information and Communications Technology (ICOIACT). 2021 4th International

Conference on Information and Communications Technology (ICOIACT), pp. 186–191.

Available at: https://doi.org/10.1109/ICOIACT53268.2021.9563984.

19

Shodan Facet Analysis (2022). Available at:

https://www.shodan.io/search/facet?query=product%3A%22Kubernetes%22&facet=cloud.se

rvice (Accessed: 4 January 2023).

Sinde, S.P. et al. (2022) ‘Continuous Integration and Deployment Automation in AWS Cloud

Infrastructure’, International Journal for Research in Applied Science and Engineering

Technology, 10(6), pp. 1305–1309. Available at: https://doi.org/10.22214/ijraset.2022.44106.

STAMFORD (2022) Gartner Forecasts Global iPaas End-User Spending to Grow 18.5% in

2022, Gartner. Available at: https://www.gartner.com/en/newsroom/press-releases/2022-08-

04-cloud-platform-hc-press-release (Accessed: 25 November 2022).

Sultan, S., Ahmad, I. and Dimitriou, T. (2019) ‘Container Security: Issues, Challenges, and

the Road Ahead’, IEEE Access, 7, pp. 52976–52996. Available at:

https://doi.org/10.1109/ACCESS.2019.2911732.

Throner, S. et al. (2021) ‘An Advanced DevOps Environment for Microservice-based

Applications’, in 2021 IEEE International Conference on Service-Oriented System

Engineering (SOSE). 2021 IEEE International Conference on Service-Oriented System

Engineering (SOSE), pp. 134–143. Available at:

https://doi.org/10.1109/SOSE52839.2021.00020.

Дарвеш, Г., Хаммуд, Д. and Воробьева, А.А. (2022) ‘SECURITY IN KUBERNETES:

BEST PRACTICES AND SECURITY ANALYSIS’, Вестник УрФО. Безопасность в

информационной сфере, (2(44)), pp. 63–69.

