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Reliable Online Offloading Using Deep Reinforcement
Learning In Mobile Edge Computing

Kamal Nikhar Yadav
x20246935

Abstract

IOT Wireless devices(WDs) are resource constraint and the method that is
widely opted to overcome this problem is task offloading. In this research, we
consider a system in which there are multiple users in MEC network which has
wireless channel that vary with time and stochastic data queues. We aim for
designing an algorithm that will take care of online offloading in the least amount
of time, while increasing the number of bits processed in given time frame. The
algorithm is useful because the offloading decisions in online computation are de-
cided without taking into consideration the future channel states and data queues.
This is resolved by using Lyapunovs optimization and Deep Reinforcement learn-
ing in the framework called Reliable Online Offloading Using Deep Reinforcement
Learning(RDRL). RDRL tackles the problem by first applying Lyapunov optim-
ization on the MINLP problem and convert it into sub-problems. Then, RDRL
then uses model-free approach to DRL to solve these sub-problems with low time
complexity. The evaluation results show that RDRL achieves good computation
rates with stable queues. Alongwith this it has very low time complexity which is
advantageous for implementations in real-time decisions based on the environment.
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1 Introduction

The tremendous advancements in wireless communications and networking over the last
decade have been propelled by the proliferation of mobile devices and the incredibly
rapid growth of mobile Web traffic. The ideas of the the Internet of Things (IoT) and
5G communications have prompted a shift from centralized mobile cloud computing to
edge devices in past decades (MEC) Mao, You, Zhang, Huang and Letaief (2017). Mobile
Edge Computing (MEC) is a network architecture concept that provides IT and cloud
computing capabilities at the mobile network’s edge [3]. Due to its proximity to clients,
MEC can offer a service strategy with exceptionally low latency, high bandwidth, and
direct access to real-time network data. Furthermore, the introduction of new services
such as the Internet of Things, smart gadgets, super HD video, and a growing variety of
cloud solutions has caused a significant increase in network traffic. Mobile-edge comput-
ing (MEC) is a critical solution for enhancing the processing efficiency of wireless devices
(WDs).Li et al. (2020) MEC is very helpful for Internet of Things devices with limited
size and low battery capacity and processing power. Utilizing MEC servers located at the
edge of radio access networks, such as cellular base stations, WDs may offload time- and
energy-intensive intensive computation operations to a nearby edge server (ES). Proact-
ive computation offloading refers to tasks that may be calculated locally or at the edge
server, and has shown a significant performance boost under time-varying network cir-
cumstances, such as harvested energy level, wireless channel gains, and task input-output
dependence.Yan et al. (2020)
To increase the efficiency of the MEC (multi-user) network, much research is conducted
on opportunistic compute offloading. Binary offloading is a sort of offloading in which a
fundamental or deeply connected job is offloaded as a single unit, either at the MEC server
or directly on the mobile device. The problem of resolving mixed integer nonlinear pro-
gramming (MINLP) determines the offloading choices, such as binary offloading, time of
task offloading, and edge or local CPU frequency. In complex systems, tackling such chal-
lenges often requires prohibitively sophisticated computer systems. According to Dinh
et al. (2017), Yan et al. (2020), various studies have focused on developing sub-optimal
algorithms with decreased difficulty, such as decomposition-oriented query, relaxations of
binary variables, and local-search-based heuristics. These sub-optimal approaches may
suffer performance losses and require a vast number of statistical iterations to arrive at
an ideal answer.
The MEC servers are widely spread in close proximity to mobile users, and mobile devices
may wirelessly offload computational tasks to the MEC servers. Mobile users may leverage
online offloading computing to improve Quality of Service through offloading computing
(QoS). As a consequence, there is significant interest in the MEC system’s key problem of
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computation offloading and computational resource allocationLi et al. (2018). It is diffi-
cult to determine the optimum strategy in a system that is always changing and evolving.
Reinforcement Learning (RL) takes into account not just short-term rewards, but also
long-term aims, which is vital for time-variable dynamic systems such as the multi-user
wireless MEC system. To handle wireless MEC allocation of resources, an RL-based
optimization strategy is proposed. DRL (deep reinforcement learning) is an enhanced
variant of RL (reinforcement learning) and an information method. This strategy of-
fers an alternative possible solution to the online offloading issue. The DRL technique
employs the Deep neural network (DNN), which is a model-free drive that use DNN to
educate itself with the best mapping from the state, including time-varying parameters,
to the data offloading choices and allocation of resources action. This method signific-
antly accelerates the pace of information processing by interacting constantly with the
surrounding environment, which is rewarded by this algorithm. This method is much
more advantageous for online offloading in MEC networks than the MINLP technique,
which often requires complex calculation.Liu, Yu, Xie and Zhang (2019)

1.1 Research Project Specification

This section defines the research question and the objectives for this paper.

1.1.1 Objective

The objective of this research paper is to propose a Lyapunov stability based DRL frame-
work which will reliably offload the task to edge servers with least amount of energy
consumption and with stable data queues.
In this paper we aim to propose Reliable Online Offloading Using Deep Reinforcement
Learning(RDRL) framework that will leverages the advantage of both Lyapunov optim-
ization to first solve the MINLP equation for a schotastic channel and then use DRL for
generating the binary offloading decision alongwith maximizing the bits processed.
Alongwith proposing RDRL framework we will evaluate it when varying the different
parameters like number of WDs, system parameters like power constraint and varying
the Lyapunov constant parameter.

1.1.2 Research Question

How efficiently the energy consumption can be reduced to increase the reliable task of-
floading using Lyapunov stability and Deep Reinforcement Learning in multi-access edge
computing for Online devices?

1.2 Project Structure

Section 2 presents the related work for MEC, IOT, DRL, and Lyapunov optimization. It
takes into account the methods they proposed and also their limitations. Section 3 talks
about the system model that we propose for RDRL framework and the architecture of
it. It discusses the various modules in the framework and also the resource allocation
algorithm being used in RDRL.
Section 4 discusses the tools that are used for developing and evaluating RDRL and
also the code flow of it. Section 5 discusses the evaluation of RDRL based on various

3



parameters like Lyapunov optimization constant, power constraint, number of WDs and
discussing its findings.

2 Related Work

Mao, You, Zhang, Huang and Letaief (2017) talks about the positive attributes of Mobile
edge computing over Mobile Cloud environment. MEC provides IoT with mobile en-
ergy saving by utilizing computation offloading, maintaining lower latency by propagat-
ing data, and enhancing security and privacy for mobile applications. The paper also
discusses the offloading models which are commonly seen such as partial and binary of-
floading computing models. In this paper, the binary offloading strategy is discussed
which is defined as a particular task being executed or offloaded to MEC or processed at
the mobile device itself. In this paper, the binary offloading strategy is discussed which is
defined as a particular task being executed or offloaded to the MEC server or processed
at the local mobile device itself.
The binary model is a non-partitionable design for processing simple computation tasks.
A multi-user MEC network that adopts a binary offloading model struggles with the
intractable combinatorial computational offloading complexity. Lee et al. (2019) has
mentioned using a technique in which the Wireless devices will select neighbouring fog
nodes to shorten the latency in fog computing by attaining a low competitive ratio. The
competitive ratio is determined in the paper by a threshold-based algorithm this is the
proportion of the internet delay method to the offline optimum latency. The main aim of
the technique is to reduce transmission latency. However, in this paper, the optimization
of a long-term objective is aimed which is not practical for this technique.

Yan et al. (2020) demonstrates in their study the Gibbs sampling algorithm that ob-
tains a satisfactory offloading decision. This study is based on a various clients MEC
system utilizing a method in which a task input on a single Wireless device is needed for
the final output from multiple other wireless devices. A threshold-level optimal offloading
decision is achieved by the Gibbs sampling method. Bi and Zhang (2018) puts forward
an multiply rotating orientation technique also called an ADMM which tackle com- plex-
ity issue in vast networks. ADMM is a decomposition Decays the initial optimization
problem into multiple simultaneous comment thread. The paper also states about the
integration of edge computing and RF- based on power transmission without wired setup
which can probably tackle the performance struggles and limitations in the IoT networks.

As per Du et al. (2019), presents a positive strategies to tackle the issue of offloading
smart Vehicular terminal, VT applications to their proximal MEC server. Smart Internet
of Vehicles supports programs that includes real-time navigation systems, and gaming.
The above devices demand heavy bandwidth and are often delay-sensitive which in turn
pressures the Vehicular terminal and its radio access network. To tackle the VT’s excess-
ive energy consumption and weak terminal processing capability, MEC enabled-Vehicular
networking is proposed in which the MEC computing platform and MEC roadside units
are constituted. The roadside units are attached to the Mec servers and deployed along
the wireless access to VT. The major problem is tackled by offloading the respective com-
putations to the MEC servers. This optimization such as the VT side and MEC-enabled
roadside units sides optimization issues are decoupled into inde- pendent frame optimiz-
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ation without needing any knowledge of network state info or any future upcoming task
arrival. Continuous relaxation is developed and a low-complexity algorithm is obtained.
Although beneficial, These methods of optimization generate the problem of performance
complexity tradeoff upon operating the integer variables.

Dinh et al. (2017) suggests a platform that offloads from a single Mobile units to
many edge systems. The paper studies the impact of a individual unit to allocate tasks
to multiple Access points. The framework which is proposed would minimize the lag in
task completion and consumption of resources. Based on the study, their SDR approach
(semidefinite relaxation) could reach optimal performance. It was assumed that Access
points process all of their tasks offload by the same particular Mo- bile device which will
not be possible if there would be multiple Mobile devices offloading to the same access
point. Liu, Yu, Xie and Zhang (2019) ) focuses on the DRL method (deep reinforcement
learning), to achieve the desired resource allocation . In this paper, a VEC called a Vehicle
edge computing net- work is designed where the automobiles offer compute capabilities as
well as typical edge services. The suggested framework would increase the flexibility and
service range of MEC. The offloading is acquired to increase the functionality of the VEC
network. The paper is concluded by saying DRL-based technique can obtain a improved
output as compared to the pure FES, fixed edge server method, or Vehicle edge server
method.

Li et al. (2018) propose RL-based learning (Reinforcement learning) that is as flex-
ible as the multi-user Wireless Mobile edge computing device. The RL-based optimiz-
ation paradigm addresses allocation of resources in the wireless MEC. Methods based
on Q-learning and DRL are presented to overcome the offloading computing issue. The
DRL-based method is proposed in a multiuser system. Resource allocation and reduction
in energy consumption are studied in this paper and an RL and DRL-based solution is
derived which tackles the offloading computation decision and resource allocation issues
in this framework. Chen et al. (2019) brings us the comparison between two computa-
tional algorithms which are double DQN-based (Deep Q -network) reinforcement learning
(DARLING) and Deep-SARL (deep state-action-reward-state-action-based reinforcement
learning algorithm). It also discusses the MEC being a mobile user in a sliced RAN (ra-
dio access network) where for computation offloading, multiple base stations (BSs) are
available. The main objective is to maximize the utility performance through which an
offloading conclusion is made which in turn is based on the energy state, task queue
state, and the channel qualities among the Base stations and multiple users. Markov de-
cision process model is proposed for problem-solving of an optimal offloading computation
policy. Using the utility function structure and based on tests undertaken to solve ran-
domized computation offloading, the Deep-SARL method outperforms the DQN-based
(Deep Q -network) reinforcement learning.

Tang and Wong (2022) shows the LSTM (long short-term memory), double-DQN
technique, and DQN (dueling deep Q-network) algorithm so that offloading decision can
be determined for each device without knowing the offloading decision of other devices
and the task models. Mainly, the problems with delay-sensitive and non-divisible tasks
in the MEC system are studied and the offloading algorithm is designed which enables
the wireless mobile devices to make their offloading decisions in a decentralized manner.
The problem of tasks being dropped due to increased traffic and delay is reduced to a
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certain amount. Similarly in Min et al. (2019), through simulation situations, the author
has shown that latency, energy consumption, and the task drop rate is reduced by the
proposed RL-based offloading scheme and thereby increasing the IoT device’s utility. The
RL-based offloading scheme also permits the IoT device to choose the offloading rate and
the edge device as per the battery level and previous transmission rate. However, in the
case of Wireless devices, the number of offloading actions is exponential and a DQN-
based method would be very costly. To settle this issue, actor-critic Deep Reinforcement
Learning is proposed in Wei et al. (2019) which is an algorithm to learn the stochastic
policy for various things such as computing offloading, caching of the content, and radio
resource allocation. The actor part of the algorithm utilizes another DNN (deep neural
network) to represent a stochastic policy based on parameters. The DNN which is em-
ployed here evaluates the huge number of actions and system states and estimates a value
function for the actor-critic. This is the policy-based approach studied in this paper that
tackles the problem of computing, joint caching, and resource allocation in the IoT that
are Fog enabled. The overall framework helps in reducing service latency. Similarly, Xiao
et al. (2020) has proposed a similar model to improve the computational performance
that utilizes the critic network to update actor network weights and the actor-network to
select the offloading policy. For a MEC to select the edge device and the offloading rate,
the author has also designed the RL-based mobile offloading. This allows the device to
address the problem of heavy interference and smart jamming. To further enhance the
computing performance of mobile devices that enable deep learning, a deep RL version
of the model that combines the actor-critic technique mentioned above and DQN is also
proposed. According to game theory, we have presented the computational complexity
of the suggested scheme as well as its performance bound, which takes into account the
processing delay of the tasks, energy consumption, and the usefulness of the mobile device.

In Du et al. (2020), the author talks about the wireless equipment that has the fea-
tures of Virtual reality mode which needs very large bandwidth and good processing
capability. To reduce energy consumption and task latency for the WD such as Head-
mounted displays, Multi-access edge computing is proposed. Ultrahigh-speed wireless
data transmission is expected by the THz (bandwidth-rich terahertz) communication.
So, to minimize the energy consumption of a THz wireless-based MEC system is pro-
posed, that will provide high-quality VR video support. The DDPG (deep deterministic
policy gradient) is another policy-based method talked about in Zhang et al. (2020) and
Xiao et al. (2020) that uses DNN to directly build the best mapping strategy from the
input state to the output action. To determine the best way to transfer a continuous
input state to discrete output actions, Xiao et al. (2020) evaluates a Wireless device
that only performs discrete offloading operations, such as integer offloading decisions,
offloading rates, and discredited transmit power. Whereas Zhang et al. (2020) trains
two individual modules to obtain continuous resource allocation successively and discrete
offloading decisions. For picking a discrete offloading action, Zhang et al. (2020) has
combined a DNQ-based critic network with an actor DNN for developing the resource
allocation solution. To enhance the computing experience for IoT devices, MEC with
EH (energy harvesting) is an emerging paradigm. To tackle the problem of continuous-
discrete hybrid action spaces and coordination of devices, the author has proposed two
DRL- based algorithms, that are Hybrid-AC ( hybrid-decision-based actor-critic learn-
ing) and Multi device-Hybrid-AC. The problem of hybrid action space is solved by the
Hybrid-AC with the advancement of actor-critic architecture. In this situation, the critic
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assesses the continuous actions and yields the distinct server selection action and the
actor outputs continuous actions (local computation capacity and offloading ratio). The
framework of centralized training is adopted by MDHybrid-AC with decentralized execu-
tion. By building a centralized critique to output server selections that take into account
all device’s continuous action policies, it learns how to make coordinated decisions. The
results of the simulations demonstrate that the suggested algorithms successfully strike
a balance between the amount of time and energy they require and that they perform
significantly better than the default offloading rules.
The previously discussed DRL- based methods do not address the problems such as the
stability of the queue under random environments which are long-term per long-term
performance requirements. Recent studies in Mao et al. (2016), have utilized Lyapunov
optimization to plan an online offloading strategy. The Lyapunov optimization-based
computation offloading algorithm splits the stochastic problem into deterministic sub-
problems in each timeslot at the time of implementation. The Lyapunov computation
offloading algorithm decides the transmit power and CPU-cycle frequencies for computa-
tion offloading and mobile execution respectively. These decisions depend on the current
state of the system, without requiring information on the EH request, task request, and
wireless channel. Sun et al. (2017) investigated the Mobility systemic issue for a MEC-
enabled Ultra dense network (UDN). By merging the ideas of Lyapunov enhancement
and MAB (multi-armed bandit), a novel user-specific energy-aware mobility manage-
ment (also known as the EMM) is created that really can meet 7 the restrictions of power
consumption simultaneously obtain the optimal latency. Mao, Zhang, Song and Letaief
(2017) and Liu, Bennis, Debbah and Poor (2019) examine the multiple user’s joint of-
floading decisions which are different from the binary offloading policy regarded in this
paper. The optimization theory allows Wireless devices to tackle the resource allocation
problem and continuous joint offloading. As the binary offloading policy is utilized in
some of the before-mentioned papers and also in Du et al. (2019) and Liu, Bennis, Deb-
bah and Poor (2019), the number of potential offloading options increases exponentially
with the user count. An algorithm is designed in Du et al. (2019) which is based on the
Lyapunov optimization called DDROV to first receive server provisioning independently
and then come up with the continuous relaxation plan to tackle the combinatorial prob-
lem of joint offloading. In Liu, Bennis, Debbah and Poor (2019), the author proposes a
two-term mechanism, the first term is to obtain a user-server decision and then the second
term is to execute task offloading and resource allocation policy. But if we look into the
consistent long-term result that may degrade the long-term performance, a high-quality
solution cannot be promised.

3 Methodology

3.0.1 System Model

Considering the system depicted in the Figure 1, we consider N WDs with ES assisting
them in computation for T same duration sequential time frames. For a i th time frame,
Ai

n represents the rate that which the tasks arrive in the data queue for n th WD.
Assuming Ai

n has i.i.d. distribution, i.e. E[(At
n)

2] = ηn < ∞, for n = 1, ..., N . hi
n

represents the channel gain between ES and the n th WD. According to the block fading
hypothesis, hi

n is constant inside a given time frame and fluctuates separately across
frames.
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Assume that a tagged n WD computes Dn
i bits of input data in i th time frame and

Figure 1: Multi-user Network In MECLiu, Bennis, Debbah and Poor (2019)

outputs a result of the computation at the termination of the frame. We suppose that
WDs follow a binary rule for task offloading in particular. Consequently, the raw data
for each time frame should either be handled locally at WD or remotely at ES. For
example WD2 processes the data locally and WD1 and WD3 offload task to ES in figure.
WDs offload their task to the ES using shared bandwith W by TDMA process. We
are considering a binary property xi

n to represent the offloading decision. xi
n = 0 and 1

representing that n WD computes the data locally or remotely respectively.
Data(in bits) processed locally by WD is given by:

Di
n,L = f i

nT/ϕ, Ei
n,L = κ

(
f i
n

)3
T, ∀xi

n = 0, (1)

In equation1 ϕ > 0 represents the processing cycles required to compute 1 bit and κ > 0
represents efficiency of the required energy.
When xi

n = 1, the task if offloaded to the ES. P i
n represents the transmit power limited

by P i
n ≤ Pmax

n and τ tnT is the allocated time to n th WD for offloading. Here, τ in ∈ [0, 1]
and

∑N
n=1 τ

i
n ≤ 1. Offloading data consumes Ei

n,O = P i
nτ

i
nT energy. As given in You et al.

(2016) and Bi and Zhang (2018) Since we don’t account for the edge computing latency,
the volume of data analyzed at the edge in the allotted time is:

Di
n,O =

Wτ inT

vu
log2

(
1 +

P i
nh

i
n

N0

)
=
Wτ inT

vu
log2

(
1 +

Et
n,Oh

i
n

τ inTN0

)
, ∀xi

n = 1, (2)

here vu ≥ 1 represents the overhead required for communication and noise power is rep-
resented by N0.
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In this research, we build an online approach to increase the long-term total mean sum
calculation speed of all the WDs while observing average power and data queue stability
restrictions. We specifically make judgments online in the sense that we maximize number
of bits processed and resource allocation for each time duration without making the
assumption that we know how random channel and data arrivals will manifest in the
future. Each brief time frame, such as the channel coherence time, demands real-time
decision-making due to the fast-varying channel situation. We propose a Reliable Online
Offloading Using Deep Reinforcement Learning framework to solve this with robustness
and efficiency.

3.1 Algorithm For DRL and Resource Allocation

To solve the MINLP problem we consider a parameter ξi which depends on the gains of the
channel represented by {hi

n}Nn=1 and status of the queues in the system {Qn(i), Yn(i)}Nn=1

where Qn(i) denotes the queue length and Yn(i) denotes the queue of virtual energy. ξi

parameter based on energy queue and queue length and channel gains define the control
actions {xi,yi}, where xi is the binary decision and yi is the parameter defining the
resource allocation. In the MINLP problem the resource allocation will be a easy convex
problem when the offloading decision fixed. Hence the solution of this problem will be a
function of xi and ξi and the optimal decision for offloading, (xi)∗ will be the maximum
value of xi and ξi.
To find (xi)∗ we need to enumerate a total of 2N offloading decision, hence it is a really
high time complexity even for normal sizes of N . Other search algorithms like branch
and bound, block coordinate descent, will also have high execution time when N has a
large value. So, practically none of these methods are applicable to decision making for
online offloading in channels with fast varying dynamics. To overcome this we propose
Reliable Online Offloading In Mobile Edge Computing Using DRL(RDRL) framework
which uses DRL which creates an offloading policy π which maps the input to it to the
optimal offloading action with low time complexity.
Figure show that RDRL comprises of four modules which are:

Figure 2: Schematic Of RDRL

9



1. Actor Module: This module takes an input and generates a list of offloading actions.
It comprises of DNN and an quantizer for actions. θi is the parameter for DNN
which for the i th frame of time and is initialized randomly using standard normal
distribution for i = 1. Based on the input parameter ξi, DNN generates a relaxed
decision for offloading which is then quantized into binary offloading actions.
The universal approximation theorem states that we can approximate accurately
continuous mappings of any kind with right activation function acting(eg Sigmoid,
ReLu, etc.) on neurons and with sufficient number of neurons in its multi-layer
perceptron. For our framework we will be using sigmoid activation function for
the output layer. After applying the activation functions we quantize the relaxed
decision for offloading into Mi probable candidates for offloading action. Here Mi

is a parameter that is time dependent. An ideal quantization function should take
care of the exploration-exploitation trade-off while formulating the binary offload-
ing actions to ensure optimal training convergence. For effective usage of DNN
output, and to also separate premature convergence to sub-par values in the pro-
cess of training, xi

n should be near to the feasible offloading actions(the Euclidean
distance).
For this reason we use the method of noisy order-preserving(NOP) quantization
which suggests Mi ≤ 2N offloading actions. In NOP the first Mi/2 actions are
generated by using order-preserving qunatizer(OPQ) on the feasible offloading ac-
tions. The next Mi/2 − 1 actions are generated by using the order of entries of
feasible offloading actions based on relative distance to 0.5. To generate the next
Mi/2 actions, a noisy feasible offloading action is generated using Sigmoid function
and random Gaussian noise. The last Mi/2 actions are produced by again using
OPQ on the elements generated by Sigmoid function.

2. Critic Module: The following module will be the critic module which processes
prospective offloading actions generated by the action module and picks the best
offloading boolean i.e. xi. As compared to the orthodox actor-critic paradigm who
use a model independent DNN as the critic to generate the offloading action, RDRL
uses the model to evaluate and select the binary offloading action by finding the
solution to the resource allocation equation optimally. This makes the offloading
action generated by the critic module and its evaluation more accurate and thus
making it robust and the process of DRL training converge faster.
The calculation to find the best offloading action is performed Mi times. This
means that a larger value of probable candidates to offload will mean that a better
candidate will be selected but it will also means that the time complexity of the
algorithm also increases with it. To overcome this we suggest an adaptive procedure
that takes care of the performance-complexity trade off based on time-varying value
of Mi.
The main logic behind this is that as the DNN approaches the right policy iterating
Mi over time, even a small value of Mi can find the correct offloading action within
nearest distance in the feasible offloading actions. We can represent the index of
the best offloading action as mi and it can be found by finding the modulus of the
index and Mi/2 which can be either the noiseless or the noise candidate action.
We initially set the probable candidates for offloading as 2N and update Mi after
small interval of time frame(δM). We need to take care of time frames for updating
because too frequent updates can degrade training of DNN and too big δM will
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increase the time complexity of the algorithm.

3. Policy Update: RDRL updates the policy of DNN using the output from the critic
module which acts as the sample for it. RDRL maintains a replay memory which has
the capacity to store only q number of data samples which are most recent. Initially
the replay memory is empty and the DNN starts training periodically at intervals of
δI to overcome model over-fitting. A random batch of selected samples(Si) is picked
up when the modulus of i th time frame and δT is 0, and using this we minimize the
function relating to loss of average-cross-entropy using Adam Algorithm discussed
in Zhang (2018). Once the training is complete for the current time frame we then
update the actor module with the parameter for the next time frame.

4. Queuing Module: The output of the critic module gives us the best resource alloca-
tion yi for given xi. Based on this the system consumes energy {ein}Nn=1 and process
data {Di

n}Nn=1 for finding the appropriate offloading and resource allocation using
the algorithm in Bi and Zhang (2018). Depending on the consumed energy and
the data processed the queuing module updates the energy queue and data queues
when the new time frame starts(i + 1). The system then inputs the new channel
gains, and also the input parameter for the next time frame to DNN to start the
iteration in actor module.

4 Implementation

4.1 Deep-Reinforcement Learning(DRL)

Over through the previous decade, an enormous quantity of data has been created and
saved and analyzed via the Cloud. Cloud computing refers to the leasing of data storage
and processing. Cloud computing has spread to numerous businesses, and the paradigm
allows them to retrieve stored information remotely from any point on the network or the
web. Its goal is to consolidate processing, storage, and infrastructure management in the
Cloud for data centers, IP networks, and cellular core networks. Clouds’ massive resources
may then be utilized to provide elastic computational storage and processing power to
end systems with restricted resource availability. Numerous Internet businesses have been
expanding quickly thanks to cloud computing. Mao, You, Zhang, Huang and Letaief
(2017) A network architectural idea called Mobile Edge Computing (MEC) provides IT
and cloud computational resources at the edge of a cell network. A nearby edge server
(ES) can be used by Wireless devices to offload energy and time-consuming computations
by the online mobile-edge computing offloading (MEC) which is a major advantage to IoT
devices. Reinforcement Learning (RL) is utilized to address the issue of an ever-changing
dynamic system. Deep reinforcement learning also known as DRL, is an improved version
of RL which is combined with the Deep neural network (DNN) to form a data-driven
approach that tackles the online offloading problem and gives out the long-term objectives
such as maximizing the data processing rate. This approach is considered for the multi-
user wireless MEC system, which involves utilizing the DNN that can educate itself
with the appropriate mapping from the status, including time-varying characteristics,
to information offloading selections and resource provisioning action. It thus increases
the reward by repeated interactions with the environment and is advantageous over the
MINLP approach and delivers good Quality of Service. Liu, Yu, Xie and Zhang (2019)
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Figure 3: Algorithm For RDRL

RDRL has 4 layers comprising of single input layer, There are two hidden tiers and one
output unit. The input and output layers each contain 120 neurons, while the hidden
layers each have 80 neurons.
In RDRL the DRL works on the basis of reward driven behaviour in which based on the
reward of the actions performed by it the algorithm decides the optimal task offloading
decision. In DRL a machine learning algorithm observes a state in a given time frame.
When the DRL agent performs an action the state changes and this makes the decision
to change for the algorithm.

4.2 Lyapunov optimization

Lyapunov optimization is a framework that is well-known for studying the Online compu-
tation offloading technique. Recent studies have attempted to use Lyapunov optimization
to develop an online compute offloading approach in MEC networks which long-term per-
formance assurance. The Lyapunov optimization is aimed to increase the capability by
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constructing the online offloading technique, data transmission processing can be gov-
erned by long-term data queue stability and overall average power limits. The MINLP
algorithm, is the continuous approach and pragmatic in that selections for every timespan
are performed without assuming the foreseeable insights of stochastic network conditions
and data deliveries. The problem is formulated as (MINLP) issue which makes resource
provisioning choices in the system in consecutive timescales, and binary offloading, in
which the device computes the job possibly natively or at the Edge server. I t allows the
WD to process data tasks both at the Edge server and locally parallelly and applies op-
timization technique for allocation of resources and continuous joint offloading problem.
These heuristic techniques, however, cannot ensure good solution quality on a constant
basis, which might potentially lead to lead to a decline in long-term performance. Mao,
You, Zhang, Huang and Letaief (2017)

4.3 PyCharm

For development we used Pycharm IDE as it provides user friendly environment to code
and debug the code. It also provides an easy to access terminal via which you can run
the Python scripts written. To install Pycharm on your system you can download the
Pycharm installer from their official website and then run it.

4.4 Code flow

The initial parameters with which the code runs is number of users, number of time
frames, κ, decoder mode i.e. OP, KNN or OPN, memory capacity, interval for adaptive
κ. Then we generate the channel and call the Queueing module of the framework for
initial generation of queue.
After this the actor module is called which creates a batch of actions based on which the
framework trains and records the largest reward value. The critic modules is called within
a list where it records all the resource allocated for the generated offloading modes. The
policy update module encodes the mode with largest value and stores the max result.
We plot the average data queue and average energy consumption using matplot library.
Matplot library is a that is used for visualization in python.
We then run the above code with varying parameters like the value of V , the varying
data arrival rates, the number of devices.

5 Evaluation

The simulations were run on a machine with Intel Core i5 9300H 2.4GHz and 8GB of
memory and 4GB of NVIDIA GeForce GTX 1650 graphic memory. For the computation
we are using TensorFlow 2.0.
The simulation was carried out with default values as given in the table below:

5.1 Computational Complexity

RDRL execution mainly involves of two parts: generation of actions for offloading and
updation of policy. The offloading action needs to iterated in every action but updation
of policy occurs infrequently. Hence we focus on finding the complexity of offloading
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Table 1: Initial Values For System Parameter

Memory Size 1024

Lyapunovs Parameter 20

Data Arrival Rate 3 Mbps

Power constraint 0.08 W

Number Of Users 10

action for every time frame.

The offloading action complexity will be O(Nlog2(
∆
σ0
) + N3L) where the first para-

meter is the parameter for bisectional search and the second parameter is the time for
solving the LP where L is the input length of the binary representation. In comparison
to solving a complex problem with 4N variables, RDRL solve the LP in N variables.
Since RDRL executes Mi times in a given time frame the complexity of executing the al-
gorithm will be O([Nlog2(

∆
σ0
)+N3L]Mi). Since the Mi reduces with the learning process

of RDRL, hence the number of iterations required to generate optimal offloading action
reduces.

5.2 Experiment 1

For the first experiment we take into account values of λn rates that is 2.5 Mbps and 3
Mbps. We then plot the various graphs for rate of weighted sum computation, average
size of the data queue, average performance for power consumption over time. We have
an i.i.d. distribution of 10, 000 frames, where every part of graph is a partition of 200
frames. From the graphs we can analyze that the data queues are stable for computation
rate for both the data arrival rates conditions. The average power limitation of 0.08 W is
also satisfied by RDRL. For higher data rate RDRL also the same results are shown. For
both data rates it take more time initially to to learn the correct offloading policy because
of abrupt increase in the queue length of data i.e. for i ≤ 3, 000. But, as the DNN iterates
through the offloading policies the queue length drop showing faster convergence.

(a) Training Loss (b) Average Queue Length (c) Average Energy Cost

Figure 4: Graphs for λ = 2.5
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(a) Training Loss (b) Average Queue Length (c) Average Energy Cost

Figure 5: Graphs for λ = 3

5.3 Experiment 2

In this experiment we will check the affect of system parameters of power constraint on
RDRL. For this we fix the data arrival rate to 3 Mbps and change the power constraint
between 0.06 and 0.1. We see that in the figure the data queue is stable for RDRL
for all the values of power constraint and the length of the decreases with less stringent
constraints of power. IT also shows that RDRL has great computational rates for all the
cases considered.

(a) Training Loss (b) Average Queue Length (c) Average Energy Cost

Figure 6: Graphs for power constraint= 0.1

5.4 Experiment 3

In this experiment we vary the control parameter for Lyapunov i.e. V . We observe
that when Lyapunov parameter is small i.e. V ≤ 40 the length of the queue and power
constraint are inversely proportional to the value of Lyapunov parameter. The reason
behind this is that the number of offloading candidates increase for WD as the value
of Lyapunov parameter increases. For V ≥ 40 the data queue and power consumed
all increase with Lyapunov parameter because the increase in the number of offloading
candidates means for one WD means decrease in the number of offloading candidates for
another WD. Hence we should set a moderate value of Lyapunov parameter to reduce
the buffer for task data.

5.5 Experiment 4

For this experiment we vary the number of WDs between the value of 10, 20&30. The
WDs are placed within [120, 255] meters distance from ES. Since the value of Mi is time
varying the performance for all these scenarios is satisfactory.
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(a) Training Loss (b) Average Queue Length (c) Average Energy Cost

Figure 7: Graphs for V = 40

(a) Training Loss (b) Average Queue Length (c) Average Energy Cost

Figure 8: Graphs for N = 20

(a) Training Loss (b) Average Queue Length (c) Average Energy Cost

Figure 9: Graphs for N = 30

6 Conclusion and Future Work

In this paper we have discussed an reliable computation offloading framework in MEC
network with multiple users and stochastic channel with task arrivals in the form of
data. We propose an RDRL that leverages Lyapunov optimization and DRL to solve
the MINLP problem which maximizes the number of bits processed by the WDs with
stable queues and power constraints. It was a challenge because the WD has to make the
decision of binary offloading and also the allocation of resource in short frames of time
without the knowledge of future channel conditions and the data queues.
We have proven that RDRL achieves the computation rates and stable data queues with
in the required constrained average power. Also RDRL converges to the offloading action
with less number of iterations thus reducing the offloading time.
The proposed RDRL can also be used for partial offloading where in the task has multiple
sub-tasks. This can be achieved by meticulously choosing the binary variable to point to
the subtasks of the task that needs to be offlaoded to the ES.
We have discussed RDRl being implemented with TDMA access in this paper, but RDRL
can be used with any access method like CDMA, OFDMA, FDMA, etc. The only thing
that we need to take care of is the critic module whether it can predict the optimal
resource allocation.
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