

Configuration Manual

MSc Research Project Cloud Computing

Prawal Saxena Student ID: 21151334

School of Computing National College of Ireland

Supervisor: Sean Heeney

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Prawal Saxena		
Student ID:	21151334		
Programme:	Cloud Computing		
Year:	2022		
Module:	MSc Research Project		
Supervisor:	Sean Heeney		
Submission Due Date:	01/02/2023		
Project Title:	Configuration Manual		
Word Count:	759		
Page Count:	10		

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Prawal Saxena
Date:	27th January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).You must ensure that you retain a HARD COPY of the project, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only			
Signature:			
Date:			
Penalty Applied (if applicable):			

Configuration Manual

Prawal Saxena 21151334

1 Architectural Diagram

Figure 1: Architectural Diagram

2 Kubernetes Installation

In this project, I am installing Kubernetes on my local machine(macOS), it can be installed in ubuntu or any Linux OS. (Kumar et al. (2022))

• I have configured AWS account in my local machine which has admin access to all AWS services. It can be done in another way as well in AWS create a Linux Ec2 then install Kubernetes in that. Attach IAM role with a policy that enables access to different services like ECR, EKS, and Codepipeline.

```
sudo apt update
sudo apt install -y docker.io
systemctl status docker
docker --version
sudo apt install -y apt-transport-https curl
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg
| sudo apt-key add
sudo apt-add-repository "deb http://apt.kubernetes.io/ kubernetes-xenial
    main"
sudo apt update
sudo apt install -y kubelet kubeadm kubectl
```

• For checking if kubernetes successfully installed or not use kubectl version command:-

[prawal@]\$kubectl version --short Client Version: v1.25.4 Kustomize Version: v4.5.7 Server Version: v1.23.13-eks-fb459a0

Figure 2: Kubernetes version

2.1 EKS cluster creation and istio installation

• I am creating EKS cluster eksctl, so first I need to install eksctl by running these commands (Paul SaveSoil (2022)):

```
curl --silent --location
    "https://github.com/weaveworks/eksctl/releases/latest/download/eksctl_$(uname
    -s)_amd64.tar.gz" | tar xz -C /tmp
sudo mv /tmp/eksctl /usr/local/bin
export PATH=$PATH:/usr/local/bin
echo 'export PATH=$PATH:/usr/local/bin' >> ~/.bashrc
eksctl version
```

• After installing eksctl run the below command to create EKS cluster:-

- After successful installation go to AWS EKS service and see the details of the cluster
- In the local machine terminal run kubectl get nodes to check the nodes status

Clust	ters (1) Info			C Delete	Add cluster 🔻
Q F	filter cluster by name, status, kuberne	etes version, or provider			< 1 >
	Cluster name	▲ Status	Kubernetes version		ler 🗸
0	research	⊘ Active	1.23 Update now	EKS	
Node	e groups (1) Info			Edit Delete A	Add node group
	Group name Desired s	size	sion ▽ Launch template	2	⊽ Status ⊽
0	node-1-workers 0	1.23.13-202211	12 eksctl-research-n	odegroup-node-1-workers (1)	⊘ Active
Node	es (2) Info				
Q F	ilter Nodes by property or value				< 1 >
Node	name	▲ Instance type	▼ Node group ▼	Created ∇	Status
ip-192	2-168-4-173.ec2.internal	t3.medium	node-1-workers	Created	
ip-192	2-168-48-73.ec2.internal	t3.medium	node-1-workers	Created	⊘ Ready

Figure 3: EKS Cluster Details

[prawal@]\$kubectl get nodes				
NAME	STATUS	ROLES	AGE	VERSION
ip-192-168-4-173.ec2.internal	Ready	<none></none>	22m	v1.23.13-eks-fb459a0
ip-192-168-48-73.ec2.internal	Ready	<none></none>	22m	v1.23.13-eks-fb459a0
[prawal@]\$				

Figure 4:	EKS	$\operatorname{Cluster}$	Nodes
-----------	-----	--------------------------	-------

• Next step to install Istio in the Kubernetes cluster in istio-system namespace (istio (2022)):

```
curl -L https://istio.io/downloadIstio | sh -
export PATH=$PWD/bin:$PATH
istioctl install --set profile=demo -y -n istio-system
```

• Create research namespace for all the application pods

```
kubectl label namespace research istio-injection=enabled
```

[prawal@]]\$ ŀ	kube	ctl	get	ns	s	how-lo	abels		
istio-system		Activ	e 90	d ku	uberne	etes.i	o/metada	ta.name=	istio-syst	tem
research	Activ	/e 9d	ist	io-inje	ction=e	nabled,	, kubernetes	.io/metada	ita.name=rese	earch

Figure 5: Istio Enabled in Research Namespace

• Install Istio Addons that includes Kiali, Grafana dashboards.

kubectl apply -f samples/bookinfo/platform/kube/bookinfo.yaml

3 Creating AWS Services

This section includes the creation of GitHub, ECR, and other AWS services.

- Creating Private GitHub Repository and upload the code and other files to it.
- Create Private ECR Repository in AWS.
- Next create Code Build Service.
 - Select GitHub as source.
 - Select Environment Image Managed image as choose Ubuntu as Operating system.
 - Create a new IAM role and provide full access policy of EKS and ECR in the role.
- Next creating the Code Pipeline in that select GitHub as source code then in build stage select the Code Build Project created in the above step.

Figure 6: Code Pipeline

4 Important files that is needed in the Proejct

I have taken the application Code from Istio public GitHub repository. (Istio (2021))

- To run Code Build Project buildpsec.yml file is needed, in the file I need to write steps that will run in the project.
- Trivy installation command is written in buildspec file. (Trivy (2022))

```
apt-get install wget apt-transport-https gnupg
wget -q0 - https://aquasecurity.github.io/trivy-repo/deb/public.key |
    apt-key add -
echo deb https://aquasecurity.github.io/trivy-repo/deb bionic main | tee
    -a /etc/apt/sources.list.d/trivy.list
apt-get update
apt-get install -y trivy
```

• Next step in buildspec is to login to ECR repository

```
aws ecr get-login-password --region us-east-1 | docker login --username
AWS --password-stdin 436026820972.dkr.ecr.us-east-1.amazonaws.com
```

• Now building the four Dockerfiles there will create the different application images.

```
docker build -t research-product -f productpage/Dockerfile .
docker build -t research-details -f details/Dockerfile
docker build -t research-ratings -f ratings/Dockerfile .
docker build -t research-reviews -f reviews/reviews-wlpcfg/Dockerfile .
```

• After building the Dockerfile I will scan the builded image and see the output and check the severity of dependency and library of the image.

```
trivy image research-product:latest
trivy image research-details:latest
trivy image research-ratings:latest
trivy image research-reviews:latest
```

```
823 Python (python-pkg)
825 Total: 2 (UNKNOWN: 0, LOW: 0, MEDIUM: 0, HIGH: 0, CRITICAL: 2)
827
828
                          | Vulnerability | Severity | Installed Version | Fixed Version |
                                                                                                                          Title
            Library
829
830 | Werkzeug (METADATA) | CVE-2022-29361 | CRITICAL | 0.15.5
                                                                            | 2.1.1
                                                                                            | ** DISPUTED ** Improper parsing of
    HTTP requests in Pallets |
831
                                            I
                                                       I
                                                                            I
                                                                                            | Werkzeug v2.1.0...
                          832
                                            I
                                                                                            | https://avd.aquasec.com/nvd/cve-
                           I
                                                                            1
    2022-29361
                                 T
833
                                            T
                           I.
                                                                                            L
```

Figure 7: Trivy scanning of Image

- I will check the output of the scanned image if the file safe then I will push it to ECR repository. In this Code Pipeline all the steps are included in once but in the industry level first with Trivy Docker image should check once verified then only deployed otherwise make the changes suggested by the scan then push the image to ECR.
- Tag the docker image with a suitable name.

```
docker tag research-product:latest
    436026820972.dkr.ecr.us-east-1.amazonaws.com/test:research-product
docker tag research-details:latest
    436026820972.dkr.ecr.us-east-1.amazonaws.com/test:research-details
docker tag research-ratings:latest
    436026820972.dkr.ecr.us-east-1.amazonaws.com/test:research-ratings
docker tag research-reviews:latest
    436026820972.dkr.ecr.us-east-1.amazonaws.com/test:research-reviews
```

• After tagging the image pushing the image to ECR Repository.

```
docker push
    436026820972.dkr.ecr.us-east-1.amazonaws.com/test:research-product
docker push
    436026820972.dkr.ecr.us-east-1.amazonaws.com/test:research-details
docker push
    436026820972.dkr.ecr.us-east-1.amazonaws.com/test:research-ratings
docker push
    436026820972.dkr.ecr.us-east-1.amazonaws.com/test:research-reviews
```

• Next I need to login to the EKS cluster that I have created with the following commands.

- There can be an error of access denied while logging into EKS cluster because some policy is not added to the Code build IAM role. EKS describe role and update configmaps of kubernetes.
- I need to update the ECR image urls to deployment and gateway.yml file so that when I run kublet command to create pods the image I have scanned will spin up as container.
- In the deployment file I am creating four pods product, details, review, and ratings. In the gateway file, I are creating the ingress and gateway service of Istio which is used to secure pods and inter-service communication od pods.
- Now, run the command to deploy pods using the image mentioned in the deployment and gateway yml files.

```
kubectl apply -f deployment.yml -n research
kubectl apply -f gateway.yml -n research
```

5 Pods and Services in the Cluster

• After the deployment I can check the pods and services deployed in the cluster.

[prawal@]\$kubectl get pods -n re	esearch			
NAME	READY	STATUS	RESTARTS	AGE
details-v1-74dcf6fd88-dgm4j	2/2	Running	0	4d4h
productpage-v1-84b645657c-vpb9j	2/2	Running	0	4d4h
ratings-v1-5dd59fdb88-fzp8x	2/2	Running	0	4d4h
reviews-v1-86bd875db-7gpk9	2/2	Running	0	4d4h
reviews-v2-84999755b7-mqmdp	2/2	Running	0	4d4h
reviews-v3-775748b6dd-zbk5f	2/2	Running	0	4d4h
[prawal@]\$				

Figure 8: Pods Created in Research Namespace

[prawal@]\$kub	[prawal@]\$kubectl get svc -n research							
NAME	TYPE	CLUSTER-IP	EXTERNAL-IP	PORT(S)	AGE			
details	ClusterIP	10.100.145.69	<none></none>	9080/TCP	4d5h			
productpage	ClusterIP	10.100.224.82	<none></none>	9080/TCP	4d5h			
ratings	ClusterIP	10.100.247.216	<none></none>	9080/TCP	4d5h			
reviews	ClusterIP	10.100.174.210	<none></none>	9080/TCP	4d5h			
[prawal@]\$								

Figure 9: Services Created in Research Namespace

[prawal@]\$	kubectl get vs -n resea		[prawal@]\$kubectl	get gateway -n research	
NAME	GATEWAYS	HOSTS	AGE	NAME	AGE
bookinfo	["bookinfo-gateway"]	["*"]	4d19h	bookinfo-gateway	4d19h
[prawal@]\$				[prawal@]\$	

Figure 10: Virtual Service and Gateway in Research Namespace

• If I describe the pod it can be seen Istio proxy is added to the pod.

istio-proxy:	
Container ID:	docker://6f9617db3546fdb9b19aa057974e0010a8c9224bf8f0cd1c8d261d21501d5590
Image:	docker.io/istio/proxyv2:1.16.0
Image ID:	docker-pullable://istio/proxyv2@sha256:f6f97fa4fb77a3cbe1e3eca0fa46bd462ad6b284c129cf57bf91575c4fb50cf9
Port:	15090/TCP
Host Port:	0/TCP
Anac:	

Figure 11: Istio proxy on top of container

6 Dashboards and Metrics

istioctl dashboard kiali istioctl dashboard grafana

• For Kiali and Grafana Dashboard I need to enable them to run the command.

🗏 🜒 kiali				🛕 1 Open Issue	🌲 🝞 anonymous
Overview	Namespace: research	•		Last In	n 🔻 Every 1m 👻 🕄
Graph	Applications				
Applications					
Workloads	App Name Filte	r by App Name			
	Health I	Name I	Namespace I	Labels	Details I
Services	0	A details	NS research	app=details service=details version=v1	G bookinfo-gateway
Istio Config	0	productpage	NS research	app=productpage service=productpage version=v1	DR productpage G bookinfo-gateway VS bookinfo
	0	A ratings	NS research	app=ratings service=ratings version=v1	G bookinfo-gateway
	0	A reviews	NS research	app=reviews service=reviews version=v1,v2,v3	G bookinfo-gateway

Figure 12: Kiali Dashboard

🗏 🜒 kiali	•
Overview	Namespace ▼ Filter by Namespace mTLS ▼ I ≜
Graph	Namespace istio X research X Clear all filters
Applications	
Workloads	istio-system research i 1Label 2Labels
Services	Istio Config N/A Istio Config 7 Applications Ø 7 4 Applications
lstio Config	No inbound traffic 5

Figure 13: Kiali Dashboard Overview

• I can send traffic to the application to see different metrics.

```
for i in $(seq 1 100); do curl -s -o /dev/null
"http://a63d50281fb894a5ab9309c12709b164-1903426299.us-east-1.elb.amazonaws
.com/productpage"; done
```


Figure 14: CPU and Memory Usage

Figure 15: Request Flow in the cluster

Figure 16: mTLS Connection Between Pods

References

Istio (2021). Istio/samples/bookinfo at master · istio/istio. URL: https://github.com/istio/istio/tree/master/samples/bookinfo

istio (2022). Istio installation.

URL: *https://istio.io/latest/docs/setup/getting-started/download*

- Kumar, P., Fanda, Daniel, Shriparv, S., Amey, James, Grodrigo, Muturi, N., Vignesh, Venkat and et al. (2022). How to install kubernetes (k8s) cluster on ubuntu 20.04. URL: https://www.linuxtechi.com/install-kubernetes-k8s-on-ubuntu-20-04/
- Paul SaveSoil, R. (2022). Creating an amazon eks cluster from scratch using eksctl. URL: https://dev.to/aws-builders/creating-an-amazon-eks-cluster-from-scratch-usingeksctl-540i

Trivy (2022). Installation. URL: https://aquasecurity.github.io/trivy/v0.18.3/installation/