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A New Offloading Technique Based on Deep 

Learning for Mobile-Edge Computing 
 

Prathista Santhosh Kumar Shetty  

x21146802  
 

 

Abstract 

 

Offloading techniques have gained more importance in today's world because of its need 

for high utilization of computing power, storage capacity and energy. The fundamental 

principle is to transfer resource-intensive processing operations to a more powerful 

processor for rapid computation. The development of new mobile technologies is 

increasing, requiring efficient utilization of resources. Mobile Edge Computing with 

distributed network has been developed with an aim to bring all the computational 

servers close to the end-users that meets predefined requirements. The rate at which tasks 

arrive at the mobile edge computing server for computing fluctuates every minute and it 

also depends on the user’s density.  For optimal computational rate in such a dynamic 

environment, task offloading should be efficient to reduce the uploading and downloading 

time. The aim of this research is to offload the complexity brought on by the rapid 

advancements of distributed computing in Mobile Edge technologies. To address this 

issue, a framework that employs a scalable solution using deep neural network solution is 

used that trains itself based on the binary offloading predictions by using the K-modes 

algorithm that chooses the largest reward. Since combinatorial optimization issues are no 

longer need to be solved, its computational complexity is significantly lesser than 0.1 % 

on a large user network with 30 systems. The research also shows that the CPU latency is 

about 67 times lesser when compared to the coordinate descent approach.  
 

1 Introduction 
 

A modern computing technology known as Mobile Edge Computing (MEC) makes 

online service available at networking edges by using mobile stations. It represents a 

promising innovation that aids in highlighting the drawbacks of mobile computing. 

Mobile devices usually have low processing power and this aids in overcoming the 

offloading in the system.  MEC enables the smooth integration of different application 

services, hence providing available resources wound to the end-location users at the 

network edges. (Zhang et al. 2022) It is easily adaptable enabling the execution of 

resource-intensive applications that demand minimal network latency. In order to 

decrease the charge of battery usage in mobile devices and make high-end complicated 

processes use storage and processing capabilities to execute on a mobile interface, the 

data, services, and application processes within mobile devices are downloaded. Due 

to this, delay in sharing and resource allocation is avoided, regardless of how many 

users or applications are present. However, in such situations, data is queuing at various 

intervals that increases the computation request and various user requests can be 

handled concurrently by the edge storage servers. As a result, the mobile edge 

computing layer for varying traffic must inherit wireless methods for better 

performance.  
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Figure 1: MEC system in a wireless powered network (Wang et al. 2017) 

 

MEC is a subject that is still-evolving in online based computation standard which is being 

embraced by many commercial entities in an effort to distinguish themselves from competing 

technologies. Additionally, this technology is set up in the proximity of the mobile devices that 

are most likely to be nearest, with minimal server capabilities deployed at the network's edge 

to fulfil user-centric needs. (Huang et al. 2020) A generic MEC system in a wireless power-

driven network is displayed in the Figure 1. In order to develop an edge computation with 

a truly effective technique, a well-organized and practical resource management is required 

after understanding the limitations such as storage, bandwidth, and CPU. 

 

The combined optimization of wireless resource distribution and single offloading presents a 

significant issue in a multi-user scenario. (He et al. 2021) Because there are binary offloading 

parameters involved, these issues are typically described as multi objective 

programming issues. In order to improve this, different deep reinforcement-based learning 

algorithm have been applied over network edges to provide efficient communication and task 

balancing. This research was implemented considering a wirelessly–powered edge computing 

network with a single access point and several wireless devices with binary offloading strategy 

for each wireless device. The primary objective of this research was to optimize the offloading 

decisions made by each wireless device and the transfer time frame between offloading and 

wireless transmission. To achieve this, a deep reinforcement-based learning algorithm 

offloading system was used to increase all wireless devices' computation rates.  

 

1.2 Research project specifications 
 

This section describes the motivation and objectives for this research project. 



 

3 
 

 

 

1.2.1 Research Question 
 

How effectively can deep reinforcement learning based algorithm be leveraged to reduce 

offloading computational complexity in Mobile Edge Computing? 

 

1.2.2 Objectives and Contributions 

 

• Design and implement deep learning-based algorithms utilizing binary offloading 

strategy. 

 

• Evaluate the computation rate with different number of hidden layers. 

 

• Visualize the computation rate, time consumed and average time per unit when a task 

is performed with the proposed algorithm.  

 

The contribution will consist of the following: 

 

• Critically analysing and reviewing the existing research performed on task offloading 

on mobile edge computing.  

 

• Created a configuration manual for others to replicate the work. 

 

1.3 Document Structure 

 
• The related research is a discussion of mobile edge computing in Section 2. 

 

• The research approach utilized to implement the newly suggested deep reinforcement 

learning-based algorithm is covered in Section 3. 

 

• Section 4 discusses the architecture and algorithm proposed for the MEC network. 

  

• Section 5 contains the system configuration, data used, followed by workflow of the 

implemented algorithm. 

 

• Section 6 shows the outcomes of the proposed approach and the graphs generated for 

the same. 

 

• Section 7 comprises of the conclusion and recommended future work.  
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2 Related Work 
 

This section discusses existing research in the domain of compute offloading in MEC, in 

addition to the effectiveness of machine learning approaches. Additionally, many approaches 

for improving MEC have been reviewed in this section. 

 

MEC research is popular research area due to large number of research opportunities at the 

conjunction of wireless infrastructures and mobile computing. Many researchers have looked 

at a variety of MEC-related challenges, such as allocating multiuser resources, system 

modelling and network modelling, etc. The two main MEC challenges are resource scheduling, 

resource allocation and compute offloading. These approaches are categorized into enhancing 

the profit made by the operators, to reduce the cost incurred by the consumers, optimizing the 

overall cost of building the MEC infrastructure and maintaining it, to reduce the measure of 

time needed to conclude a task and to focus on minimizing energy use when doing 

computationally intensive workloads. (Liu et al. 2017) The majority of MEC research has not 

addressed user mobility or random variations in task generation. As a result, there is a drastic 

decrease in QoS and a large decline in network performance when the platform deviates from 

an ideal configuration discovered through static allocation of resources. The major purpose 

using machine learning approaches is to manage system dynamics and the unpredictable 

pattern of tasks generated.  

 

(Zang et al. 2021) suggested a computational resource allocation approach using deep 

reinforcement learning networks. In this approach, only the edge server could be used to 

offload tasks in the absence of a central cloud. Therefore, selecting the correct edge server to 

execute tasks is the main challenge in the offloading scheme in this case. In contrast, (Guo et 

al. 2016) included both the power consumption cost as well as the latency cost of performing 

the task, with the optimization aim being the reduction of the overall offloading cost. Non-

linear processing with mixed integers is the type of optimization issue. The author suggests a 

combined deep reinforcement learning-based optimization strategy for bandwidth allocation 

and task offloading. The initial non-convex optimisation technique is identical to a 

reinforcement learning-based problem, and the Deep Q Network technique is employed to 

determine the best solution. (Shi et al. 2022) All alternative strategies are patterned as state 

spaces.  Additionally, the multi-task multi-user offloading technique along with the 

other systems are outperformed by the DQN-based method. 

 

(Huang et al. 2019) anticipates the existence of a popular area that is covered by many user 

devices but also that each of those devices can connect to a number of edge servers through 

the closest base stations. This research proposes a Markov decision framework-based task 

scheduling method. This approach will, however, result in significant computational 

complexity and communication overhead when the edge servers expand. In order to lessen 

complexity of the algorithm and overall communication overhead, the author suggests an 

index-based resource allocation technique. As per the state of its remaining computing 

resources, per edge server creates its own index, which it then broadcasts throughout the 
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network so that network device can choose the most effective edge server to reduce latency 

and power consumption. 

 

The scenario in which computing workloads are offloaded locally to the edge server is taken 

into consideration in publications (Guo et al. 2016) and (Huang et al. 2019). In reality, edge 

nodes computation and storage capabilities are confined. The central cloud should continue to 

receive tasks when edge nodes resources are unable to handle them. (Guo et al. 2016) and 

(Huang et al. 2019), however, do not take into account the interaction in between central 

and edge cloud. 

 

A wireless device within a local computing environment can simultaneously gather energy and 

do its task easily. (Wang et al. 2017) Let’s consider 𝑒𝑖 as the computing speed for the processor 

where 0 ≤ 𝑇𝑖 ≤ T that represents the time taken for the computation. Furthermore, energy 

consumption of the wireless device will be limited by 𝑘𝑖𝑇𝑖𝑒𝑖
3 ≤  𝐸𝑖. This can be demonstrated 

that a wireless device must use all of the harvested energy while continuing to compute during 

the time period in order to analyse the utmost amount of data inside T considering the energy 

limitation. (Guo et al. 2016) Therefore, the rate of local computation can be defined as below: 

 

                                                             
𝑒𝑖∗ 𝑇𝑖 

𝜙𝑇
=  𝜂1 (

𝑐𝑖

𝑘𝑖
)

1

3
𝑎

1

3                      (1) 

 

If the edge node in the state is including the involvement of the principal cloud lacks sufficient 

computational resources, then the edge device can work directly with the centralized node. 

According to (Zhao et al. 2015), if the edge server satisfies the application interval criteria, a 

target level supportive scheduling method is employed to enhance the total of applications 

installed and deploying on the edge server. The significance of the program in addition to the 

allocation of computational resources in the edge server decides wherever the decommissioned 

application must be stored when the network device decides to uninstall the computing. 

Connect the virtual device executing the program towards the edge node if it has sufficient 

resources. However, if the edge server's computational capacity is not adequate, then 

the scheduler assigns the operation to the secluded central cloud. Hence, the author suggests a 

prioritized collaboration technique to configure distinct buffer spaces with various priorities in 

order to optimize the numerous of tasks handled throughout the network edge and satisfy their 

latency necessities. The processing of the task will only be forwarded to the cloud layer 

when the buffer is overflowing.   

 

The provision of computational resources in the case of just one edge server is taken into 

account in the research implemented in (Zhao et al. 2015). In reality, there are frequently 

several diverse edge servers with each one containing a wide range of computational resources. 

A scenario with different range of IOT terminal regions, numerous edge node, and a centralized 

cloud node was also taken into consideration in the research paper (Guo et al. 2019). In the 

constraint that the job end time does not go beyond the interruption limit, the optimization 

purpose of this research is to reduce the energy usage. Local and nearby edge node are 

distinguished in this paper. A local node in the network is equivalent to every IoT terminal 
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region. IoT terminal will send the task to the suitable edge node. Here, the local nodes will send 

the task to the centralized cloud server for processing or to its nearby edge node. By leveraging 

Lyapunov's drift plus penalty model, the authors provide a delayed workload allocation 

technique that enables local edge node, nearby edge node, and centralized cloud node to 

perform computational workloads fairly in order to diminish overall energy utilisation. 

 

The authors from (Guo et al. 2019) does not take into account the terminal area's computing 

power, namely, the terminal region in this article is only responsible to create tasks and 

offloading these towards the local network edge but not for computing. The terminal device 

can actually process tasks in real life. Traditional approaches can be applied in contexts that 

are static but they need further knowledge of people and network factors. However, there is 

little to no previous knowledge to aid in decision-making in a constantly changing network, 

necessitating the use of a machine learning-based approach. 

 

There is very less research done on deep reinforcement learning for resource allocation and 

task offloading. The paper (He et al. 2015) conducted research for smart capitals, software-

defined, virtualized systems integrating caching and mobile edge computing. The study 

provided an integrated approach that included networking, resource allocation to improve the 

application's performance and caching. Additionally, the model has allocation of resources 

strategy considering it as a joint optimization issue that is resolved in this work with the aid of 

a novel deep reinforcement learning method. The evaluation is shown through deep Q-network 

model's visualization. The evaluation demonstrates how well the algorithm performed in terms 

of convergence for several cases under the proposed method. To determine the efficiency of 

the suggested scheme, simulation results with various system parameters were also conducted. 

However, in this paper, the authors did not consider energy consumption efficiency issues. 

MEC networks research in (Huang et al. 2019) examines the decision of many wireless devices 

to delegate computation-related duties to a network edge.  The improvement of bandwidth 

allocation and offloading decision is described as a mixed integer coding problem in order to 

save energy for wireless devices. However, the complexity in dimensionality places a 

computational constraint on the problem, making it impossible for ordinary optimization 

techniques to effectively and efficiently solve it, across several wireless devices.  

 

In the above mentioned Deep learning techniques, there are drawbacks such as poor learning 

rates and poor environmental adaptation. The paper (Qu et al. 2021) suggests a deep meta 

reinforcement learning-based algorithm for offloading to discourse these concerns, which 

amalgamates several concurrent deep neural networks with Q learning to produce accurate 

offloading judgments. The finest offloading approach within a dynamic setting can be rapidly 

and adaptably obtained by a combination of the perceptual capability for deep learning along 

with the decision-making influence for reinforcement learning, and meta-learning capability in 

a fast-moving environment. Through many numbers of numerical simulations, DMRO is 

associated with conventional Deep Reinforcement Learning systems and the result shows 

an increase by 17.6 percent for offloading decision. 
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To address the challenging combinatorial computing mode selection, (Bi et al. 2018) proposed 

two effective solution algorithms. The algorithms used are coordinate descent method and the 

alternating direction method of multipliers-based method, optimizes both simultaneously. The 

coordinate descent algorithm uses bisection examination to obtain an optimal time 

allocation.   The proposed coordinate descent based and alternating direction method of 

multipliers-based methods both perform better than other traditional benchmark methods. 

However, the algorithm does not work efficiently when the computation modes have 

alternating weights. The newly proposed algorithm utilizes the bisection search proposed in 

(Bi et al. 2018) to implement offloading decision which then chooses the best offloading action 

using K modes algorithm. 

 

Main Content Research Result Limitation Reference 

Deep Reinforcement 

learning-based 

optimization strategy 

Achieved better offloading 

performance with reduced 

power consumption cost 

Overall communication 

overhead was more when 

edge servers are 

increased 

(Guo et al. 

2016) 

Deep reinforcement 

learning 

Resource allocation was 

improved 

Energy consumption 

efficiency 

(He et al. 2015) 

Collaboration 

technique for edge 

and cloud 

Tasks offloading performance 

was improved and latency 

Only 1 edge server was 

taken into account for 

task offloading 

(Zhao et al. 

2015) 

Lyapunov's drift plus 

penalty model 

Delayed workload allocation Computing power for 

terminal area was not 

considered 

(Guo et al. 

2019) 

Markov decision 

framework and Index-

based resource 

allocation technique 

Reduced latency and power 

consumption 

Communication between 

edge and cloud was not 

taken into account 

(Huang et al. 

2019) 

DMRO algorithm Increased 17.6 percent 

offloading decision 

performance when compared 

to DRL algorithm 

Limitation to implement 

the algorithm with 

different learning 

structure techniques 

(Qu et al. 2021) 

Coordinate descent 

and Alternating 

direction method of 

multipliers 

 

Offloading action 

performance was improved 

when compared to the DRL 

algorithm with bi section 

search method 

These algorithms do not 

work efficiently when 

there are multiple tasks 

assigned to the wireless 

devices 

(Bi et al. 2018) 

and (Bi et al. 

2021) 

A newly proposed 

deep reinforcement 

learning-based 

algorithm 

The offloading decision was 

improved even with the 

varying computational tasks 

and the algorithm showed 67 

times more improvement in 

Algorithm can be 

improved by considering 

larger user network with 

more than 30 users.  
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execution latency when 

compared to CD method.  

 

 

3 Research Methodology 
 

The approaches and algorithms that are applied to implement the resource allocation in addition 

to the offloading mechanism for the MEC network are described in this section.  

 

The newly proposed framework automatically enhances its state of action being able to 

generate policy based on the experiences from past offloading decisions under diverse wireless 

fading environments. As a result, it fully eliminates the requirement to solve challenging 

multiple integer programming problems, which prevents the complexity of the algorithm from 

increasing as the network size increases. 

 

This algorithm subdivides the fundamental optimization model to a sub-problem of offloading 

decisions and resource allocation, ensuring that the physical limitations are addressed. This is 

in contrast to many current deep learning approaches that optimizes the system parameters 

simultaneously and produce impractical solutions. It overcomes the problem of dimensionality 

by working for continuous actions without needing the requirement to normalize the wireless 

channel quality.  

 

Offloading decision is the most challenging issue to resolve in the MEC network system. The 

optimization in real-time system under rapid fading channels is not feasible with traditional 

optimization techniques iteratively modifying the offloading routing decisions to an idealistic 

environment. An offloading wireless device uses up all of its gathered energy towards task 

offloading to increase computation speed. (Bi et al. 2021) Therefore, the computing rate is 

proportional to its capacity for data offloading. To identify an ideal or a suitable offloading 

decision, it must search among the 2N potential offloading decisions.  To enhance the 

offloading decisions, for example, metaheuristic search techniques are suggested in (Bi et al. 

2018) and (Tran et al. 2018). This search space is exponentially huge, though, thus it requires 

more time to converge using the existing algorithms.  For the resource allocation, the bisection 

search is employed with a single dimension for dual parameter linked to constraint of time 

allocation in O(N) complexity that can be used to effectively solve the convex problem's 

maximum time allocation. (Bi et al. 2018) In order to address the offloading issue within the 

order of the computation time being milliseconds, a unique deep reinforcement learning-based 

offloading technique is proposed to address the complexity of the issue.  

 

In the newly proposed deep reinforcement learning-based algorithm, an interconnected deep 

neural network with a single input layer consisting of 2 hidden layers and a single output layer 

is considered and the first 2 hidden layers has 80 and 120 hidden neurons. For this learning 

problem, different structures with varying number of neurons and hidden layers, or a different 

type of neural network can be used as a replacement to the deep neural network to match a 

particular learning problem, for example a recurrent neural network (Goodfellow et al. 2016) 



 

9 
 

 

can be employed. In this research, a straightforward 2-layer deep learning model is sufficient 

to obtain acceptable convergence performance, while further refining the deep neural network 

input variables is likely to produce higher convergence performance.  

 

The algorithm is divided into two alternative processes that make up to this process. A deep 

neural network, whose embedded parameters include things like the weights connecting the 

masked neurons used to generate the first offloading technique in the algorithm. The deep 

neural network receives the channel gain as an input for the time frame and, also by using its 

existing offloading policy that is defined by a variable and outputs an offloading action. 

The action with best complexity is chosen from among K binary actions from that same relaxed 

action depending on the feasible computation rate. The newly acquired state-action pair is 

added towards the replay memory by the network after it performs the offload action, receives 

a reward, and then performs the offload action. (Li et al. 2021) The deep neural network is then 

trained using a group of training data that are pulled from memory during the update 

of policy stage of the time frame. The deep neural network will then update the variable 

from time frame to time frame + 1 and correspondingly increases with every iteration. The 

following time frame generates an offloading decision based on the newly observed 

channel using the updated offloading policy.  As subsequent channel iterations are observed, 

these iterations continue, and the deep neural network policy is progressively enhanced with 

its computational complexity.  

 

4 Design Specification 
 

The section below gives the details of the new algorithm applied and its architecture.  

 

4.1 Architecture 
 

In this design specification, a new order-preserving action generating technique to effectively 

produce offloading actions was developed. In particular, the technique was computationally 

more effective and feasible in a large-scale system with a complex space since it only requires 

to choose from a small number of alternative actions every time. In addition, it generates 

actions with a high degree of diversity and improves convergence performance over traditional 

action generating techniques. The algorithm has been further improved by creating an adaptive 

process that instantly modifies the algorithm's settings with varying weights. To be more 

precise, it steadily reduces the quantity for sub problems of resource allocation that must be 

resolved in a given amount of time.  

 

By doing this, overall computational complexity is effectively reduced without lowering the 

quality of the solutions. 
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Figure 2: Architecture of the Mobile Edge Computing network 

 

 

The design considers a wireless power-driven mobile edge computing network with N fixed 

wireless devices and an access point, indicated as N = {1, 2..., N}, individually with 

one antenna. In reality, this can be equivalent to a reduced IoT system or a sensor network with 

static configuration. The access point can transmit radio frequency energy to the wireless 

devices and has a reliable power supply. Every wireless device contains a battery which is 

rechargeable that can be used to store the energy that has been collected and used to operate 

the device. Assume that the access point has greater processing power than the wireless 

devices, allowing the wireless devices to delegate some of their computing workload to the 

access point.  (Huang et al. 2019) The design assumes that communication and wireless power 

transfer both occur within the identical frequency range. Furthermore, offloading decision and 

resource allocation are the two subparts that are addressed in this research. 

 

4.2 Algorithm workflow 
 

An offloading wireless device uses up all of its gathered energy towards task offloading to 

increase computation speed. (Bi et al. 2021) Therefore, the computing rate is proportional to 

its capacity for data offloading. Considering this explanation, a new Deep reinforcement 

learning algorithm mentioned below is applied to address the offloading decision strategy using 

the above equation that has achieved a computational time within a millisecond order of 

magnitude to explain the offloading decision drawback. The deep neural network continuously 

improves its output from offloading decisions by learning out from best state of action pairings. 

The deep neural network can only learn using the most recently generated data samples by the 

most refined and latest offloading strategies due to the constrained memory space limitation. 
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Until convergence, the closed-loop learning process continuously enhances the offloading 

policy. The newly proposed pseudo code of the algorithm is given below: 

 

 

Algorithm 1 Newly proposed deep reinforcement learning based pseudo 

code  

 

1: Input: Overall gain from wireless transmission channel  𝑐𝑡 at t time    

                considering the offloading actions as k 

2: Output: Computational complexity and time taken for Offloading     

                   decision for the t time frame 

3: Configure the deep neural network using parameter 𝜃1 and zero  

    memory. 

4: Input iteration for N with a training interval α 

5: for each t from 1, 2, 3, 4……, N do 

6: Generate offloading decision 𝑎𝑡 = 𝑘𝜃𝑡
(𝑐𝑡) 

7: Transform 𝑎𝑡 to binary offloading state of action operation 

8: Compute best action for 𝑎𝑡 

9: Update the weights of the memory by calculating the sum of 𝑐𝑡  

            and 𝑎𝑡 

10: if t mod α = 0 then 

11:                Train the deep neural network with the offloading decision  

                     and the binary action 

13:                Using Adam optimizer algorithm update  𝜃𝑡 

12:  end 

13: end 

 

5 Implementation 
 

This section includes the environment set up and implementation of the algorithm used to 

execute the proposed algorithm.   
 

5.1 Device set up 

 

The algorithm is implemented using Python programming language. Additionally, TensorFlow 

2.0 is leveraged to significantly improve the algorithm's performance. TensorFlow 2.0 

programs need an Nvidia GPU to perform, hence the Google Colab cloud environment was 

selected as the IDE for implementing this work. The simulations in this research are also 

implemented on the Google Colab cloud environment.  

5.2 Device Configuration 
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TensorFlow 2.0, numpy, and scipy are necessary packages to run this program. If the desktop 

computer's GPU is Nvidia CUDA enabled, the program can be executed without any issue; 

alternatively, Google Colab's GPU-enabled runtime can be used. 

5.3 Data 
 

All the data is stored in the sub directory which includes the training and testing datasets. The 

dataset is generated with the coordinate descent mentioned in (Bi et al. 2018). The dataset 

consists of columns that has the input for gain from wireless channel, binary offloading state 

of action, access points for different radio frequency energy for all the wireless devices, time 

allocation for the offloading and the sum of weights for computational rate. The folder contains 

different samples that is classifies by different number of wireless devices.   

5.4 Algorithm implementation 
 

The algorithm used can be categorised into a reinforcement learning-based algorithm as it 

continuously learns from the previous feedback to optimize the final reward by adjusting the 

offloading actions.   

 

Figure 3: Sequence diagram of the algorithm implemented 

 

As seen in Figure 3, the newly proposed algorithm divides the initial optimization problem into 

two subproblems: 0 to 1 binary action offloading decision along with the resource allocation 

problem. The two subproblems are then addressed independently with a dynamically learning 

module that is model free and an optimization module that is model based. This learning-based 

algorithm emphasis on optimizing resource allocation with every offloading action then 

chooses the best decision for every time slot after the offloading action module maps the 

input parameters to the binary offloading action parameters using an interconnected deep 

neural network. Following that, the relaxed action is classified as binary offloading state 

of action, from which the best action has been chosen after considering the 

maximum computation rate. The output ensures that all physical constraints have been met. 
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The newly acquired state of action pair is added to a replay memory once the network performs 

the offloading operation, earns the reward. The mapping from the input state vector to the 

action state vector is eventually produced by using deep neural network to train from the data 

samples that will be used for continuous learning. (Ke et al. 2021) The data training samples 

are taken from the previous behaviour that will be used to train the deep neural network. This 

training sample will continuously iterate to increase the time frame with every batch being 

trained and will be used to generate the next offloading decision.  

 

6 Evaluation 
 

As per the observation, the conventional two-layer deep learning model is sufficient to produce 

acceptable convergence performance, though further refining the deep neural 

network parameters is predicted to result in even higher convergence 

performance.  TensorFlow 2.0 is used to implement this method in Python whereby default the 

interval for training is set as 10, followed by the batch size for training is fixed to 128 and the 

memory dimension is 1024. (Wang et al. 2022) The learning rate is set as 0.01 for the Adam 

optimizer.  

6.1 Experiment 1: 

 

The standard normalized computation rate is determined as 0.9996, total time consumed to 

perform this task is 1635.33 seconds time frame and average per channel is computed as 0.054 

seconds when K=10 and N = 10 as observed in the Figure: 4.  

 
 

 

Figure 4: Output generated when K=10 and N=10 

 

The parameters are fixed as K = N in this scenario. The sky-blue shadows in Figure 

5 represents the minimum and maximum values over the previous 50 frames, while the sky-

blue curve represents the trend line over those 50 frames. When time frame is 

large, the algorithm steadily approaches the ideal outcome when in moving average. 
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Figure 5: Graphs generated for computation rate when K=10 and N=10  

 

6.2 Experiment 2: 

 

The average normalized computation rate is determined as 0.9987, total time consumed to 

perform this task is 571.921 seconds time frame and average per channel is computed as 0.057 

seconds as observed in the Figure: 6 when the weights are altered dynamically.  
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Figure 6: Output generated when weights are continuously changed 

 

The algorithm is evaluated for MEC system network with changing weights for wireless 

devices. By simultaneously varying all the wireless devices weights from 1 and 1.5, 

specifically at the time frame 6000 and 8000 to understand the worst possible outcome. When 

the time frame is greater than 6000, as shown in Figure 7, the trend line of the computational 

rate is always more than 0.99 and the minimum computational rate is more than 0.95. 

 

 

Figure 7: Graph generated when the weights are altered dynamically  
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The computing rate of the wireless devices used by the coordinate descent algorithm is 

iteratively switched every round to improve the computation rate. (Bi et al. 2018) The 

offloading action varies from 0 to 1 in this algorithm. It is proven that the coordinate descent 

approach performs nearly optimally for varying N. The iteration, however, reaches its 

end when the performance of the computation is not further enhanced by switching computing 

modes. With the newly proposed algorithm, the convergence is improved even with the 

alternating weights. This proves that the offloading decision performance is better with the 

newly proposed deep learning-based algorithm when compared to coordinate descent 

algorithm.  

 

The algorithm is less complicated when compared to the Lyapunov optimization approach (Bi 

et al. 2021) as the algorithm is capable to using different learning tasks like RNN and CNN 

algorithms.   

 

Additionally, the time taken to complete the offloading action is 0.054 seconds. Coordinate 

descent takes about 67 times more when compared to the newly proposed algorithm. The 

latency for the execution has also been improved when compared to Coordinate decent 

algorithm.  
 

 

7 Conclusion and Future Work 
 

For wireless power-driven mobile edge computing networks with k binary search offloading 

technique, this paper has presented the deep learning algorithms for online offloading to 

improve the computation rate for multiple wireless devices and varying wireless devices. The 

approach utilizes deep reinforcement learning to improve the offloading action produced by a 

deep neural network that learns from the past offloading behaviour.  The suggested algorithm 

eliminates the requirement to solve challenging MIP problems, in contrast to traditional 

optimization techniques. According to simulation results, the algorithm achieves better 

computational rate with a CPU latency that is much lower when compared to the surveyed 

research articles.  

 

The algorithm can be enhanced in the future by taking into account a user network with more 

than 30 network systems and concentrating on resource allocation that has continuous 

allocations on various types of networks. 
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