

Geo-Context aware routing using Serverless
Computing - Configuration Manual

MSc Research Project
MSc in Cloud Computing

Akash Verma
Student ID: X21128863

School of Computing
National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

…….……………… Akash Verma …………………………………………………….

Student ID:

………………………X21128863………………………………………………

Programme:

…………………MSc in Cloud Computing…

Year:

2022

Module:

………………………Research Project………………………….………….

Supervisor:

……………………Vikas Sahni……………………………………….………

Submission Due
Date:

…………………… Dec 15, 2022………………………………………………

Project Title:

Geo-Context aware routing using Serverless Computing.

Word Count:

………………1687…………………… Page Count………5……………….……..

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

……

Date:

………………… Dec 12, 2022………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Geo-Context aware routing using Serverless
Computing - Configuration Manual

Akash Verma
Student ID: X21128863

1 Tools Required
1. SUMO GUI, 1.14.11
2. Open Steet Map, V2.23.2 or later based on current release deployed 2
3. Polyline tool, latest available on URL3
4. dotnet core runtime, 6.0.114
5. Azure subscription (for cloud TPU, geolocator service, and cosmos DB) 5
6. Visual Studio 2022 community edition (optional, used for development and docker

build)6
7. Docker 4.6.1 or later

2 Basic configurations

2.1 On Board Unit:
The OBU in the vehicle’s is supposed to do all the data transfer related job, an azure function
is programmed to act as an OBU. The two configurations that an OBU needs are explained
as follows:

2.1.1 local.settings.json
The local.settings.json file is the metadata about the vehicle and is tied to the telemetry service
provider. To configure OBU, application settings are needed to be supplied in
local.settings.json file, located in “~\ProjectArtifact\OBU\OBU<i>”, where ‘i’ is the OBU
number, there can be multiple OBU in the system, which corresponds to the vehicle. Below is
the parameter sample:

 "VehicleId": "1",
 "VehicleType": "car",
 "serviceUrl": “http://xyz.com/”

Vehicle Id: It is the identity of the vehicle, which can be any value, that will be referenced in
the SUMO trace file used by the vehicle for the simulated run (2.1.2, point 5).

1 https://www.eclipse.org/sumo
2 https://www.openstreetmap.org/#map=9/53.6162/-6.2814, OpenStreetMap. (n.d.). OpenStreetMap.
Retrieved December 12, 2022, from https://www.openstreetmap.org/copyright,
https://github.com/openstreetmap/iD/releases
3 https://www.keene.edu/campus/maps/tool/
4 https://download.visualstudio.microsoft.com/download/pr/05dbe2dd-429c-4e4a-8080-
9fe3027cd31b/76461b8691ada05d098efd15933bcbbd/aspnetcore-runtime-6.0.11-win-x64.zip
5 https://portal.azure.com
6 https://visualstudio.microsoft.com/vs/community/

2

serviceUrl: This is the URL for the Geo-Locator service hosted on azure (section 2.3 covers
the details).

VehicleType: It is an optional configuration, can be left it as it is.

2.1.2 The Sumo Trace File
 The sumo trace file contains the random trip generated using SUMO tool, the vehicle is
simulated to run on the path based on this file.

1. Export OSM file
1. Browse to the Open street map in the preferred browser.
2. Click on export from the top menu.
3. Click on “manually select different area” from the left section of the page

and select the area using the selection polygon. Click export.
2. Create test.net.xml file for route simulation as explained below

a. C:\Program Files (x86)\Eclipse\Sumo\bin>netconvert --osm-files <"path to
.osm file"> -o <"path to output test.net.xml">

Example:
C:\Program Files (x86)\Eclipse\Sumo\bin>netconvert --osm-files
"F:\NCI_Student\Sem 3\Research\MAPVIEW\map.osm" -o
"F:\NCI_Student\Sem 3\Research\MAPVIEW\test.net.xml"

b. Go to root folder:
Example: cd F:\NCI_Student\Sem 3\Research\MAPVIEW

c. Using Random trip, create route files and the trips.
Python "C:\Program Files (x86)\Eclipse\Sumo\tools\randomTrips.py" -n
<path to test.netfile> -r <output route file name> -e <no of vehicle> -l

Example: Python "C:\Program Files
(x86)\Eclipse\Sumo\tools\randomTrips.py" -n test.net.xml -r
test.rou.xml -e 1 -l

3. Create SUMO config file as “test.sumo.cfg” below:

<configuration>
<input>
<net-file value="test.net.xml"/>
<route-files value="test.rou.xml"/>
</input>
<time>
<begin value = "0"/>
<end value = "20000"/>
</time>
</configuration>

4. Transform coordinate-based file to geolocation file:
sumo -c test.sumo.cfg --fcd-output trace1.xml --fcd-output.geo

5. Update the OBU local.setting.json with the vehicle id generated in sumo trace file.
6. While using multiple vehicle simulations, create copies of the OBU folder, and copy

the sumo file obtained by setting number of vehicle (-e) in step 2c above to each of
the OBU. Update only the ID in the settings file with the VehicleId (step 2.1.1) of that
specific value, which is played for that OBU.

Or

3

Simply use the existing trace and setting files in the artifact for OBU
“~\Artifact\OBU\OBU0\sumoTrace.xml”

2.2 Telemetry Processing Unit
There are two types of TPUs, local and cloud. For local TPU, local.settings.json file is used
for configuration, and azure configuration for cloud.
The cloud TPU can be deployed using the visual studio7, and the configuration is set under
configurations (deployed function > configuration (under settings tab)) in azure. Below are
the config settings that are supplied to the TPU.

"device_location": "-6.258603 53.359184",
"tpuserviceUrl": "http://localhost:82/",
 "served_location": "{'ServedPolygon':[[[-6.2845917,53.4290679],[-
6.1767884,53.4229273],[-6.1692353,53.4536215],[-6.2804718,53.4618029],[-
6.2845917,53.4290679]]],'TelemetryEndPoint':'sl1',
'deviceLocation':{'longitude':0,'latitude':0}, 'deviceId':'sl1', 'type':'fog'}"

1. device_location: It is the location where the TPU is placed, this is an optional parameter.
2. tpuserviceurl: The base URL for the geolocator service.
3. served location: This is the coverage of the TPU. It needs to be set for each TPU

separately. The polyline tool is used to set up the polygon following the below steps:
a. Open the polyline tool on the browser.

(https://www.keene.edu/campus/maps/tool/)
b. Navigate in the map to area under study (research use m1 motorway).
c. Figure out the polygons in the route simulated using SUMO (2.1.2).
d. A polygon can be created in the polyline tool using a right-click on the map.
e. Copy the coordinates and substitute json in the 'ServedPolygon' section of the

served location setting.
f. Note: The cloud TPU has empty array list as served polygon

({'ServedPolygon':[[]],'TelemetryEndPoint':'cl',
'deviceLocation':{'longitude':0,'latitude':0},'deviceId':'cl','type':'cloud' }), which
denotes all area.

4. served_location.deviceId : Identifier for TPU
5. served_location.type: Use ‘cloud’ for cloud TPU, ‘fog’ for local TPU.

Or
Simply use the existing TPU configuration and setting files in the artifact for TPUs from
“Artifact.zip\Artifact\TPU\sl<i>”
The serving polygon used for the setup of local TPU is depicted in table 1.

Table 1: serving polygon for TPU

TPU
Name

Served
area(figure1)

Served Polygon

TPU1 S1 [-6.2845917,53.4290679],[-6.1767884,53.4229273],[-
6.1692353,53.4536215],[-6.2804718,53.4618029],[-6.2845917,53.4290679]

7 https://learn.microsoft.com/en-us/azure/azure-functions/functions-develop-vs?tabs=in-process

4

TPU2 S2 [-6.1761017,53.4752987],[-6.1822815,53.4916515],[-
6.2372132,53.4875639],[-6.2337799,53.4708006],[-6.1761017,53.4752987]

TPU3 S3 [-6.1740418,53.5227045],[-6.1781616,53.5667933],[-
6.2447663,53.5598565],[-6.2344666,53.5182114],[-6.1740418,53.5227045]

TPU4 S4 [-6.1733551,53.4544397],[-6.1761017,53.4781609],[-
6.2365265,53.4757076],[-6.2310334,53.4528033],[-6.1733551,53.4544397]

TPU5 S5 [-6.2461396,53.5598565],[-6.1905213,53.5623049],[-
6.2063141,53.6071677],[-6.2523194,53.6026836],[-6.2461396,53.5598565]

TPU6 S6 [-6.2042542,53.6026836],[-6.2145539,53.6332479],[-
6.2687989,53.6279516],[-6.2550659,53.5977913],[-6.2042542,53.6026836]

2.3 The Geo-Locator Service:
1. Deploy the geolocator service to the cloud from visual studio similarly like cloud TPU

and update the settings in the OBU and TPU with the base URL, that is obtained after
deploying geo-locator service.

2. Configure the cosmosurl and cosmosKey in the geolocator service app.settings.json file
or in azure when deployed about the endpoint of cosmos DB.
"cosmosuri": "https://xyz.documents.azure.com/",
"cosmosKey": "cosmos key"

2.4 The Cosmos Database:
The Azure Cosmos database account is needed for setting up the database. The application is
programmed to create the containers for the database if they do not exist. Only geolocator
service needs to be supplied with the database URL and key.

3 Running the setup
Once all the configuration is done, make sure the geo locator service is up and running after
the deployment. Running and testing the setup require two components to be kicked off, the
TPUs and OBUs.

3.1 Running local TPUs
There are two ways to run the TPUs, one is using the executables in shared, non-isolated
mode, with dot net run time and second one is using docker for visual studio. The artifact
folder contains published project. Use the following steps to run the TPUs in non-isolated
mode:
1. Make sure dotnet core runtime is installed on the machine.
2. Each TPU can be run independently using the function start command from the root of

project placed in “~\Artifact\sl<i>\”.
 func start –port <portno>.

Or
Use the batch file to fire up all the functions at once using batch file located at
“~\Artifact\TPU\start.bat”.

3. A new TPU can be added at any point, provided the configuration is given as explained in
section 2.2.

5

4. Now run the function to initiate the registration process of TPU with geolocator service
using “ ~\Artifact \TPU\run.ps1” .

Or
simply run “wget <tpuurl>/api/StartProcessor”. Note: The URL in the console is
written by the dotnet run time after step 2.

The second way is through docker containerization using visual studio. The project is docker
ready project, just open each solution and build. It will create a docker image. Create new
instances of the same image with a different configuration of TPU and run.

Or
To run in isolated mode, simply use visual studio to run each of the project placed at
“~\Artifact\Code\TPUs\TPU<i>” using docker.

Figure: using docker to run azure function locally

3.2 Running OBU/OBUs
The final step is running the OBU and observing the results, using following steps:

1. Run the OBU from the root of the OBU (where local.settings.json is placed) using the

command:
 func start –port <portno>.

4 References:

