“ |
\ National

Collegeof
[reland

Configuration Manual

MSc Research Project
MSc. Cybersecurity

Laith Abu Saad
Student ID: X21148520

School of Computing
National College of Ireland

Supervisor: Mr. Jawad Salahuddin

‘-
National College of Ireland \ National

MSc Project Submission Sheet ?I'Oeliilglf(oif
School of Computing
Student Name: Laith Abu Saad
Student ID: X21148520
Programme: MSc. Cybersecurity Year: 2022
Module: Research Project
Lecturer: Mr. Jawad Salahuddin
Submission Due
Date: December 15, 2022
Project Title: Prediction of Engagement Levels from Students’ Facial Expression.
Word Count: ... 1100 Page Count: ... 120 .

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Laith Abu Saad........ccccoooe s

Date: December 15, 2022..... e

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple |o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, O

both for your own reference and in case a project is lost or mislaid. Itis
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must
be placed into the assignment box located outside the office.

lOffice Use Only

_|Siqnature: |

Date: | \
|Pena|ty Applied (if applicable): ! |

Configuration Manual

Laith Abu Saad
X21148520

1 Introduction

This documentation includes information on the hardware and software configurations, steps
involved in data collection and pre-process data, and the whole project implementation. The
project was aimed at assessing how does Randomforest compared to Logistic Regression in
detecting ransomware attacks. Below are the technical requirements and steps which led to
the results produced by the project.

2 System Configuration

Device specifications

Device name
Processor
Installed RAM
Device ID
Product ID
System type

Pen and touch

Figure 1: System Configuration

The system environment used for the execution of this project is a 2GHz Intel Core i7
processor with 16GB of RAM and 500GB of SSD running in Windows 10.

3 Environment Setup
The project's software setup requirements are as follows:

1. Python
2. Jupyter Notebook
3. Anaconda IDE

For this project, Python was chosen as the programming language. Using Jupyter Notebook
within Anaconda, all phases of data pre-processing, model training, testing, and evaluation
were written in Python.

3.1 Python

The first step is to access the official websitel, download, and install the Python

programming language.

Python version Maintenance status First released End of support Release schedule
3.11 bugfix 2022-10-24 2027-10 PEP 664
3.10 bugfix 2021-10-04 2026-10 PEP 619
3.9 security 2020-10-05 2025-10 PEP 596
3.8 security 2019-10-14 2024-10 PEP 569
3.7 security 2018-06-27 2023-06-27 PEP 537

Figure 2: Python download

3.2 Anaconda Installation

The next step is to download Anaconda from their official website2 because the Jupyter
Notebook is already pre-installed within it. You can find information on the minimal system

p Home

v Anaconda Distribution

Installation

requirements and how to download and install Anaconda here3.

Installation

Installing on Windows
Installing on macOS
Installing on Linux

Installing on AWS Graviton2
(arm64)

Installing on Linux-s390x (IBM
Z)

Installing on Linux POWER
Installing in silent mode
Installing for muitiple users
Verifying your installation
Anaconda installer file hashes
Updating from older versions

Using Anaconda on older

Review the system requirements listed below before installing Anaconda Distribution. If you don’t want the hundreds of packages included
with Anaconda, install Miniconda, a mini version of Anaconda that includes just conda, its dependencies, and Python.

Looking for Python 3.5 or 3.6? See our FAQ

System requirements

License: Free use and redistribution under the terms of the EULA for Anaconda Distribution.

Operating system: Windows 8 or newer, 64-bit macOS 1013+, or Linux, including Ubuntu, RedHat, CentOS 7+, and others.

If your operating system is older than what is currently supported, you can find older versions of the Anaconda installers in our archive
that might work for you. See Using Anaconda on older operating systems for version recommendations

System architecture: Windows- 64-bit x86; MacOS- 64-bit x86 & MT; Linux- 64-bit x86, 64-bit aarch64 (AWS Graviton2), 64-bit
Power8/Power9, s390x (Linux on IBM Z & LinuxONE)

Minimum 5 GB disk space to download and install

On Windows, macOS, and Linux, it is best to install Anaconda for the local user, which does not require administrator permissions and is the
most robust type of Installation. However, with administrator permissions, you can install Anaconda system wide. _

Figure 3: Anaconda Documentation

The Jupyter Notebook may be started from inside this environment once both installs are
complete by clicking the Jupyter Notebook icon and the Anaconda Navigator symbol,
respectively. The method is demonstrated below.

1 https://www.python.org/downloads/

2 https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/navigator/install/

-

n Anaconda Navigator (anaconda3) 10/25/2022 11:35 AM
@) Anaconda Navigator 10/25/2022 11:39 AM
211:35 AM

10/25/2022 11:35 AM

Shortcut
Shortcut
Shortcut

@ Anaconda Powershell Prompt (anaconda3)

@ Anaconda Prompt (anaconda3) Shortcut

g Jupyter Notebook (anaconda3) 5/202211:35AM Shortcut

|' Reset Spyder Settings (anaconda3)
Spyder (anaconda3)

15 /90177

[AV @4

Shortcut

12022 11+

(Al 44

Shortcut

Figure 4: Anaconda Directory

All spplication ~| on | base(root) ~ Channels
e = Eed =
" o & @
- P > —
. jupyter
~ S
-
DataSpell CMD.exe Prompt JupyterLab Notebook
0.1.1 344 sa.12
DataSpell is an IDE For exploratory data Run » cmd.exe terminal with your current An extensible environment For interactive Web-based, interactive computing
analysis environment from Navigator activated and reproducible computing, based on the notebook environment. Edit and run
model combi he in tivil o Jupyter Notebook and Architecture human-readable docs while describing the
Jupyt: otebool data analysis
Python and R codin
in one user-Ffri
(insta u) (raunen | (Launch) (Launch)
= = < <
év' AW
A IPly
{5 «
Powershell Prompt Qt Console Spyder Datalore
0.0.1 A s ol
Run a Powershell terminal with your PyQt GUI that supports inline figure: Scientific P'rthon Developmen! t Kick-start your data science projects in
current environment From Navigator proper multiline e vith synta EnviRonment. Powerful Python IDE with seconds in a pre-configured environment
activated highlighting, graphic ltips, and more. advanced editing, interactive testing, Enjoy coding assistance For Python, SQL,

3.3 Libraries:

Figure 5: Anaconda Navigator

* brothon==0.2.5
o This Library is used to read network files.

* matplotlib==3.6.2
o This library is used to plot / visualize the matrices and correlations.

* numpy==1.23.5
o this library is used for for data processing along with pandas.

* pandas==1.5.2
o this library is used for for data processing along with numpy.

» scikit_learn==1.2.0

o this library is used to load, train and test models.

+ seaborn==0.12.1
o this library is used for visualization for heatmaps.

4 Data Collection

The dataset for this project, was obtained from Information security and object technology
(1ISOT) research lab. Dataset was provided by researchers at university of Victoria from their

website4.

5 Pre-processing

It is essential to pre-process the data after downloading it to get it suitable for modeling.
Three primary pre-processing procedures were completed. The same Jupyter notebook file,
"Ransomware Detection.ipynb,” was used for each of these procedures. Importing the

required packages to enable code execution is the initial step, as illustrated in Figure®As
shown in the example below, any packages that have not yet been installed on the Anaconda
environment can be added using the command "!pip install module name" from within

Jupyter Notebook:

)]+

Libraries y access director

import shutil
import os
from brothon import bro_log_reader as blr

Les

Libraries for data processing
import pandas as pd

import numpy as np

Libraries for visualisation
import matplotlib.pyplot as plt

import seaborn as sns

Libraries for model training and testing

from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix

from mlxtend.plotting import plot_confusion_matrix

Figure 6: Import Modules/ Dependencies

4https://www.uvic.ca/ecs/ece/ isot/datasets/botnet-ransomware/index.php

6

Install & Load Libraries

H.

™
I-IJ I"-.l
o O
wd

=

A

-
P |
LA

=
[o s o i R e O SR o

H B
s Pl
= =3
LTI Y TR T |
e~ = =

O 0 80 0 8

s [. T
wd
==
-

£
= = = =

n pela

+
L=
=l
L |
]
=
LA

=l
—_
-

— = = — e~ e~
T 3
[.
3
=
bz
]
Ii
[

scikit learn==1.2.8
segborn==0.12.1

,H.
L |
Fela
=
ot
-3
L]
8
——

Figure 7: library installations

Dataset Exploration

As we can see in the figure 8 below there is more than 10 million Rows in the dataset
and 22 Columns.

#There are 18.4 millions rows in the daota set and 22 columns

df .shape

(18447787, 22)

Figure 8: Shape of the Dataset

In Figure 9 we listed the columns names that are in the dataset and there is 22 column.

#These are all the names of the columns
df.columns

Index(['Unnamed: @', "ts', 'uid', 'id.orig_h', ‘'id.orig _p', ‘id.resp_h',
‘id.resp _p', 'proto', ‘service’, ‘duration’, ‘orig bytes', 'resp_bytes®,
‘conn_state', 'local orig', 'local resp', 'missed _bytes', "history',
‘orig_pkts', 'orig ip bytes', 'resp pkts', 'resp_ip_ bytes®,

"tunnel parents label detailed-label'],
dtype="object")

Figure 9: Columns in the Dataset

In Figure 10 we can see the number of benign traffic and the number of malicious traffic and

all these traffic fall under the column named “tunnel_parents label detailed-label”.

df["tunnel_parents label detailed-label®].value_counts()

- BEenign - 8262389
- Malicious DDosS 2185382
- Malicious C&C 31
- Malicious C&C-FileDownload 12
- Malicious Attack 3

Mame: tunnel_parents label detailed-label, dtype: inted

#Here we see the number of benign traffic and the number of malicious traffic

Figure 10: Distribution of the Dataset

In Figure 11 the pie chart presents the percentage of each malicious file and the benign. It
shows for benign there is more than 79% and for the Malicious distributed denial of service

DDOS more than 20%.

- Malicious
- Malicious
- Malicious
- Malicious

- Benign -

tunnel_parents label detailed-label

- Malicious DDoS

- Benign -

DDo5S

C&C
C&C-FileDownload
Attack

- Malicious E&&eckileDownload

Figure 11: Visualise Distribution of Dataset

inplace=True,
errors="'raise")

df.rename{columns={"'tunnel parents label detailed-label': 'traffic type'},

Figure 12: Rename the tunnel parents column.

In Figure 12 we renamed the column tunnel parents to traffic type.

Rename traffic type to normalware or ransomeware respectively

df.replace("- Benign -", "normalware”, inplace=True)
df.replace([

" Malicious ChOos", "- Malicious C&C’',

- Malicious C&C-FileDownload', '- Malicious Attack®
1.

'ransomware”,
inplace=True)

Figure 13: Rename Traffic Type

In Figure we renamed the traffic type to Normalware and Ransomware instead of Malicious
DDos, Malicious C&C and benign.

normalware = df[df['traffic type'] == 'normalware’].sample(
n=10aaaaa,
random_state=111,

}.reset_index({drop=True)

ransomware = df[df['traffic type'] == 'ransomware’].sample(
n=12aa88a,
random_state=111,

}.reset_index({drop=True)

Merge the normalware and ransomware dataframe inte a single dataframe
final_df = pd.concat{[normalware, ransomware])

Figure 14: Code for balancing the dataset

In Figure 14 we took a sample size of 1 million of each normalware and ransomware and
merged them into the new final_df variable, this will help in achieving higher accuracy rate.

7 Feature Selection

def get low var_cols{df, thres):
low_var_cols = []

for col in df.columns:
percent_count = df[col].value_counts() / len(df) * 188
if percent_count.max{) > thres:
low_var_cols.append(col)

return low var cols

variance thres = 78

low_var_cols = get low var_cols(final_df, wvariance_thres)

print({'{} are columns with same data across 78% of the rows'.format(
str{low_wvar_cols)[1:-1]))

Figure 15: Identifying Coloumns that have similar data

In Figure 15 we set a threshold of 70% which means that we only take data of each column
that have 70% or more.

10

from sklearn import preprocessing

ALL the columns are encoded so they can be machine readable
cat_cols = list{data_clean.columns)

enc = preprocessing. LabelEncoder()
for col in cat_cols:

data_clean[cocl] = data_clean[col].astype(' 'str')
data_clean[ecol] = enc.fit_transform(data_clean[col])

Figure 16: Encoding the columns

In Figure 16 we have to encode the data so that it can be machine readable.

from sklearn.model_selection import train_test_split
X_train, X_test, y train, y_test = train_test_split(X,

¥
test_size=0.38, random_state = 168)

Figure 17: Splitting the Dataset

In Figure 17 we split the dataset 70% for training and 30% for testing.

8 Model Training & Testing

Model Training

LR = LogisticRegression({random_state = 188)
LR = LR.fit(X_train, y_train)
LR

LogisticRegression(random_state=188)

Model Test

1r pred = LR.predict(X_test)
1r = LR.score(X_test, y_test)
print('Accuracy score= {:.4f}'.format(lr))

Accuracy score= @.7448

Figure 18: LR Model training & Testing

In Figure 18 we trained the logistic regression model with 70% of the dataset and for the
testing 30% dataset. The model predicted an accuracy score of 74%

11

Model Training

#Define the random forest model
rf = RandomForestClassifier{random_state = 18@)

#Train the random forest model using training data
rf = rf.fit(X _train, y_train)
rt

RandomForestClassifier{random_state=188)

Modelling Testing

#Test the random forest model using the testing data
rf_pred = rf.predict(X _test)

rf_acc = rf.score(X_test, y test)

print('Accuracy = {:.6f}%'.format(rf_acc))

Accuracy = ©.999995%

Figure 19: RF Model training & Testing

In Figure 19 we trained the Random Forest model with 70% of the dataset and for the testing
30% dataset. The model predicted an accuracy score of 99%

12

