
Automating Security Test-cases using
DevSecOps approach for AWS Serverless

application with WebSockets

MSc Industrial Internship

Cyber Security

Deven Ahlawat
Student ID: x20214341

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Deven Ahlawat

Student ID: x20214341

Programme: Cyber Security

Year: 2022-2023

Module: MSc Industrial Internship

Supervisor: Vikas Sahni

Submission Due Date: 06/01/2023

Project Title: Automating Security Test-cases using DevSecOps approach for
AWS Serverless application with WebSockets

Word Count: 6399

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Deven Ahlawat

Date: 6th January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Automating Security Test-cases using DevSecOps
approach for AWS Serverless application with

WebSockets

Deven Ahlawat
x20214341

Abstract

This research focused on the automation of security test cases for an AWS
Serverless application with WebSockets using a DevSecOps approach. The study
employed the popular web scanner Burp Suite Professional, along with a custom
extension and Python, to automate the testing process. The research found that
automation was possible for serverless applications using this approach. Results
indicated that the automation process yielded similar results to manual testing
for in-scope applications and successfully identified security issues. However, the
study also observed that the automation process was limited to testing a set of
predefined payloads and did not address potential vulnerabilities in HTTP headers.
Overall, the research demonstrated the feasibility of using a DevSecOps approach
for automating security testing of serverless applications with WebSockets.

1 Introduction

1.1 Research Background

Application development requires a lot of effort from the developers to server engineers
to keep it running and troubleshoot regularly to minimise downtime. Companies are
looking to improve this situation by adopting new containerisation solution to adopt a
micro services based architecture which has been proved to be very effective. Serverless
technology adoption has completely eliminated the need for developing a server to manage
the application and need to secure it with every change and update. This allows the
security team to pass on the responsibility to manage security threats to the infrastructure
provider like AWS (Amazon Web Service), GCP and Azure Eismann et al. (2021) Wang
et al. (2018).

This does not mean security vulnerabilities do not exist in these serverless application
but the methodology employed to test these application is different which can be referred
from the OWASP Top 10 checklist. The OWASP Top 10 is a widely-recognized list of
the most critical web application security risks, developed by the Open Web Application
Security Project (OWASP). Serverless applications may have a secure server managed
by the Cloud Provider but vulnerable code can result in application-level vulnerabilities
which allows the customer to employ the usual application pentesting guide updated in
2021 by OWASP OWASP (2021).

1



The given application by Akeero ran on AWS serverless utilising Lambda, DynamoDB
and Application Gateway. Manual pentesting resulted that all the communication is
happening using web-sockets instead of APIs which safeguarded the application from
multiple attack vectors like session replay because the application was in constant sync
with a randomly-generated unique identifier in every socket call. An attacker could
attempt to test multiple payloads, while in case of a web-socket, contact synchronisation
was observed which made it difficult to replay the request with the help of BurpSuite
Professional or any other proxy.

WebSockets provide the client or server to establish a ’full-duplex’ (two-way) commu-
nication channel, enabling the client and server to communicate asynchronously. Web-
Sockets perform their initial upgrade handshake over HTTP, and thereafter all commu-
nication is conducted using TCP channels and frames. WebSocket provides bidirectional
communication, security, functionality, and efficiency to web apps Fette and Melnikov
(2011). However, WebSocket service providers can configure some security decisions made
during service construction. All decisions affect WebSocket security, therefore, security
testing is important for the same reasons as other web technologies Marin et al. (2022).

1.2 Problem Definition

It is not possible to do an automated security test on a WebSocket implementation using
widely used online security testing tools like Burp Suite or OWASP ZAP. These tools are
not designed for this purpose. This leaves it as a manual task that requires comprehensive
understanding of how the implementations work, what the common security concerns in
them are, and how they may be security tested Kuosmanen (2016) Marin et al. (2022).
The objective of this research was to study Serverless WebSockets based application
attacks and automate those test-cases using DevSecOps approach in the CICD pipeline.

RQ 1 - Is it possible to perform Dynamic Automated Security Assessment on Serverless
WebSocket based application?
RQ 2 - How is the false positives rate for DAST scans for Serverless WebSocket based
application as recorded by commercial webapplication scanners?

In order to accomplish the task at hand, it was necessary to get an understanding of the
typical security flaws that are present in WebSocket implementations. Because problems
might occur on numerous levels, it was imperative that proper scope be established to
ensure that the problems were confined to WebSocket based application 1 alone. The
reader, armed with prior knowledge of typical security flaws, is then expected to have an
understanding of how these flaws might be tested, both in theory and in practice. For
this purpose, an in-depth technical understanding of the WebSocket protocol security and
the web security testing tools is required.

A sample AWS serverless application infrastructure is depicted in Figure Figure 1
which highlights that native AWS services are used in this architecture which almost
minimises if not eliminates the risk of regular updates to the supporting infrastructure
Marin et al. (2022).

1Akeero Serverless

2



Figure 1: AWS Serverless application infrastructure

2 Related Work

This paper discussed the recent works on security automation using two approaches
including SAST and DAST. Sub-section 1 contains the related works on SAST 2.1 and
sub-section 2 discussed recent methods researched on DAST 2.2.

2.1 SAST

Open-source solution have been very effective in terms of security vulnerabilities finding in
the code during the development stages of application. Zampetti et al. (2017) compares
multiple open-source technologies available on the internet to find issues in the code
Nguyen-Duc et al. (2021). Though executing all of them could be a challenge and the
author has not made much tweaks on softwares which can increase their efficiency by
finding more issues and reducing false-positives. This paper also focuses mostly on Java
based application with less tools for Python. In the recent year more tools have evolved
like SemGrep and Snyk which offers free scanning upto a limit with promising results
Tomas et al. (2019).

Akujobi (2021) suggests a model to compare the improvement in Security in Con-
tinuous Integration pipelines. This paper suggests that SAST tools are not optimised
enough and to perform at their best ability which can be improved by involving a per-
son with development background to assist with the right policies suggesting that most
tools are run with default configuration and policies. This also suggests a need to focus
on optimising the result, which was also suggested by Garg and Sengamedu (2022) by
stressing on code quality checks, and monitor issues which are applicable to the company
environment mentioning the correct severity of the issues found.

3



2.2 DAST

Rajapakse et al. (2022) discusses multiple challenges faced while adoption the DevSecOps
approach mentioning about the absence of the vulnerabilities relating to the hosted en-
vironment like containers which are often overlooked by most tools.

Petukhov and Kozlov (2008) discussed the use of dynamic analysis and penetration
testing to detect security vulnerabilities in web applications and discussed it’s need as the
number of reported vulnerabilities have been increasing dramatically. These were mostly
reported with help of security scanner like Acunetix. They then described dynamic
analysis as a method of testing web applications by simulating real-world user behavior
and interactions, which could help to identify vulnerabilities that might not be detected
using static analysis techniques. This paper also highlighted that most of the reported
vulnerabilities arise due to improper input validation and lack of testcases. One strength
of this paper was that it provided a detailed description of the methodology used in the
case study, which helps to make the research more transparent and replicable.

Albahar et al. (2022) This paper discussed about multiple tools that were used to
perform web application scanning with a comparative analysis of their efficiency. One
of the strengths of this paper was its empirical approach, which allowed the authors to
provide concrete data on the performance of the different tools. The authors also clearly
outlined the methodology of their study, including the selection of the tools and the
vulnerable web applications used in the testing. This established the features and the
variety offered by multiple scanners including both open-source and commercial scanner.

Qasaimeh et al. (2018) Conducted in 2017 to compare multiple web application scan-
ners for their efficiency found BurpSuite to be less efficient as compared to other tools
like ZAP, Nessus, NetSparker and Acunetix which had above 90% accuracy rate. These
results were compared with Albahar et al. (2022) which was more recent taking into
consideration the updates all tools have received over the years. One strength of this pa-
per is its focus on black box scanners, which are commonly used in real-world scenarios
and can be evaluated in a more practical manner. The authors also provide a detailed
description of their evaluation method, including the security standards used and the
criteria for evaluating the scanners. The paper provides a useful approach for evaluating
the accuracy of black box web application scanners and sheds light on the limitations
and strengths of different tools. However, more research is needed to fully understand
the effectiveness of these scanners in a wider range of scenarios.

Gojare et al. (2015) This paper showed Selenium’s capabilities to test web-application
without the need of human interference with the help of a headless browser. Selenium
also allowed for proxing the traffic through and made it possible to scan WebSocket based
application. Holmes and Kellogg (2006) demonstrated that Selenium test scripts can be
developed in table format and then later coded into any desired programming language
such as Java, and Python. This represents code export capability that will eventually
invoke the respective test scripts on the specified browsers.

3 Methodology

The methodology for this research has been devised using Research Onion Fig 2 ref
Saunders et al. (2007) HARP model which has been discussed below.

The choices of methods used in this research were based on the research philosophy of
positivism, which emphasizes the importance of empirical evidence and objective obser-

4



Figure 2: Research Onion

vation in the research process. This philosophy informed the decision to use a deductive
research approach, as the research started with a broad set of hypotheses and aimed to
narrow down to specific conclusions through the analysis of data.

Mono-method qualitative approach was used for this research because this type of
research was focused on understanding a particular issue of Serverless applications which
have multiple limitation to allow for an automated DAST.

In terms of research strategy, a case study approach was used in this research in
order to examine the specific context of the AWS Serverless application with WebSockets
and its implementation using the DevSecOps approach. This strategy allowed for in-
depth analysis of the application and its security practices, and provided an opportunity
to understand the unique challenges and solutions that were encountered during the
implementation process.

The research choices made included the selection of Burp Suite Professional and Sel-
enium WebDriver as the primary tools for the study, as well as the decision to use a case
study approach. The case-study approach was specifically chosen because this research
dealt with the challenges faced during the automation of web-socket based Serverless
applications.

In this research, a longitudinal time horizon method was employed which involved
collecting data on the security of the Akeero Serverless application with WebSockets over
a period of time, and analyzing this data to identify any trends or changes. This process
included regularly conducting security assessments using a combination of automated
and manual testing methods, and tracking the results over time to identify any changes
or trends in the application’s security posture.

The techniques and procedures employed in the research was inspired by the SDLC

5



(Software Development Life Cycle) Waterfall Model with necessary changes. In Waterfall
Model, the development is split into multiple phases, the output of one step feeds the next
phase consecutively Model (2015). The guiding steps are mentioned in Fig 3 establishing
requirement analysis and coverage followed by automation steps and evaluation.

This sections provides a detailed methodology that has been followed to achieve this
research.

Figure 3: Project methodology steps

3.1 Requirement Analysis

The first step in the research methodology had been to define the application scope
and walk-through of all its functionalities to identify different elements that could be
vulnerable. After documenting all the features offered by the application, a manual
pentest (penetration test) of the security test cases for the scoped web application was
performed. This had involved manually testing the application for common vulnerabilities
such as SQL injection, cross-site scripting (XSS), and insecure direct object references
(IDOR) using a variety of manual testing tools and techniques. Testcases were defined
and documented with the help of OWASP Top 10 (version 2021) vulnerabilities2.

Once the manual pentest had been completed, the traffic for the web application
had been proxied using a tool such as Burp Suite Professional in order to analyze the
traffic and identify any additional security issues. The proxying process had involved
intercepting and capturing the traffic between the client and server, allowing the security
issues to be identified and analyzed in greater detail.

3.2 System Design

In this research, system design was restricted to the internal AWS infrastructure provided
by Akeero with an EC2 Kali instance along with the vulnerability assessment licensed

2https://owasp.org/Top10/

6



scanner. This step also included the programming langauge and framework to work with
for the automation.

3.3 Vulnerability Assessment

The results of the proxying process had been assessed in order to identify any secur-
ity issues or vulnerabilities that may have been present in the web application. This
assessment process had provided insight into the types of data and requests being sent
between the client and server, allowing the identification and analysis of potential secur-
ity issues such as injection attacks or cross-site scripting (XSS). The vulnerabilities that
were identified had been carefully reviewed to ensure that they were properly captured
and highlighted in the report. This had involved cross-verifying the reported vulnerabil-
ities manually against the results of the proxying process to ensure their accuracy. The
impact and certainty of each vulnerability had also been evaluated to determine its po-
tential risk to the web application and the Akkero environment. This careful assessment
of the vulnerabilities had helped to identify and prioritize the most critical issues that
needed to be addressed in order to improve the security of the web application. Special
attention had been paid to the evaluation of the vulnerabilities by the proxy tool and
their applicability as per the actual CVSS score 3 in the Akkero environment in order to
determine the most appropriate course of action for addressing them.

3.4 Automation

3.4.1 Testcases Automation

Once the manual pentest and proxying process had been completed, the next step was
to automate the security test cases using a tool such as Selenium WebDriver. This
involved writing automation scripts in a programming language such as Python in order
to automate the testing process. The automation process was made headless by using
Selenium to run the automation scripts without the need for a visible browser window.
This allowed the automation scripts to run in the background, providing a more memory
efficient and uninterrupted testing process. Post automation, comparison was made with
the original results generated by the manual pentest to ensure unit testing and accuracy
of the script.

3.4.2 Proxy Automation

In addition to automating the security test cases, the process of proxying the traffic had
to be automated in order to start the proxy before the scripts started execution and
end the process after the testing was complete. This was aimed at reducing the CPU
and RAM overhead and prevent the host machine from becoming slower. This step also
ensured that proper clean up was done after the script execution was performed, allowing
for a fresh scan every time the script executed.

3.5 Reporting

Once the automated security test cases had been completed and the proxying process
was automated, the next step was to automate the generation of the security report.

3https://nvd.nist.gov/vuln-metrics/cvss

7



This involved using Python scripts to analyze the results of the automated testing and
proxying processes and generate a report detailing any security issues or vulnerabilities
that were identified. The generated report was aimed to have the brief information
about the issues intended for all stakeholders, this information comprised of Issue Type,
Description, Severity and Likelihood. The final step in the research methodology was to
deliver the security report to the appropriate stakeholders. This involved emailing the
report to the relevant individuals or departments within the organization, as well as any
external parties that were involved in the testing process.

4 Design Specification

To demonstrate the efficiency of DAST, Burp Suite Professional was used in passive scan-
ning mode as a proxy to analyze traffic. The efficiency also relied on the number of test
cases from the OWASP Top 10 that this research was able to replicate, which were com-
pared with the manual pentesting approach. Overall, effective DAST for websocket-based
web applications is important because it can help identify and prevent security vulnerab-
ilities that could be exploited by malicious actors, protecting the web application and its
users from potential security breaches. Fig 4 shows the overview of the implementation.
Inputs to the automation script are fed from after comparing the results to increase the
efficiency.

Table 1: OWASP Top 10 2021 vulnerabilities

Broken Access Control
Cryptographic Failures
Injection
Insecure Design
Security Misconfiguration
Vulnerable and Outdated Components
Identification and Authentication Failures
Software and Data Integrity Failures
Security Logging and Monitoring Failures
Server-Side Request Forgery

Manual pentesting was performed using the BurpSuite Professional licensed to Akeero
which has many capabilities to test an application. It offers a range of capabilities for
performing automated and manual testing, as well as network-level testing. One key
capability of Burp Suite Professional is its ability to perform web application vulnerability
scanning to identify potential vulnerabilities using automated tools. It also includes
manual testing tools such as an HTTP request editor and a web application spider.

In Table 2 system configuration used has be mentioned.
As websockets were involved in the Akeero application, some capabilities of BurpSuite

wont be utilised like Repeater and Intruder as the application doesn’t allow replay of
requests. To tackle this and perform those checks, automation was used in addition to
the existing vulnerabilities checks.

The pentesting was done by using BurpSuite Professional in the Manual approach,
where it was made to run in the Active mode along with the Passive scanning mode. This
was the preferred choice after analysing its capabilities as compared to OWASP ZAP.

8



Figure 4: Flowchart overview of the project

Table 2: Preferred configuration for the host

Property Description Version
Platform AWS n/a
Instance Type Type T t2.medium
Operating System Kali 2022
Programming Language Python 3.10
RAM 4GB n/a
CPU 2vcore n/a

Headless execution of these tools was preferred to reduce overhead on processor make
the execution possible in linux systems without GUI installed. This testing was performed
in Kali Linux (6.0.0-kali5-cloud-amd64) deployed on AWS EC2 instance with t2.medium4

specification with 2 vcores and 4 GB of RAM. BurpSuite Professional v2022.2.5 released
in December 2022 in the JAR format because of the headless capability only exclusive to
jar file.

Python was used to automate the pentest flow with Selenium WebDriver and Chrome.
Selenium was chosen because it allows for cross-browser implementation and greater flex-
ibility with element operation using Python 5. Python 3.10 was used for this implement-
ation, along with the external packages selenium (v4.7.2), pyotp (v2.8.0), and smtplib.
PyOTP was used to handle the mandatory multi-factor authentication using Time-Based
One-Time Password (TOTP) implemented on the Akeero Serverless.

A custom Burp Suite extension was developed in Python, which was used to extract
the passive issues reported by the BurpScanner and save them to a file. The saved file
was analyzed by the ”main.py” Python script to create an overview of the findings and
mail it, along with the original report (exported by the extension).

4https://aws.amazon.com/ec2/instance-types/
5https://brightdata.com/blog/proxy-101/puppeteer-vs-selenium

9



5 Implementation

5.1 Scope Definition

Scope was determined by opening the Akeero website6 and signing up for their server-
less application as a normal user. As Akeero uses a unique subdomain for each user,
the application URL in scope of this research was https://testings-human-sand-dollar-
cfb6.free.app.akeero.com/. A complete walk-through of the application was carried out
to check all its functionalities and identify vulnerable elements which included input fields
including text, images, files, etc.

Post the application walk through, list of features were documented to identify vulner-
abilities from the OWASP Top 10 (release 2021) that would be applicable to the scoped
in application. Akeero serverless mostly included the following input methods -

• Text based input - These inputs were found to have accepted Alphabet, Numbers
and Special Characters as input.

• File upload - accepted only JSON file types less than 1 MB.

• URL rewriting - This was completely user-controlled which allowed all text input.

With the above conditions, the list of applicable vulnerabilities that could be tested
are listed in Table 3 followed by the justification for each category.

Table 3: OWASP Top 10 2021 vulnerabilities

Broken Access Control Partial
Cryptographic Failures Partial
Injection Applicable
Insecure Design NA
Security Misconfiguration Applicable
Vulnerable and Outdated Components Applicable
Identification and Authentication Failures NA
Software and Data Integrity Failures NA
Security Logging and Monitoring Failures NA
Server-Side Request Forgery Applicable

Broken Access Control could be partially tested after the login was successful because
of third party application usage for login and signup called Auth0 by Okta 7 which was
out-of-scope. Test-cases included -

1. Trying to access projects from different account

2. Trying to access settings restricted to premium user plan

3. Trying to add users (restricted to premium users)

4. Trying to delete projects from different account

6https://akeero.com
7https://auth0.com

10



Cryptographic Failures could also be partially tested relying on the capabilities of
BurpSuite. Major checks included use of latest encryption algorithms, valid certificates,
SSL version used, etc. Cryptographic checks are performed during the Secure Code review
which is more credible as the algorithm used in clearly mentioned in the application code.

Injection attacks are a type of security vulnerability that can occur when an attacker is
able to send malicious input to an application, which is then executed by the application.
This can allow the attacker to gain unauthorized access to sensitive data, execute arbitrary
commands, or manipulate the application in other ways OWASP (2021). Test-cases for
injection attacks included -

1. SQL injection attacks: These attacks involve injecting malicious SQL code into
an application in order to gain unauthorized access to sensitive data stored in a
database.

2. LDAP injection attacks: These attacks involve injecting malicious LDAP state-
ments into an application in order to gain unauthorized access to sensitive data
stored in an LDAP directory.

3. OS command injection attacks: These attacks involve injecting malicious OS com-
mands into an application in order to execute arbitrary commands on the server.

4. XML injection attacks: These attacks involve injecting malicious XML code into
an application in order to manipulate or access sensitive data stored in an XML
document.

5. HTML injection attacks: These attacks involve injecting malicious HTML code into
an application in order to manipulate the appearance or behavior of the application.

6. XSS (Cross-Site Scripting) attack: These involves injecting malicious JavaScript
code into a web application in the context of a victim’s browser, allowing the at-
tacker to gain unauthorized access to sensitive data or manipulate the appearance
or behavior of the application.

Insecure Design could not be tested as it involves security checks in Secure Software
Development Cycle and abuse case checks which are out of scope for this assessment.

Security Misconfiguration is defined as a vulnerability that occurs when web applica-
tion security is not properly configured. This can include issues such as default accounts
with weak passwords, unnecessary services that are enabled and exposed, or unpatched
vulnerabilities. Security misconfiguration can allow attackers to gain unauthorized access
to the system, steal sensitive data, or execute malicious code. This type of vulnerabilities
are easily detected by burp as it extracts version number of applications and components
being used in the application to identify them against any known vulnerability. Burp also
highlights version number detected in the Dashboard tab using an extension called Soft-
ware Version Reporter8 which covers the Vulnerable and Outdated Components category
from OWASP Top 10 9

Identification and Authentication Failures was defined as the vulnerabilities in the au-
thentication implementation. In this case, Akeero uses a outsourced service as mentioned

8https://portswigger.net/bappstore/ae62baff8fa24150991bad5eaf6d4d38
9https://portswigger.net/support/using-burp-to-test-for-the-owasp-top-ten

11



above, which is out of scope for DAST. Software and Data Integrity Failures was out-
of-scope of this implementation as this was covered mainly in CI pipeline with different
tools and scripts. Security Logging and Monitoring Failures was out-of-scope because it
is mainly to do with back-end logging and alerting systems.

Server-Side Request Forgery is a type of attack that involves an attacker causing a
server to perform a request on their behalf. This can allow the attacker to access sensitive
information, bypass security controls, or execute arbitrary code on the server. Testcases
to check for SSRF was included in the payload file.

The final payload file consists of payloads as shown in Figure 5

Figure 5: Payload file for the DAST

5.2 Vulnerability Assessment

Manually perform a pentest (penetration test) of the security test cases for the scoped
web application with multiple payloads from PayloadAllThings repository10 which is a
carefully curated list of all the vulnerabilities payloads.

Manual Pentest was performed on a different subdomain11 by setting up the proxy
on a Firefox browser and running BurpSuite Professional for scanning. Payloads were
entered in different input fields as shown in Fig 6. This subdomain was also used to check
if the two environments were properly isolated and were not able to access each other’s
resources by trying to access projects via it’s id.

Test for common vulnerabilities such as SQL injection, cross-site scripting (XSS), and
insecure direct object references (IDOR) was done by manually inputting them in the
input fields individually.

10https://swisskyrepo.github.io/PayloadsAllTheThingsWeb/
11https://accounttwos-personal-mongoose-e9e9.free.app.akeero.com/

12



Figure 6: Sample input field test with a payload during manual pentest

5.3 Testcases Automation

Automation was done with the help of Selenium WebDriver on scoped in subdomain as
mentioned above, it was connected with chromium browser to execute the test cases from
the payload.txt file. BurpSuite proxy was setup as shown in the Fig 7 and 8 to route all
the traffic for scanning.

Figure 7: BurpSuite Proxy configuration

Figure 8: Proxy and Browser configuration

Automation code was written with Python and modules were defined to run the
automation in different phases testing each module for easy management and complete
coverage as shown in fig 9.

Comments were used to highlight section beginning and necessary output was prin-
ted to logging and debug purpose. Next step was to remove the GUI (Graphical User
Interface) and make this headless which was done with the help of Selenium WebDriver
variable chrome options with the parameter --headless as shown in Fig 8.

13



Figure 9: Profile module testing code snippet

5.4 Proxy Automation

Automation of BurpSuite Professional was done to start itself and the process of proxying
traffic to start the proxy before the scripts start execution and end the process after the
testing was complete. This was done with the help of JAR file of the BurpSuite which had
an option to start it in headless mode with the required extensions as per the configuration
files included. The process was started with the help of subprocess Python library. This
was done to reduce CPU and RAM overhead to prevent the host machine from becoming
slower processing GUI while allowing it run on linux machine without a GUI.

Ensure proper clean up was done at the beginning of the code when burp was initialised
to avoid overlapping of results or corrupting the scan with last scan project. The burp
process was closed at the end of the script to allow for a fresh scan every time the script
executes.

5.5 Reporting

A custom Burp Suite extension was developed to export the issues reported by Burp’s
scanner module and save them to a file. This extension was entirely code in Python
with the below code snippet (Fig 11) to fetch details about an issue which included Issue
Name, Issue Details, Severity and Confidence using the Burp Guide12

Develop a custom Burp Suite extension in Python to extract passive issues reported by
the BurpScanner and save them to a file Analyze the saved file using the main.py Python
script to prepare an overview of the findings Mail the overview and original report (file
exported by the extension)

6 Evaluation

Evaluation of this research was to answer multiple RQs which were discussed in the imple-
mentation while keeping in mind the pentesting benchmark to scan for all the applicable
OWASP Top 10 vulnerabilities in the DAST process to ensure effectiveness.

12https://portswigger.net/burp/extender/writing-your-first-burp-suite-extension

14



6.1 Automation

Another objective was to check if automation of the WebSocket based application could
be done via DevSecOps approach with CICD integration which was proved to be possible
starting with the initiation phase to trigger the execution of script until the reporting part
that generated a report along with a summary that was mailed to the stakeholders at the
end of the scan with the help of Python. Figure 10 illustrates the different integration
to make this automation possible in the AWS infrastructure of Akeero that comprised of
the trigger by GitHub Actions to SSH into the EC2 instance that had a burp installation
and python script on it. The python script invoked the burp and chrome initiation to
start the execution of test-cases from the payload file on different modules of Akeero
application. The report generation was a challenge as BurpSuite Professional does not
provide a functionality to automate the report generation which was solved with the help
of a custom BurpSuite extension, code snippet of which is shown in Fig 11. The python
script then analysed those issues to prepare a summary with unique issue names and
emailed it to the stakeholders. A sample email received is shown in Fig 12.

Figure 10: Project workflow model for automation

6.2 Issues Testing

As observed from the python script, it can be observed that the payload file was properly
read and all the inputs were tested as shown in the sample Fig 6 with the output and
it’s respective implementation code shown in Fig 9. This helps us conclude the following
checks against the OWASP Top 10 vulnerabilities checklist in the Table 4. Figure 13
shows the output from the scanner which added up to 25 unique issues while the total
number reported was 27 with 2 duplicates, that were found while testing for the applicable
vulnerabilities with automation.

6.3 Accuracy

The results were verified to be in line with the manual approach which had a much higher
time complexity and effort. Because this case study focused on testing if the test cases

15



Figure 11: Custom BurpSuite Extension to generate report

Figure 12: Sample email received by the stakeholders

16



Table 4: OWASP Top 10 2021 vulnerabilities outcome

Broken Access Control Partial Tested
Cryptographic Failures Partial Tested
Injection Applicable Tested
Insecure Design NA NA
Security Misconfiguration Applicable Tested
Vulnerable and Outdated Components Applicable Tested
Identification and Authentication Failures NA NA
Software and Data Integrity Failures NA NA
Security Logging and Monitoring Failures NA NA
Server-Side Request Forgery Applicable Tested

Figure 13: Burp Scanner Output after testing was completed

tested in manual approach could be automated using a scanner, this was proven to be
true with some exception highlighted in Section 7 and the percentage of false positive
reported by the application was less than 1% for the application in-scope while there were
issues that were found to be falsely rated as per their rated severity vs actual severity
which would depend on different applications as per the compliance requirements and
the security posture of an organisation.

6.4 Time Complexity

Time complexity of the manual pentesting approach was indefinite as it required human
intervention and effort which cannot be determined, while in the automated testing the
time complexity was found to be dependent of the number of payloads in the dataset (n)
resulting in the O(n) time complexity.

17



6.5 Discussion

The use of a popular web scanner, Burp Suite Professional, with a custom extension and
Python programming language allowed for the automation of test cases for the serverless
application. The automation process was observed to yield the same results as manual
testing for in-scope applications, although only limited payloads were tested in the auto-
mated scan. One limitation of this research was that issues related to HTTP headers,
which could also potentially be vulnerable, were not considered in the scope of the study.

An additional limitation of this research was that it did not consider multiple bench-
marks such as SANS 25 or compliance standards when evaluating the security of the
AWS Serverless application with WebSockets. This could potentially impact the validity
and reliability of the findings, as these benchmarks and standards may have identified
additional vulnerabilities or areas for improvement that were not considered in the study.
It is important to consider multiple sources of information and standards when conduct-
ing security research in order to ensure a comprehensive and thorough evaluation of the
system’s security posture.

7 Conclusion and Future Work

This research suggests that the use of DAST for automated security testing was successful
in identifying vulnerabilities in the in-scope applications. The DAST was able to replicate
the results of manual testing, indicating that it is a reliable approach for identifying
security issues. However, the limited payloads that were tested in the automated scan may
have resulted in the DAST missing some vulnerabilities that could have been identified
with a more comprehensive testing approach. Some limitations of this research are -

1. File Upload vulnerabilities were not tested and were out-of-scope as the application
only accepted specific file types.

2. This research was limited to Akeero Serverless application but the approach can be
used for other web-socket based application to perform automation.

3. Open Redirect vulnerabilities were not tested in this research to reduce execution
time of the testing as manual testing did not yield any security issues.

4. DAST on HTTP headers was not done as HTTP requested belonged to third party
services and were therefore out-of-scope.

As the research did not consider above mentioned issues in the limited scope, which
could be a potential weakness in the security of the applications. Overall, the use of
DAST for automated security testing appears to be a valuable approach, but it should be
used in conjunction with other testing methods in order to achieve a more comprehensive
understanding of the security posture of the applications. There is a need to research fur-
ther on websocket applications security automation focusing on the following challenges
-

1. Lack of a generalised framework to test all or any web-socket based applications
with more than 90% coverage.

2. Expand the testing scope to automate more vulnerabilities from OWASP as well as
other standards like SANS 25 covering more CWEs like File Upload vulnerabilities
and Open Redirect.

18



References

Akujobi, J. C. (2021). A model for measuring improvement of security in continuous in-
tegration pipelines: Metrics and four-axis maturity driven devsecops (mfam), Master’s
thesis, University of Twente.

Albahar, M., Alansari, D. and Jurcut, A. (2022). An empirical comparison of pen-testing
tools for detecting web app vulnerabilities, Electronics 11(19): 2991.

Eismann, S., Scheuner, J., van Eyk, E., Schwinger, M., Grohmann, J., Herbst, N., Abad,
C. L. and Iosup, A. (2021). Serverless applications: Why, when, and how?, IEEE
Software 38(1): 32–39.

Fette, I. and Melnikov, A. (2011). The websocket protocol, Technical report.

Garg, P. and Sengamedu, S. H. (2022). Synthesizing code quality rules from examples,
Proc. ACM Program. Lang. 6(OOPSLA2).
URL: https://doi.org/10.1145/3563350

Gojare, S., Joshi, R. and Gaigaware, D. (2015). Analysis and design of selenium webdriver
automation testing framework, Procedia Computer Science 50: 341–346.

Holmes, A. and Kellogg, M. (2006). Automating functional tests using selenium, AGILE
2006 (AGILE’06), IEEE, pp. 6–pp.

Kuosmanen, H. (2016). Security testing of websockets.

Marin, E., Perino, D. and Di Pietro, R. (2022). Serverless computing: a security per-
spective, Journal of Cloud Computing 11(1): 1–12.

Model, W. (2015). Waterfall model, Luettavissa: http://www. waterfall-model. com/.
Luettu 3.

Nguyen-Duc, A., Do, M. V., Hong, Q. L., Khac, K. N. and Quang, A. N. (2021). On
the adoption of static analysis for software security assessment–a case study of an
open-source e-government project, computers & security 111: 102470.

OWASP (2021). Owasp top 10-2021.

Petukhov, A. and Kozlov, D. (2008). Detecting security vulnerabilities in web applications
using dynamic analysis with penetration testing, Computing Systems Lab, Department
of Computer Science, Moscow State University pp. 1–120.

Qasaimeh, M., Shamlawi, A. and Khairallah, T. (2018). Black box evaluation of web
application scanners: Standards mapping approach, Journal of Theoretical and Applied
Information Technology 96(14): 4584–4596.

Rajapakse, R. N., Zahedi, M., Babar, M. A. and Shen, H. (2022). Challenges and solutions
when adopting devsecops: A systematic review, Information and Software Technology
141: 106700.

Saunders, M., Lewis, P. and Thornhill, A. (2007). Research methods, Business Students
4th edition Pearson Education Limited, England .

19



Tomas, N., Li, J. and Huang, H. (2019). An empirical study on culture, automation,
measurement, and sharing of devsecops, 2019 International Conference on Cyber Se-
curity and Protection of Digital Services (Cyber Security), pp. 1–8.

Wang, L., Li, M., Zhang, Y., Ristenpart, T. and Swift, M. (2018). Peeking behind the
curtains of serverless platforms, 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pp. 133–146.

Zampetti, F., Scalabrino, S., Oliveto, R., Canfora, G. and Di Penta, M. (2017). How open
source projects use static code analysis tools in continuous integration pipelines, 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR),
pp. 334–344.

20


	Introduction
	Research Background
	Problem Definition

	Related Work
	SAST
	DAST

	Methodology
	Requirement Analysis
	System Design
	Vulnerability Assessment
	Automation
	Testcases Automation
	Proxy Automation

	Reporting

	Design Specification
	Implementation
	Scope Definition
	Vulnerability Assessment
	Testcases Automation
	Proxy Automation
	Reporting

	Evaluation
	Automation
	Issues Testing
	Accuracy
	Time Complexity
	Discussion

	Conclusion and Future Work

