

A New Offloading Technique Based on Deep

Learning for Mobile-Edge Computing

MSc Research Project

MSc in Cloud Computing

Prathista Santhosh Kumar Shetty

x21146802

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Prathista Santhosh Kumar Shetty

Student ID:

X21146802

Programme:

MSc in Cloud Computing

Year:

2022

Module:

MSc Research Project

Supervisor:

Vikas Sahni

Submission Due

Date:

15th December 2022

Project Title:

A New Offloading Technique Based on Deep Learning for Mobile-

Edge Computing

Word Count:

6279 Page Count: 20

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Prathista Santhosh Kumar Shetty

Date:

15/12/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

A New Offloading Technique Based on Deep

Learning for Mobile-Edge Computing

Prathista Santhosh Kumar Shetty

x21146802

Abstract

Offloading techniques have gained more importance in today's world because of its need

for high utilization of computing power, storage capacity and energy. The fundamental

principle is to transfer resource-intensive processing operations to a more powerful

processor for rapid computation. The development of new mobile technologies is

increasing, requiring efficient utilization of resources. Mobile Edge Computing with

distributed network has been developed with an aim to bring all the computational

servers close to the end-users that meets predefined requirements. The rate at which tasks

arrive at the mobile edge computing server for computing fluctuates every minute and it

also depends on the user’s density. For optimal computational rate in such a dynamic

environment, task offloading should be efficient to reduce the uploading and downloading

time. The aim of this research is to offload the complexity brought on by the rapid

advancements of distributed computing in Mobile Edge technologies. To address this

issue, a framework that employs a scalable solution using deep neural network solution is

used that trains itself based on the binary offloading predictions by using the K-modes

algorithm that chooses the largest reward. Since combinatorial optimization issues are no

longer need to be solved, its computational complexity is significantly lesser than 0.1 %

on a large user network with 30 systems. The research also shows that the CPU latency is

about 67 times lesser when compared to the coordinate descent approach.

1 Introduction

A modern computing technology known as Mobile Edge Computing (MEC) makes

online service available at networking edges by using mobile stations. It represents a

promising innovation that aids in highlighting the drawbacks of mobile computing.

Mobile devices usually have low processing power and this aids in overcoming the

offloading in the system. MEC enables the smooth integration of different application

services, hence providing available resources wound to the end-location users at the

network edges. (Zhang et al. 2022) It is easily adaptable enabling the execution of

resource-intensive applications that demand minimal network latency. In order to

decrease the charge of battery usage in mobile devices and make high-end complicated

processes use storage and processing capabilities to execute on a mobile interface, the

data, services, and application processes within mobile devices are downloaded. Due

to this, delay in sharing and resource allocation is avoided, regardless of how many

users or applications are present. However, in such situations, data is queuing at various

intervals that increases the computation request and various user requests can be

handled concurrently by the edge storage servers. As a result, the mobile edge

computing layer for varying traffic must inherit wireless methods for better

performance.

2

Figure 1: MEC system in a wireless powered network (Wang et al. 2017)

MEC is a subject that is still-evolving in online based computation standard which is being

embraced by many commercial entities in an effort to distinguish themselves from competing

technologies. Additionally, this technology is set up in the proximity of the mobile devices that

are most likely to be nearest, with minimal server capabilities deployed at the network's edge

to fulfil user-centric needs. (Huang et al. 2020) A generic MEC system in a wireless power-

driven network is displayed in the Figure 1. In order to develop an edge computation with

a truly effective technique, a well-organized and practical resource management is required

after understanding the limitations such as storage, bandwidth, and CPU.

The combined optimization of wireless resource distribution and single offloading presents a

significant issue in a multi-user scenario. (He et al. 2021) Because there are binary offloading

parameters involved, these issues are typically described as multi objective

programming issues. In order to improve this, different deep reinforcement-based learning

algorithm have been applied over network edges to provide efficient communication and task

balancing. This research was implemented considering a wirelessly–powered edge computing

network with a single access point and several wireless devices with binary offloading strategy

for each wireless device. The primary objective of this research was to optimize the offloading

decisions made by each wireless device and the transfer time frame between offloading and

wireless transmission. To achieve this, a deep reinforcement-based learning algorithm

offloading system was used to increase all wireless devices' computation rates.

1.2 Research project specifications

This section describes the motivation and objectives for this research project.

3

1.2.1 Research Question

How effectively can deep reinforcement learning based algorithm be leveraged to reduce

offloading computational complexity in Mobile Edge Computing?

1.2.2 Objectives and Contributions

• Design and implement deep learning-based algorithms utilizing binary offloading

strategy.

• Evaluate the computation rate with different number of hidden layers.

• Visualize the computation rate, time consumed and average time per unit when a task

is performed with the proposed algorithm.

The contribution will consist of the following:

• Critically analysing and reviewing the existing research performed on task offloading

on mobile edge computing.

• Created a configuration manual for others to replicate the work.

1.3 Document Structure

• The related research is a discussion of mobile edge computing in Section 2.

• The research approach utilized to implement the newly suggested deep reinforcement

learning-based algorithm is covered in Section 3.

• Section 4 discusses the architecture and algorithm proposed for the MEC network.

• Section 5 contains the system configuration, data used, followed by workflow of the

implemented algorithm.

• Section 6 shows the outcomes of the proposed approach and the graphs generated for

the same.

• Section 7 comprises of the conclusion and recommended future work.

4

2 Related Work

This section discusses existing research in the domain of compute offloading in MEC, in

addition to the effectiveness of machine learning approaches. Additionally, many approaches

for improving MEC have been reviewed in this section.

MEC research is popular research area due to large number of research opportunities at the

conjunction of wireless infrastructures and mobile computing. Many researchers have looked

at a variety of MEC-related challenges, such as allocating multiuser resources, system

modelling and network modelling, etc. The two main MEC challenges are resource scheduling,

resource allocation and compute offloading. These approaches are categorized into enhancing

the profit made by the operators, to reduce the cost incurred by the consumers, optimizing the

overall cost of building the MEC infrastructure and maintaining it, to reduce the measure of

time needed to conclude a task and to focus on minimizing energy use when doing

computationally intensive workloads. (Liu et al. 2017) The majority of MEC research has not

addressed user mobility or random variations in task generation. As a result, there is a drastic

decrease in QoS and a large decline in network performance when the platform deviates from

an ideal configuration discovered through static allocation of resources. The major purpose

using machine learning approaches is to manage system dynamics and the unpredictable

pattern of tasks generated.

(Zang et al. 2021) suggested a computational resource allocation approach using deep

reinforcement learning networks. In this approach, only the edge server could be used to

offload tasks in the absence of a central cloud. Therefore, selecting the correct edge server to

execute tasks is the main challenge in the offloading scheme in this case. In contrast, (Guo et

al. 2016) included both the power consumption cost as well as the latency cost of performing

the task, with the optimization aim being the reduction of the overall offloading cost. Non-

linear processing with mixed integers is the type of optimization issue. The author suggests a

combined deep reinforcement learning-based optimization strategy for bandwidth allocation

and task offloading. The initial non-convex optimisation technique is identical to a

reinforcement learning-based problem, and the Deep Q Network technique is employed to

determine the best solution. (Shi et al. 2022) All alternative strategies are patterned as state

spaces. Additionally, the multi-task multi-user offloading technique along with the

other systems are outperformed by the DQN-based method.

(Huang et al. 2019) anticipates the existence of a popular area that is covered by many user

devices but also that each of those devices can connect to a number of edge servers through

the closest base stations. This research proposes a Markov decision framework-based task

scheduling method. This approach will, however, result in significant computational

complexity and communication overhead when the edge servers expand. In order to lessen

complexity of the algorithm and overall communication overhead, the author suggests an

index-based resource allocation technique. As per the state of its remaining computing

resources, per edge server creates its own index, which it then broadcasts throughout the

5

network so that network device can choose the most effective edge server to reduce latency

and power consumption.

The scenario in which computing workloads are offloaded locally to the edge server is taken

into consideration in publications (Guo et al. 2016) and (Huang et al. 2019). In reality, edge

nodes computation and storage capabilities are confined. The central cloud should continue to

receive tasks when edge nodes resources are unable to handle them. (Guo et al. 2016) and

(Huang et al. 2019), however, do not take into account the interaction in between central

and edge cloud.

A wireless device within a local computing environment can simultaneously gather energy and

do its task easily. (Wang et al. 2017) Let’s consider 𝑒𝑖 as the computing speed for the processor

where 0 ≤ 𝑇𝑖 ≤ T that represents the time taken for the computation. Furthermore, energy

consumption of the wireless device will be limited by 𝑘𝑖𝑇𝑖𝑒𝑖
3 ≤ 𝐸𝑖. This can be demonstrated

that a wireless device must use all of the harvested energy while continuing to compute during

the time period in order to analyse the utmost amount of data inside T considering the energy

limitation. (Guo et al. 2016) Therefore, the rate of local computation can be defined as below:

𝑒𝑖∗ 𝑇𝑖

𝜙𝑇
= 𝜂1 (

𝑐𝑖

𝑘𝑖
)

1

3
𝑎

1

3 (1)

If the edge node in the state is including the involvement of the principal cloud lacks sufficient

computational resources, then the edge device can work directly with the centralized node.

According to (Zhao et al. 2015), if the edge server satisfies the application interval criteria, a

target level supportive scheduling method is employed to enhance the total of applications

installed and deploying on the edge server. The significance of the program in addition to the

allocation of computational resources in the edge server decides wherever the decommissioned

application must be stored when the network device decides to uninstall the computing.

Connect the virtual device executing the program towards the edge node if it has sufficient

resources. However, if the edge server's computational capacity is not adequate, then

the scheduler assigns the operation to the secluded central cloud. Hence, the author suggests a

prioritized collaboration technique to configure distinct buffer spaces with various priorities in

order to optimize the numerous of tasks handled throughout the network edge and satisfy their

latency necessities. The processing of the task will only be forwarded to the cloud layer

when the buffer is overflowing.

The provision of computational resources in the case of just one edge server is taken into

account in the research implemented in (Zhao et al. 2015). In reality, there are frequently

several diverse edge servers with each one containing a wide range of computational resources.

A scenario with different range of IOT terminal regions, numerous edge node, and a centralized

cloud node was also taken into consideration in the research paper (Guo et al. 2019). In the

constraint that the job end time does not go beyond the interruption limit, the optimization

purpose of this research is to reduce the energy usage. Local and nearby edge node are

distinguished in this paper. A local node in the network is equivalent to every IoT terminal

6

region. IoT terminal will send the task to the suitable edge node. Here, the local nodes will send

the task to the centralized cloud server for processing or to its nearby edge node. By leveraging

Lyapunov's drift plus penalty model, the authors provide a delayed workload allocation

technique that enables local edge node, nearby edge node, and centralized cloud node to

perform computational workloads fairly in order to diminish overall energy utilisation.

The authors from (Guo et al. 2019) does not take into account the terminal area's computing

power, namely, the terminal region in this article is only responsible to create tasks and

offloading these towards the local network edge but not for computing. The terminal device

can actually process tasks in real life. Traditional approaches can be applied in contexts that

are static but they need further knowledge of people and network factors. However, there is

little to no previous knowledge to aid in decision-making in a constantly changing network,

necessitating the use of a machine learning-based approach.

There is very less research done on deep reinforcement learning for resource allocation and

task offloading. The paper (He et al. 2015) conducted research for smart capitals, software-

defined, virtualized systems integrating caching and mobile edge computing. The study

provided an integrated approach that included networking, resource allocation to improve the

application's performance and caching. Additionally, the model has allocation of resources

strategy considering it as a joint optimization issue that is resolved in this work with the aid of

a novel deep reinforcement learning method. The evaluation is shown through deep Q-network

model's visualization. The evaluation demonstrates how well the algorithm performed in terms

of convergence for several cases under the proposed method. To determine the efficiency of

the suggested scheme, simulation results with various system parameters were also conducted.

However, in this paper, the authors did not consider energy consumption efficiency issues.

MEC networks research in (Huang et al. 2019) examines the decision of many wireless devices

to delegate computation-related duties to a network edge. The improvement of bandwidth

allocation and offloading decision is described as a mixed integer coding problem in order to

save energy for wireless devices. However, the complexity in dimensionality places a

computational constraint on the problem, making it impossible for ordinary optimization

techniques to effectively and efficiently solve it, across several wireless devices.

In the above mentioned Deep learning techniques, there are drawbacks such as poor learning

rates and poor environmental adaptation. The paper (Qu et al. 2021) suggests a deep meta

reinforcement learning-based algorithm for offloading to discourse these concerns, which

amalgamates several concurrent deep neural networks with Q learning to produce accurate

offloading judgments. The finest offloading approach within a dynamic setting can be rapidly

and adaptably obtained by a combination of the perceptual capability for deep learning along

with the decision-making influence for reinforcement learning, and meta-learning capability in

a fast-moving environment. Through many numbers of numerical simulations, DMRO is

associated with conventional Deep Reinforcement Learning systems and the result shows

an increase by 17.6 percent for offloading decision.

7

To address the challenging combinatorial computing mode selection, (Bi et al. 2018) proposed

two effective solution algorithms. The algorithms used are coordinate descent method and the

alternating direction method of multipliers-based method, optimizes both simultaneously. The

coordinate descent algorithm uses bisection examination to obtain an optimal time

allocation. The proposed coordinate descent based and alternating direction method of

multipliers-based methods both perform better than other traditional benchmark methods.

However, the algorithm does not work efficiently when the computation modes have

alternating weights. The newly proposed algorithm utilizes the bisection search proposed in

(Bi et al. 2018) to implement offloading decision which then chooses the best offloading action

using K modes algorithm.

Main Content Research Result Limitation Reference

Deep Reinforcement

learning-based

optimization strategy

Achieved better offloading

performance with reduced

power consumption cost

Overall communication

overhead was more when

edge servers are

increased

(Guo et al.

2016)

Deep reinforcement

learning

Resource allocation was

improved

Energy consumption

efficiency

(He et al. 2015)

Collaboration

technique for edge

and cloud

Tasks offloading performance

was improved and latency

Only 1 edge server was

taken into account for

task offloading

(Zhao et al.

2015)

Lyapunov's drift plus

penalty model

Delayed workload allocation Computing power for

terminal area was not

considered

(Guo et al.

2019)

Markov decision

framework and Index-

based resource

allocation technique

Reduced latency and power

consumption

Communication between

edge and cloud was not

taken into account

(Huang et al.

2019)

DMRO algorithm Increased 17.6 percent

offloading decision

performance when compared

to DRL algorithm

Limitation to implement

the algorithm with

different learning

structure techniques

(Qu et al. 2021)

Coordinate descent

and Alternating

direction method of

multipliers

Offloading action

performance was improved

when compared to the DRL

algorithm with bi section

search method

These algorithms do not

work efficiently when

there are multiple tasks

assigned to the wireless

devices

(Bi et al. 2018)

and (Bi et al.

2021)

A newly proposed

deep reinforcement

learning-based

algorithm

The offloading decision was

improved even with the

varying computational tasks

and the algorithm showed 67

times more improvement in

Algorithm can be

improved by considering

larger user network with

more than 30 users.

8

execution latency when

compared to CD method.

3 Research Methodology

The approaches and algorithms that are applied to implement the resource allocation in addition

to the offloading mechanism for the MEC network are described in this section.

The newly proposed framework automatically enhances its state of action being able to

generate policy based on the experiences from past offloading decisions under diverse wireless

fading environments. As a result, it fully eliminates the requirement to solve challenging

multiple integer programming problems, which prevents the complexity of the algorithm from

increasing as the network size increases.

This algorithm subdivides the fundamental optimization model to a sub-problem of offloading

decisions and resource allocation, ensuring that the physical limitations are addressed. This is

in contrast to many current deep learning approaches that optimizes the system parameters

simultaneously and produce impractical solutions. It overcomes the problem of dimensionality

by working for continuous actions without needing the requirement to normalize the wireless

channel quality.

Offloading decision is the most challenging issue to resolve in the MEC network system. The

optimization in real-time system under rapid fading channels is not feasible with traditional

optimization techniques iteratively modifying the offloading routing decisions to an idealistic

environment. An offloading wireless device uses up all of its gathered energy towards task

offloading to increase computation speed. (Bi et al. 2021) Therefore, the computing rate is

proportional to its capacity for data offloading. To identify an ideal or a suitable offloading

decision, it must search among the 2N potential offloading decisions. To enhance the

offloading decisions, for example, metaheuristic search techniques are suggested in (Bi et al.

2018) and (Tran et al. 2018). This search space is exponentially huge, though, thus it requires

more time to converge using the existing algorithms. For the resource allocation, the bisection

search is employed with a single dimension for dual parameter linked to constraint of time

allocation in O(N) complexity that can be used to effectively solve the convex problem's

maximum time allocation. (Bi et al. 2018) In order to address the offloading issue within the

order of the computation time being milliseconds, a unique deep reinforcement learning-based

offloading technique is proposed to address the complexity of the issue.

In the newly proposed deep reinforcement learning-based algorithm, an interconnected deep

neural network with a single input layer consisting of 2 hidden layers and a single output layer

is considered and the first 2 hidden layers has 80 and 120 hidden neurons. For this learning

problem, different structures with varying number of neurons and hidden layers, or a different

type of neural network can be used as a replacement to the deep neural network to match a

particular learning problem, for example a recurrent neural network (Goodfellow et al. 2016)

9

can be employed. In this research, a straightforward 2-layer deep learning model is sufficient

to obtain acceptable convergence performance, while further refining the deep neural network

input variables is likely to produce higher convergence performance.

The algorithm is divided into two alternative processes that make up to this process. A deep

neural network, whose embedded parameters include things like the weights connecting the

masked neurons used to generate the first offloading technique in the algorithm. The deep

neural network receives the channel gain as an input for the time frame and, also by using its

existing offloading policy that is defined by a variable and outputs an offloading action.

The action with best complexity is chosen from among K binary actions from that same relaxed

action depending on the feasible computation rate. The newly acquired state-action pair is

added towards the replay memory by the network after it performs the offload action, receives

a reward, and then performs the offload action. (Li et al. 2021) The deep neural network is then

trained using a group of training data that are pulled from memory during the update

of policy stage of the time frame. The deep neural network will then update the variable

from time frame to time frame + 1 and correspondingly increases with every iteration. The

following time frame generates an offloading decision based on the newly observed

channel using the updated offloading policy. As subsequent channel iterations are observed,

these iterations continue, and the deep neural network policy is progressively enhanced with

its computational complexity.

4 Design Specification

The section below gives the details of the new algorithm applied and its architecture.

4.1 Architecture

In this design specification, a new order-preserving action generating technique to effectively

produce offloading actions was developed. In particular, the technique was computationally

more effective and feasible in a large-scale system with a complex space since it only requires

to choose from a small number of alternative actions every time. In addition, it generates

actions with a high degree of diversity and improves convergence performance over traditional

action generating techniques. The algorithm has been further improved by creating an adaptive

process that instantly modifies the algorithm's settings with varying weights. To be more

precise, it steadily reduces the quantity for sub problems of resource allocation that must be

resolved in a given amount of time.

By doing this, overall computational complexity is effectively reduced without lowering the

quality of the solutions.

10

Figure 2: Architecture of the Mobile Edge Computing network

The design considers a wireless power-driven mobile edge computing network with N fixed

wireless devices and an access point, indicated as N = {1, 2..., N}, individually with

one antenna. In reality, this can be equivalent to a reduced IoT system or a sensor network with

static configuration. The access point can transmit radio frequency energy to the wireless

devices and has a reliable power supply. Every wireless device contains a battery which is

rechargeable that can be used to store the energy that has been collected and used to operate

the device. Assume that the access point has greater processing power than the wireless

devices, allowing the wireless devices to delegate some of their computing workload to the

access point. (Huang et al. 2019) The design assumes that communication and wireless power

transfer both occur within the identical frequency range. Furthermore, offloading decision and

resource allocation are the two subparts that are addressed in this research.

4.2 Algorithm workflow

An offloading wireless device uses up all of its gathered energy towards task offloading to

increase computation speed. (Bi et al. 2021) Therefore, the computing rate is proportional to

its capacity for data offloading. Considering this explanation, a new Deep reinforcement

learning algorithm mentioned below is applied to address the offloading decision strategy using

the above equation that has achieved a computational time within a millisecond order of

magnitude to explain the offloading decision drawback. The deep neural network continuously

improves its output from offloading decisions by learning out from best state of action pairings.

The deep neural network can only learn using the most recently generated data samples by the

most refined and latest offloading strategies due to the constrained memory space limitation.

11

Until convergence, the closed-loop learning process continuously enhances the offloading

policy. The newly proposed pseudo code of the algorithm is given below:

Algorithm 1 Newly proposed deep reinforcement learning based pseudo

code

1: Input: Overall gain from wireless transmission channel 𝑐𝑡 at t time

 considering the offloading actions as k

2: Output: Computational complexity and time taken for Offloading

 decision for the t time frame

3: Configure the deep neural network using parameter 𝜃1 and zero

 memory.

4: Input iteration for N with a training interval α

5: for each t from 1, 2, 3, 4……, N do

6: Generate offloading decision 𝑎𝑡 = 𝑘𝜃𝑡
(𝑐𝑡)

7: Transform 𝑎𝑡 to binary offloading state of action operation

8: Compute best action for 𝑎𝑡

9: Update the weights of the memory by calculating the sum of 𝑐𝑡

 and 𝑎𝑡

10: if t mod α = 0 then

11: Train the deep neural network with the offloading decision

 and the binary action

13: Using Adam optimizer algorithm update 𝜃𝑡

12: end

13: end

5 Implementation

This section includes the environment set up and implementation of the algorithm used to

execute the proposed algorithm.

5.1 Device set up

The algorithm is implemented using Python programming language. Additionally, TensorFlow

2.0 is leveraged to significantly improve the algorithm's performance. TensorFlow 2.0

programs need an Nvidia GPU to perform, hence the Google Colab cloud environment was

selected as the IDE for implementing this work. The simulations in this research are also

implemented on the Google Colab cloud environment.

5.2 Device Configuration

12

TensorFlow 2.0, numpy, and scipy are necessary packages to run this program. If the desktop

computer's GPU is Nvidia CUDA enabled, the program can be executed without any issue;

alternatively, Google Colab's GPU-enabled runtime can be used.

5.3 Data

All the data is stored in the sub directory which includes the training and testing datasets. The

dataset is generated with the coordinate descent mentioned in (Bi et al. 2018). The dataset

consists of columns that has the input for gain from wireless channel, binary offloading state

of action, access points for different radio frequency energy for all the wireless devices, time

allocation for the offloading and the sum of weights for computational rate. The folder contains

different samples that is classifies by different number of wireless devices.

5.4 Algorithm implementation

The algorithm used can be categorised into a reinforcement learning-based algorithm as it

continuously learns from the previous feedback to optimize the final reward by adjusting the

offloading actions.

Figure 3: Sequence diagram of the algorithm implemented

As seen in Figure 3, the newly proposed algorithm divides the initial optimization problem into

two subproblems: 0 to 1 binary action offloading decision along with the resource allocation

problem. The two subproblems are then addressed independently with a dynamically learning

module that is model free and an optimization module that is model based. This learning-based

algorithm emphasis on optimizing resource allocation with every offloading action then

chooses the best decision for every time slot after the offloading action module maps the

input parameters to the binary offloading action parameters using an interconnected deep

neural network. Following that, the relaxed action is classified as binary offloading state

of action, from which the best action has been chosen after considering the

maximum computation rate. The output ensures that all physical constraints have been met.

13

The newly acquired state of action pair is added to a replay memory once the network performs

the offloading operation, earns the reward. The mapping from the input state vector to the

action state vector is eventually produced by using deep neural network to train from the data

samples that will be used for continuous learning. (Ke et al. 2021) The data training samples

are taken from the previous behaviour that will be used to train the deep neural network. This

training sample will continuously iterate to increase the time frame with every batch being

trained and will be used to generate the next offloading decision.

6 Evaluation

As per the observation, the conventional two-layer deep learning model is sufficient to produce

acceptable convergence performance, though further refining the deep neural

network parameters is predicted to result in even higher convergence

performance. TensorFlow 2.0 is used to implement this method in Python whereby default the

interval for training is set as 10, followed by the batch size for training is fixed to 128 and the

memory dimension is 1024. (Wang et al. 2022) The learning rate is set as 0.01 for the Adam

optimizer.

6.1 Experiment 1:

The standard normalized computation rate is determined as 0.9996, total time consumed to

perform this task is 1635.33 seconds time frame and average per channel is computed as 0.054

seconds when K=10 and N = 10 as observed in the Figure: 4.

Figure 4: Output generated when K=10 and N=10

The parameters are fixed as K = N in this scenario. The sky-blue shadows in Figure

5 represents the minimum and maximum values over the previous 50 frames, while the sky-

blue curve represents the trend line over those 50 frames. When time frame is

large, the algorithm steadily approaches the ideal outcome when in moving average.

14

Figure 5: Graphs generated for computation rate when K=10 and N=10

6.2 Experiment 2:

The average normalized computation rate is determined as 0.9987, total time consumed to

perform this task is 571.921 seconds time frame and average per channel is computed as 0.057

seconds as observed in the Figure: 6 when the weights are altered dynamically.

15

Figure 6: Output generated when weights are continuously changed

The algorithm is evaluated for MEC system network with changing weights for wireless

devices. By simultaneously varying all the wireless devices weights from 1 and 1.5,

specifically at the time frame 6000 and 8000 to understand the worst possible outcome. When

the time frame is greater than 6000, as shown in Figure 7, the trend line of the computational

rate is always more than 0.99 and the minimum computational rate is more than 0.95.

Figure 7: Graph generated when the weights are altered dynamically

16

The computing rate of the wireless devices used by the coordinate descent algorithm is

iteratively switched every round to improve the computation rate. (Bi et al. 2018) The

offloading action varies from 0 to 1 in this algorithm. It is proven that the coordinate descent

approach performs nearly optimally for varying N. The iteration, however, reaches its

end when the performance of the computation is not further enhanced by switching computing

modes. With the newly proposed algorithm, the convergence is improved even with the

alternating weights. This proves that the offloading decision performance is better with the

newly proposed deep learning-based algorithm when compared to coordinate descent

algorithm.

The algorithm is less complicated when compared to the Lyapunov optimization approach (Bi

et al. 2021) as the algorithm is capable to using different learning tasks like RNN and CNN

algorithms.

Additionally, the time taken to complete the offloading action is 0.054 seconds. Coordinate

descent takes about 67 times more when compared to the newly proposed algorithm. The

latency for the execution has also been improved when compared to Coordinate decent

algorithm.

7 Conclusion and Future Work

For wireless power-driven mobile edge computing networks with k binary search offloading

technique, this paper has presented the deep learning algorithms for online offloading to

improve the computation rate for multiple wireless devices and varying wireless devices. The

approach utilizes deep reinforcement learning to improve the offloading action produced by a

deep neural network that learns from the past offloading behaviour. The suggested algorithm

eliminates the requirement to solve challenging MIP problems, in contrast to traditional

optimization techniques. According to simulation results, the algorithm achieves better

computational rate with a CPU latency that is much lower when compared to the surveyed

research articles.

The algorithm can be enhanced in the future by taking into account a user network with more

than 30 network systems and concentrating on resource allocation that has continuous

allocations on various types of networks.

References

Bi, S. and Zhang, Y.J., 2018. Computation rate maximization for wireless powered mobile-

edge computing with binary computation offloading. IEEE Transactions on Wireless

Communications, 17(6), pp.4177-4190.

Bi, S., Huang, L., Wang, H. and Zhang, Y.J.A., 2021. Lyapunov-guided deep reinforcement

learning for stable online computation offloading in mobile-edge computing networks. IEEE

Transactions on Wireless Communications, 20(11), pp.7519-7537.

17

Goodfellow, I., Bengio, Y. and Courville, A., 2016. Deep learning. MIT press.

Guo, M., Li, L. and Guan, Q., 2019. Energy-efficient and delay-guaranteed workload allocation

in IoT-edge-cloud computing systems. IEEE Access, 7, pp.78685-78697.

Guo, S., Xiao, B., Yang, Y. and Yang, Y., 2016, April. Energy-efficient dynamic offloading

and resource scheduling in mobile cloud computing. In IEEE INFOCOM 2016-The 35th

Annual IEEE International Conference on Computer Communications (pp. 1-9). IEEE.

Guo, X., Singh, R., Zhao, T. and Niu, Z., 2016, May. An index based task assignment policy

for achieving optimal power-delay tradeoff in edge cloud systems. In 2016 IEEE International

Conference on Communications (ICC) (pp. 1-7). IEEE.

He, Y. and Tang, Z., 2021. Strategy for task offloading of multi-user and multi-server based

on cost optimization in mobile edge computing environment. Journal of Information

Processing Systems, 17(3), pp.615-629.

He, Y., Yu, F.R., Zhao, N., Leung, V.C. and Yin, H., 2017. Software-defined networks with

mobile edge computing and caching for smart cities: A big data deep reinforcement learning

approach. IEEE Communications Magazine, 55(12), pp.31-37.

Huang, H., Ye, Q. and Du, H., 2020, June. Reinforcement learning based offloading for

realtime applications in mobile edge computing. In ICC 2020-2020 IEEE International

Conference on Communications (ICC) (pp. 1-6). IEEE.

Huang, L., Feng, X., Zhang, C., Qian, L. and Wu, Y., 2019. Deep reinforcement learning-based

joint task offloading and bandwidth allocation for multi-user mobile edge computing. Digital

Communications and Networks, 5(1), pp.10-17.

Ke, H., Wang, H., Sun, W. and Sun, H., 2021. Adaptive computation offloading policy for

multi-access edge computing in heterogeneous wireless networks. IEEE Transactions on

Network and Service Management, 19(1), pp.289-305.

Li, C., Zhang, Y. and Luo, Y., 2021. Deep reinforcement learning-based resource allocation

and seamless handover in multi-access edge computing based on SDN. Knowledge and

Information Systems, 63(9), pp.2479-2511.

Liu, H., Eldarrat, F., Alqahtani, H., Reznik, A., De Foy, X. and Zhang, Y., 2017. Mobile edge

cloud system: Architectures, challenges, and approaches. IEEE Systems Journal, 12(3),

pp.2495-2508.

Li, H., Shou, G., Hu, Y. and Guo, Z., 2016, March. Mobile edge computing: Progress and

challenges. In 2016 4th IEEE international conference on mobile cloud computing, services,

and engineering (MobileCloud) (pp. 83-84). IEEE.

Mao, Y., Zhang, J. and Letaief, K.B., 2016. Dynamic computation offloading for mobile-edge

computing with energy harvesting devices. IEEE Journal on Selected Areas in

Communications, 34(12), pp.3590-3605.

18

Qu, G., Wu, H., Li, R. and Jiao, P., 2021. DMRO: A deep meta reinforcement learning-based

task offloading framework for edge-cloud computing. IEEE Transactions on Network and

Service Management, 18(3), pp.3448-3459.

Shi, X., 2022. A task segmentation and computing offload algorithm for mobile edge

computing. The Journal of Engineering.

Tran, T.X., Hajisami, A., Pandey, P. and Pompili, D., 2017. Collaborative mobile edge

computing in 5G networks: New paradigms, scenarios, and challenges. IEEE Communications

Magazine, 55(4), pp.54-61.

Tran, T.X. and Pompili, D., 2018. Joint task offloading and resource allocation for multi-server

mobile-edge computing networks. IEEE Transactions on Vehicular Technology, 68(1),

pp.856-868.

Wang, C., Lu, W., Peng, S., Qu, Y., Wang, G. and Yu, S., 2022. Modeling on Energy Efficiency

Computation Offloading Using Probabilistic Action Generating. IEEE Internet of Things

Journal.

Wang, F., Xu, J., Wang, X. and Cui, S., 2017. Joint offloading and computing optimization in

wireless powered mobile-edge computing systems. IEEE Transactions on Wireless

Communications, 17(3), pp.1784-1797.

You, C., Huang, K., Chae, H. and Kim, B.H., 2016. Energy-efficient resource allocation for

mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 16(3),

pp.1397-1411.

Zhang, H., Wu, W., Wang, C., Li, M. and Yang, R., 2019, April. Deep reinforcement learning-

based offloading decision optimization in mobile edge computing. In 2019 IEEE Wireless

Communications and Networking Conference (WCNC) (pp. 1-7). IEEE.

Zhang, Y., Zhang, M., Fan, C., Li, F. and Li, B., 2021. Computing resource allocation scheme

of IOV using deep reinforcement learning in edge computing environment. EURASIP Journal

on Advances in Signal Processing, 2021(1), pp.1-19.

Zhao, T., Zhou, S., Guo, X., Zhao, Y. and Niu, Z., 2015, December. A cooperative scheduling

scheme of local cloud and internet cloud for delay-aware mobile cloud computing. In 2015

IEEE Globecom Workshops (GC Wkshps) (pp. 1-6). IEEE.

