

Optimizing the load balancing efficiency
using enhanced genetic algorithm in cloud

computing

MSc Research Project
Msc Cloud Computing

Rohit Rajesh Salvi
Student ID: 21127336

School of Computing
National College of Ireland

Supervisor: Rashid Mijumbi

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Rohit Rajesh Salvi……………………………………………

Student ID:

X21127336………………………………………………………

Programme:

Msc Cloud Computing…………

Year:

Jan 2022

Module:

Msc Research Project…………………………………………

Supervisor:

Rashid Mijumbi…………………………………………………

Submission
Due Date:

15/12/2022……………………………………………………

Project Title:

Optimizing the load balancing efficiency using
enhanced genetic algorithm in cloud computing

Word Count:

5562…………………… Page Count: 17…………………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Rohit Rajesh Salvi…………………………………………

Date:

14/12/22……………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project
(including multiple copies)

□

Attach a Moodle submission receipt of the online
project submission, to each project (including multiple
copies).

□

You must ensure that you retain a HARD COPY of the
project, both for your own reference and in case a project is
lost or mislaid. It is not sufficient to keep a copy on
computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if
applicable):

1

Optimizing the load balancing efficiency using
enhanced genetic algorithm in cloud computing

Rohit Salvi
21127336

Abstract
Cloud computing (CC) technology has received a great deal of interest in recent

years from both academics and businesses. To boost the scalability and flexibility of
cloud Data Centers (DC), load-balancing solutions are essential. One of the most
important concerns in a distributed computing system is the Load Balancing (LB)
technique. Because a cloud provider must service several customers in a cloud setting,
task scheduling with efficient LB is a key issue in CC. Many strategies, algorithms, and
methodologies have been developed over the years to enhance the LB approach in CC.
These strategies are primarily concerned with minimizing execution time, cutting energy
consumption and overall resource utilization, and rapid task scheduling by swiftly
distributing the tasks in a cluster of Virtual Machines (VM). Because no consideration is
given to the present load of the VM, the VM in the cluster may begin to experience
overloading concerns. As a result, there is a need for a technique that considers not only
the load of the VM but also resource, time, and energy metrics. To apply flexible and
effective LB in a cloud system, this research suggests an Enhanced Genetic Algorithm
(EGA) based on the Genetic Algorithm (GA). The goal of this method is to analyze the
load of the VMs and allocate jobs to VMs that will not get overloaded. Based on
performance parameters such as resource usage, energy, and time consumption, the
algorithm's results will be compared to Particle Swarm Optimization (PSO), a popular
LB technique. The results demonstrate that, as the number of cloudlets increases, EGA's
execution time, resource utilization, and energy consumption are much lower than those
of PSO.

1 Introduction

CC as a distributed computing paradigm, delivers scalable and virtualized computing
infrastructure to its users over the internet to provide computing services as a utility. With
recent technological breakthroughs, CC has grown in recent years and will continue to be a
comprehensive computing service in the future. As the use of CC expands, so do the issues,
with new ones emerging daily. LB is one such common challenge that occurs in CC. The
goal of LB is to distribute the local workload evenly and dynamically among all the nodes
that exist in the existing cluster of VMs. In a CC environment, intake of random tasks with an
unpredictable CPU service time needs can overload a certain VM while the rest of the VMs
are occupying less load or kept idle. As a result, the primary usage of LB techniques is to
balance the current and incoming load on the existing set of VMs or deploy new VM and
ensure that the system is constantly stable. Most LB techniques exploits the use of various

2

optimization algorithms to balance the load between the VMs. However, these optimization
strategies are ideally suited for task scheduling for recently deployed tasks. As a result, these
optimization strategies are restricted since they are largely concerned with distributing the
most recent task and do not consider the overall balance of the existing cluster of VMs.
Simultaneously, the efficiency of Load Balance Techniques is diminished, causing
consumers to wait for an unusually lengthy period. This necessitates the use of a Load
Balancing mechanism that considers the existing load on a cluster of VMs.

1.1 Background

Various meta-heuristic optimization algorithms were developed by researchers such as
Hybrid Firefly-Genetic Algorithm, which was developed by Rajagopalan A et al. (2019) to
accelerate the convergence of solutions to near-optimal levels and to schedule activities with
the goal of minimizing execution time across the board. To evaluate the performance,
execution time was used as the evaluation metric. Although the suggested method
accomplished its primary goal of shortening execution time, it employs a huge solution space
in the algorithm, which makes it not load efficient. Alameen A et al. (2020) proposed Fitness
Rate-Based Rider Optimization Algorithm (FR-ROA), a meta-heuristic algorithm based on
Rider Optimization Algorithm (ROA). To evaluate the performance of this method, the
completion time as well as the aggregate of all task completion times were employed. The
findings of this method revealed that it worked well under smaller jobs and for shorter
periods of time, but it was sophisticated and encountered a complexity issue. Abualigah L et
al. (2020) introduced a unique hybrid antlion optimization technique based on elite-based
differential evolution to address multi-objective job scheduling challenges in cloud systems.
Execution time, response time, and imbalance degree were utilized to evaluate performance.
The outcomes of this method indicated that it had a faster execution time than other
algorithms, but it used a significant amount of memory and did not take the overload factor
into account. These studies showed disadvantages in terms of high cost, poor execution time,
and no consideration of existing load on the VMs and overloading issues. Disadvantages in
terms of high cost, short execution time, and no consideration of existing load on VMs and
overloading concerns were observed in these studies.

1.2 Motivation

To maximize resource productivity and equally distribute tasks to VMs to keep a constant
rate of load among the cluster of VMs, an efficient load balancing technique is needed. The
efficiency of a cloud system is affected when certain VMs in a cluster are overloading due
high number of tasks allocated to them. As the time taken to execute these tasks will be
increased and hence the overall cloud system will be constrained. Simultaneously, when the
cloud system is overloaded with high volume of tasks, the cloud system must provision the
incoming tasks and must divide its tasks equally among the existing VMs in a cluster or
deploy new VM if required. The performance of the overall cloud system will enhance and
increase efficiently if the cloud system can allocate the incoming task among the VMs while
also considering the existing load on them. As a result, the aim of the research project is to

3

provide an effective and efficient load balancing algorithm which is based on Genetic
Algorithm (GA) to avoid scheduling tasks to VMs that are already under massive load due to
high volume of tasks and subsequently overloading them. The goal of the proposed algorithm
is to find the best possible VM among a cluster of VM. The incoming task that needs to be
allocated to a VM, will be allocated to the best possible VM which is found out from the
Enhanced Genetic Algorithm (EGA) which will not overload the VM. The cloud system’s
effectiveness will be affected in proportion to the prolonged execution time of EGA will be.
As a result, the overall cost and the number of migrants is lowered in order to shorten the
time necessary to execute the algorithm. This will be achieved by modifying the GA to
improve the reliability and efficiency of the load balancing process.

1.3 Problem Statement

The major issue of CC that affects network performance is load balancing. The VM's load is
unbalanced because of the machine's over-utilization of its resources. The techniques that
have already been proposed transfer the load of one machine to another, but it increases the
likelihood that the machine on which the load is transferred will become overloaded. An
optimization algorithm for load balancing in CC will be proposed in this research work.

1.4 Research Question

How can an improved genetic algorithm that assigns optimal resource allocation in cloud
computing improve load balancing efficiency?

2 Related Work

The cloud provides scalable and efficient services to its users without the need for
provisioning and managing physical infrastructure. As the cloud sector expands daily, new
challenges emerge. One such challenge is cloud load balancing. A significant amount of
recent research has been conducted to overcome these challenges, which proposes various
methodologies, algorithms, frameworks, and so on. This section will provide an in-depth
overview of research in Task Scheduling, VM Allocation, and Resource Allocation Using
Optimization Methodologies.

2.1 Task Scheduling in Cloud Computing

In the cloud, task scheduling is critical because inefficient task scheduling can lead to overall
cloud performance degradation. As a result, compared to the traditional methods, task
scheduling in cloud environment is different. In Task Scheduling, priority is assigned to the
tasks and subsequently these tasks are assigned to the available resources in order of their
priority. Various recent algorithms have been proposed to improve the efficiency of task
scheduling. This section elaborates such recent proposed algorithms.

Hongji Liu et al. (2022) created an adaptive task scheduling method based on the ant
colony algorithm (ACO). The pheromones in the polymorphic ACO are significantly altered

4

in response to changes in the environment, avoiding the creation of a local optimal solution
and enhancing the algorithm's convergence speed. The new algorithm produced a distribution
plan that had a balanced load rate, a quicker execution time, and a cheaper cost. Xuan Chen
et al. (2020) employed the meta-heuristic whale optimization algorithm (WOA) to increase
the performance of a cloud system with restricted computational resources for cloud job
scheduling. Based on WOA, an enhanced WOA was constructed, which also enhances the
optimum search optimal solution capacity in task scheduling. The method increased the
efficiency with which small and large task system resources were utilized. For efficient task
scheduling makespan minimization and energy consumption, Gokuldhev Mony et al. (2020)
introduced Local Pollination-based Gray Wolf Optimizer (LPGWO) algorithm. The metrics
used for performance evaluation were the makespan and energy usage. To distribute the data
to the next packet of the candidate solution, the optimal searching factor was used to
maximize the convergence speed. Kumar KP et al. (2020) designed a crow search algorithm
(CSA) for task scheduling in the CC environment to shorten the work schedule's duration.
This CSA finds the appropriate VM (VM) and shortens the makespan. CSA was used to
schedule tasks with permanently set flight duration values. The main disadvantage of this
strategy was that the flight length was not changed and an alternate VM was not recognized
by the local search algorithm in place of the random selection.

The main technological gaps discovered in recent research are that the efficiency of
contemporary algorithms has reduced and customers must wait a long time before their
activity is scheduled in a cloud system. This occurs because of a strong emphasis on reducing
algorithm execution time, resource consumption, and cost while ignoring the load on the
VMs in issue.

2.2 Virtual Machine Allocation in Cloud Computing

One of the key challenges faced when allocating or Migrating VMs is to recognize whether a
server is being overloaded. Many recent studies have been undertaken in this regard to
efficiently and appropriately assign or migrate VMs in a server. This section discusses some
of the most recent studies.

To handle the VM migration in the cloud, Mohd Sha Alam Khan et al. (2022)
presented a hybrid optimization algorithm. This hybrid optimization technique is based on
the cuckoo search and particle swarm optimization algorithms. This approach successfully
reduced computation time, migration costs, and energy consumption. Additionally, this
method achieved maximum resource allocation. Haiying Shen et al. (2020) presented an
approach for balancing loads based on resource intensity (RIAL). RIAL considers
communication interdependence between VMs while picking destination PMs to limit
communication between VMs after migration. The algorithm enables quicker and lower-cost
load balance convergence and minimizes the likelihood of future load imbalance by
considering weights while picking VMs to migrate out and destination Physical Machines.
Minoo Soltanshahi et al. (2019) created the Krill Herd technique for distributing VMs to
physical hosts in cloud DCs. According to the simulation results, an efficient integration, and
the selection of simple VM migration helped to improve energy efficiency. The algorithm for
VM selection reduces energy consumption by 35% and 17%, respectively, by showing

5

random selection and lowest migration time. In a heterogeneous cloud environment, a
multiobjective Emperor Penguin Optimization (EPO) technique is suggested by Jitendra
Kumar Samriya et al. (2021) to distribute VMs with power consumption. The preliminary
findings show that the proposed EPO-based system is extremely successful in limiting energy
usage, SLA violations (SLAV), and expanding QoS requirements for providing adequate
cloud service.

Recent study has mostly concentrated on time or cost-efficient approaches to handle the
problem of assigning or relocating VMs and increasing the resource allocation of the VMs
but has not focused on services and load on the VMs, which can be regarded major
shortcomings of these studies.

2.3 Resource Allocation using Optimization Methodologies in Cloud
Computing

Due to limited available resources and growing consumer demands, the work of resource
distribution becomes increasingly difficult. As a result, several novel models, and strategies
for allocating resources have been developed. This section further elaborates some recent
research conducted to develop optimization methods for enhancing resource allocation in CC.

A load balancing-based CC resource node allocation technique (NA-LB) was
presented by Ye Bo et al. (2022). The deviations in the VM process parameter were detected
by the algorithm as vector values of geographical vectors. Additionally, NA-LB algorithm is
provided and employed as a load balancing index to evaluate the allocation of resource
nodes. The algorithm performs well in terms of load balancing and significantly enhances the
data processing efficiency of CC clusters. An optimum resource allocation based on hybrid
differential parallel scheduling is proposed by Jing Wei et al. (2018) enhance resource
allocation and task scheduling in CC. The algorithm optimizes resource allocation and boosts
the efficiency of CC. The use of the algorithm shows enhanced clustering performance,
strong ability to manage convergence computing resources. Ali Belgacem et al. (2020)
proposed a dynamic resource allocation methodology that more efficiently and quickly fulfils
the demands for resource allocation. The methodology is based on Spacing Multi-Objective
Antlion Method (S-MOAL), a multi-objective search algorithm, to reduce both the time and
cost of employing VMs. Results showed that it had a great influence on energy usage and
fault tolerance and decreased the overall makespan. Zhao Tong et al. (2020) designed an
algorithm based on Deep reinforcement learning (DRL) which determines if the work should
be offloaded and assigns computer resources to the task. The best computing node is selected
using DRL approach based on optimization objective and the best strategy for the objective
problem is addressed. The DRL approach shows enhance performance in minimizing overall
energy consumption and average task reaction time which boasts systems utility.
The recent studies have revealed that although the priority and cost of task scheduling has
been greatly enhanced, there’s a need for methodologies that optimize the existing resource
allocation in load balancing by undertaking the current and maximum load of the subsequent
load of a VM.

6

2.4 Summary of Literature Review

The Table 1 shows the overall summary of the Literature Review.

Table 1: Summary of Literature Review

Article Optimization
method

Concept Description Findings

Hongji Liu
et al

Ant Colony
Optimization

Actual ant colonies'
foraging behavior.

Created an adaptive task
scheduling method based
on the ant colony
algorithm (ACO).

balanced load rate, a
quicker execution
time, and a cheaper
cost.

Xuan Chen
et al

Whale
Optimization
Algorithm

The social hunting
behaviors of
humpback whales.

Employed the meta-
heuristic WOA to increase
the performance of cloud
job scheduling.

Increased efficiency
of large and small
tasks.

Gokuldhev
Mony et al

Local
Pollination-
based Gray
Wolf
Optimizer
Algorithm

Non-linear model of
grey wolf position.

Introduced LPGWO
algorithm to optimal
searching factor was used
to maximize the
convergence speed.

efficient task
scheduling
makespan
minimization and
energy consumption.

Kumar KP
et al

Crow search
algorithm

Crows' intelligent
behavior of hiding
and retrieving food.

Designed a crow search
algorithm (CSA) for task
scheduling in the CC
environment to shorten the
work schedule's duration.

Permanently set
flight duration values
to shorten the
makespan.

Mohd Sha
Alam Khan
et al

Hybrid cuckoo
search and
particle swarm
optimization
algorithms

CSA is based on
reproduction of
cuckoo birds and
PSO is based on the
study of the predation
behavior of birds.

To handle the VM
migration in the cloud,
presented a hybrid
optimization algorithm
based on the cuckoo search
and particle swarm
optimization algorithms.

Reduced
computation time,
migration costs, and
energy consumption.

Minoo
Soltanshahi
et al

Krill Herd
technique

Based on the least
distance between the
food location and
position of a krill.

Created the Krill Herd
technique for distributing
VMs to physical hosts in
cloud DCs.

Efficient integration
and the selection of
simple VM
migration helped to
improve energy
efficiency.

Jitendra
Kumar
Samriya et
al.

Emperor
Penguin
Optimization

Inspired by social
huddling behavior of
emperor penguins

A multiobjective (EPO)
technique is suggested to
distribute VMs with power
consumption.

Extremely successful
in limiting energy
usage, SLA
violations (SLAV),
and expanding QoS
requirements.

Ali
Belgacem et
al

Spacing Multi-
Objective
Antlion
Method

Based on Nature-
inspired
metaheuristics of the
swarm intelligence
field.

A dynamic resource
allocation methodology
that more efficiently and
quickly fulfils the demands
for resource allocation.

Great influence on
energy usage and
fault tolerance and
decreased the overall
makespan.

7

3 Research Methodology

The focus of this research is to improve the traditional GA's mutation process in order to
improve the efficiency of load balancing in CC. The typical GA passes through three stages:
initial population, crossover, and mutation. The EGA will aid in reducing the time it takes the
DC to handle all the work performed by its VMs.

3.1 Genetic Algorithm

GAs are meta-heuristic algorithms that are based on natural processes. It is a well-known
optimization procedure that is used to identify the best potential solutions. The GA contains
three phases: Initial Population, Crossover, and Mutation.

3.1.1 Initial Population

The initial population is generated during the first step of the GA. The initial population
consists of a group of individuals who are potential solutions to an issue. The most popular
way of initializing the population based on a set of rules is heuristic initialization. The initial
population is made up of chromosomes that function as individuals. Genes that contain
information about the chromosomes live on the chromosomes. Figure 1 depicts the initial
population.

Figure 1:Initial Population.

3.1.2 Fitness Function

This phase is regarded to be part of the initial population phase. This phase assesses how well
the chromosome in the original population fits the needed parameters. The fitness score
identifies which individual is the best viable solution to replicate to address a set of problems.

3.1.3 Crossover

Using the fitness function, two parent genes are chosen as the fittest individuals in this phase.
A crossover operator is applied to the chromosome using these two genes as the fittest
parents to build a new fittest chromosome. The most frequent crossover procedure is single-
point crossover, in which two parent genes are switched directly. The crossover phase is
depicted in Figure 2.

8

Figure 2: Crossover.

3.1.4 Mutation

The offspring chromosome is mutated with a low random frequency, where the value of the
gene is altered to a new random best suited value for the chromosome. This procedure is
mostly used to increase variety among the best-fitting genes on the chromosomes. The
Mutation Phase is depicted in Figure 3.

Figure 3: Mutation.

This mutated chromosome is used to provide the best potential solution for a set of problems
using a GA.

3.1.5 Process Flowchart

The GA's flowchart is shown in Figure 4. Six different steps make up the GA method. The
algorithms' parameters are initialized during the initialization step. The parameters that were
passed in the previous stage are used to produce a population in the following phase. The
population's best fitness function value and the two fittest parents

Figure 4: Genetic algorithm flowchart.

9

are computed in the subsequent step. In the crossover procedure, these two parents are
immediately switched, and a random gene from the population is modified by altering its
parameters. If the termination criteria are satisfied as a new unique population is produced
utilizing the preceding stages, the process is terminated.

4 Design Specification

The conventional GA's method will be performed by the EGA, although the mutation process
will be improved. The specifications for the DC, VMs, and cloudlets are set during the
initialization process. These specifications are used to establish the DC, VMs, and cloudlets,
which will serve as the initial population for the EGA. After successfully creating the initial
population, the best fitness value function is applied to it in order to determine the best fitness
value and the two best fit VMs, parent A and parent B. Then, using a single-point crossover
procedure, the two VMs that fit the best are immediately switched, producing an offspring.
The following phase will include mutating these offspring. In a typical GA, one parameter of
a VM that is chosen at random is modified, which causes the VM to mutate. But as a result,
the resultant VM might not work since the parameters weren't allocated properly. To prevent
this, the VM will be modified by switching it out completely with a different VM that has the
appropriate specifications, rather than merely altering one parameter. The resulting mutated
population will be used to generate a cloud infrastructure with DCs, VMs and cloudlets and a
simulation will be run which will process the cloudlets in the VMs created in the DC and
output the overall task completion time of the cloudlets.

4.1 Enhanced Genetic Algorithm

The EGA is based on the GA. This algorithm will be used to generate the best possible VM
deployment in a CC infrastructure while also taking the load of the VMs into consideration.
The EGA will also have three phases like the GA, but the mutation phase will be enhanced to
deploy a better VM in the architecture.

4.1.1 Initial Population

During the initial process of the EGA, the initial population is generated. The initial
population will consist of the individuals that are important to solve a problem. In our case,
the problem is improving the efficiency of load balancing and the individuals that contribute
to finding a solution to this problem is the DC, the VMs and the Cloudlets. As we need to
find the ideal placement of VMs, the chromosomes will be the group of VMs where each VM
represents an individual gene. Figure 5 depicts the initial population of the proposed
architecture.

10

Figure 5: Initial Population EGA.

4.1.2 Fitness Function

This phase will be the part of the Initial Population process where the fitness function of the
VMs will be calculated. The fitness function will be calculated using a threshold value, that
being the maximum threshold load of the VMs. Using this, the two best fit parents will also
be determined will be the input for the next process of EGA. The two best fit parents will be
the two best VMs.

4.1.3 Crossover

Taking the input from the previous process, the two determined best fittest parents are
swapped using a crossover operator. This process is called crossover. The two fittest parents
will be the two best fittest VMs determined by the fitness function. The crossover process is
depicted in Figure 6.

Figure 6: Crossover.

11

4.1.4 Mutation

The generated offspring VM will be mutated in this process. In a tradition mutation process,
a random VM will be selected from the pool of VMs and a parameter of the VM would have
been changed, like the number of CPUs, RAM, Storage, etc. However, this process will be
enhanced by changing the whole VM with better parameters. This process is depicted in the
Figure 7.

Figure 7: Mutation EGA.

Using this mutated list of VMs, the load will be balanced across the CC architecture.

4.2 Pseudocode

 The Pseudocode of the algorithm is given as follows:

Step 1: Generate Specifications for DCs, VMs and Cloudlets.
Step 2: Initialize Initail Population by creating DCs, VMs and Cloudlets using the
specifications.
Step 3: Find the fitness value, best_fit_parent_and best_fit_parent_b using the fitness
 function:

Set threshold = 10000
Set temp = 0
Set parent_a = 0
Set parent_b = 0
For i = 0 to number of VMs
For j = 0 to number of cloudlets
temp = length of cloudlet / mips of VMs
Set sum = sum +temp
If sum < threshold
threshold = sum
parent_b = parent_a
parent_a = i
End If
End For
End for

Step 4: Crossover Machines by swapping VMs parent_a with VM parent_b.
Step 5: Select a random VM from the list of VMs and mutate it by changing the VM to a
new and better VM.

12

Step 6: Submit the DCs, Mutated VMs and Cloudlets to the simulation tool and run the
simulation.

5 Implementation

CloudSim simulations are utilized to carry out the proposed study. CloudSim is a platform
for CC that simulates a virtual CC environment utilizing necessary provisioned resources.
Figure 8 shows the Cloud architecture produced in CloudSim.

Figure 8: Proposed Architecture.

5.1 Data center
It performs the functions of a physical machine. It serves as a server for the creation of VMs.
It is one of a CC infrastructure's crucial parts. Low level processing duties will be handled by
the VMs that were established in the DC. The parameters listed in Table 2 are used to
establish one DC to implement EGA.

Table 2: Data Center Parameters

Parameter Value
RAM 16384

Storage 100000
Bandwidth 10000

Architecture x86
OS Linux

VMM Xen
Cost 5

Cost per Memory 0.1
Cost per Storage 0.2

Cost per Bandwidth 0.2
Timezone 10

5.2 Virtual Machine
A DC builds VMs, which are not physical machines. Being a separate computer inside the
DC allows it to replicate the architecture of physical machines while operating on resources

13

provided by the DC. These VMs are hosted by the DCs and carry out the execution of tasks
allocated to them. Table 3 shows the parameters used to created VMs in CloudSim.

Table 3: Virtual Machine Parameters

Parameters Value
Size 8000
Ram 512
Mips 4000

Bandwidth 20
Pesnumber 2

Vmm Xen

5.3 Cloudlets
A cloudlet in CloudSim is an equivalent of a task that is assigned to a VM to execute. The
length of the cloudlet is the total number of instructions taken by a cloudlet to complete.
Table 4 shows the parameters of the cloudlet.

Table 4: Cloudlets Parameters

Parameters Value
Length 4000

File size 200
Output size 200
Pesnumber 1

The EGA and the well-known particle swarm optimization method will be applied in
CloudSim using this CC scenario to produce the optimal VMs for the DCs to conduct a
variety of experiments. The overall number of experiments will be Ten, with Five in EGA
and Five in PSO, each with various numbers of cloudlets. The parameters for the experiments
are given in Table 5:

Table 5: Number of VMs and Cloudlets

Iteration VMs Cloudlets
1 10 50
2 10 75
3 10 100
4 10 125
5 10 150

6 Evaluation

In CloudSim, the Cloud Architecture is built, and two different simulations are run. In the
first set of simulations, different numbers of cloudlets are used to balance the load throughout
the proposed architecture using the EGA. The second set use the PSO method to evenly
distribute the load across the suggested architecture's various cloudlet sizes. The simulation's
outcomes are as follows:

14

6.1 Execution Time

Figure 9 depicts the time it takes the VMs to execute all the cloudlets. Execution time is
measured by the overall time taken by the DC to execute all the cloudlets. As shown in
Figure 9, the EGA algorithm outperforms the PSO algorithm. This is because the EGA-
allocated mutated VMs execute the cloudlets faster than the PSO-allocated VMs.

Figure 9: Execution Time Comparison.

6.2 Resource Utilization

The execution time of all cloudlets combined is shorter than that of PSO assigned resources
when EGA is used to allocate resources. Using this, the resource utilization of all the VMs
can be estimated by multiplying the entire cloudlet execution time into CPU utilization time.
Figure 10 depicts the EGA and PSO algorithms' resource utilization. It can be observed that
EGA algorithm lends to better results compared to PSO and utilizes less resources as the
number of cloudlet increases.

Figure 10: Resource Utilization Comparison.

15

6.3 Energy Consumption

Figure 11 shows that the simulation results of EGA are more energy-efficient than that of
PSO Algorithm. Energy consumption can be calculated by dividing the resource allocation
over time. EGA has been able to reduce energy consumptions more significantly than PSO.

Figure 11: Energy Consumption Comparison.

6.4 Discussion

The results which are obtained, it clearly indicates that performing load balancing in CC
using EGA is more efficient than performing with PSO algorithm which is one of the well-
known load balancing algorithms. As seen in the results, the increase in time, resource, and
energy consumption in PSO algorithm with increasing cloudlets is way more than the
increase in time, resource, and energy consumption in EGA algorithm. PSO uses large
number of particles and iterates them for large number of times to swamp the best fitted VMs
to improve load balancing. This leads to increase in time needed for the algorithm to execute,
increases the resource utilization of the VMs and in turn increases the energy consumption of
the VMs. On other hand, EGA uses the fitness function to calculate the best two fit VMs,
swaps them and then randomly mutates one VM to significantly increase the efficiency of the
VMs. As a result, it can be observed that the EGA is better at balancing load throughout
different loads of cloudlets. This proposed research fulfils the research objectives of
increasing the load balancing efficiency of the CC by decreasing the execution time, resource
utilization, and energy consumption by using EGA.

7 Conclusion and Future Work

In this research, the concept of GA is used to propose EGA and enhanced to increase the
efficiency of load balancing in CC. During the initialization phase of GA, DCs, VMs and
cloudlets are created using their parameters and the Initial population is generated. Using the
fitness function, the best two fitted parents are in the population of VMs and are swapped.
The offspring generated after crossover is further mutated by randomly swapping out VM for
a newly created VM. Using the DC, mutated VMs and the Cloulets, a load balancing
simulation is run and it is observed that load balancing carried out using EGA takes less

16

execution time, resource utilization and energy consumption when compared to PSO
algorithm, one of the well-known load balancing algorithm. In future, other features such as
scalability, security, newtwork traffic accessibility, latency, and reliability can be extended
by enhancing the EGA Furthermore. Furthermore, EGA has a scope to be further enhanced to
also carry out load balancing in CC by allocating tasks that are dependent dynamically.

References

Abualigah, L. and Diabat, A. (2020) “A novel hybrid antlion optimization algorithm for
multi-objective task scheduling problems in Cloud Computing Environments,” Cluster
Computing, 24(1), pp. 205–223. Available at: https://doi.org/10.1007/s10586-020-
03075-5.

Alameen, A. and Gupta, A. (2020) “Fitness rate-based rider optimization enabled for Optimal
Task Scheduling in cloud,” Information Security Journal: A Global Perspective, 29(6),
pp. 310–326. Available at: https://doi.org/10.1080/19393555.2020.1769780.

Belgacem, A. et al. (2020) “Efficient Dynamic Resource Allocation Method for Cloud
Computing Environment,” Cluster Computing, 23(4), pp. 2871–2889. Available at:
https://doi.org/10.1007/s10586-020-03053-x.

Bo, Y. (2022) “Cloud computing resource node allocation algorithm based on load balancing
strategy,” 2022 IEEE 6th Information Technology and Mechatronics Engineering
Conference (ITOEC) [Preprint]. Available at:
https://doi.org/10.1109/itoec53115.2022.9734399.

Chen, X. et al. (2020) “A WOA-based optimization approach for task scheduling in Cloud
Computing Systems,” IEEE Systems Journal, 14(3), pp. 3117–3128. Available at:
https://doi.org/10.1109/jsyst.2019.2960088.

Gokuldhev, M., Singaravel, G. and Ram Mohan, N.R. (2019) “Multi-objective local
pollination-based Gray Wolf Optimizer for task scheduling heterogeneous cloud
environment,” Journal of Circuits, Systems and Computers, 29(07), p. 2050100.
Available at: https://doi.org/10.1142/s0218126620501005.

Khan, M.S. and Santhosh, R. (2022) “Hybrid optimization algorithm for VM Migration in
cloud computing,” Computers and Electrical Engineering, 102, p. 108152. Available
at: https://doi.org/10.1016/j.compeleceng.2022.108152.

Kumar, K.P., Ragunathan, T. and Vasumathi, D. (2022) “Virtual machine consolidation using
enhanced crow search optimization algorithm in cloud computing environment,”
Lecture Notes in Electrical Engineering, pp. 841–851. Available at:
https://doi.org/10.1007/978-981-19-2281-7_77.

Liu, H. (2022) “Research on cloud computing adaptive task scheduling based on Ant Colony
algorithm,” Optik, 258, p. 168677. Available at:
https://doi.org/10.1016/j.ijleo.2022.168677.

17

M. Smale, N. Jamora, and L. Guarino, “Valuing Plant Genetic Resources in genebanks: Past,
present and future,” Plant genetic resources, pp. 35–53, 2021.

Rajagopalan, A., Modale, D.R. and Senthilkumar, R. (2019) “Optimal scheduling of tasks in
cloud computing using hybrid Firefly-genetic algorithm,” Learning and Analytics in
Intelligent Systems, pp. 678–687. Available at: https://doi.org/10.1007/978-3-030-
24318-0_77.

Samriya, J.K. et al. (2021) “Intelligent SLA-aware VM allocation and energy minimization
approach with EPO algorithm for cloud computing environment,” Mathematical
Problems in Engineering, 2021, pp. 1–13. Available at:
https://doi.org/10.1155/2021/9949995.

Shen, H. and Chen, L. (2020) “A resource usage intensity aware load balancing method for
virtual machine migration in cloud datacenters,” IEEE Transactions on Cloud
Computing, 8(1), pp. 17–31. Available at: https://doi.org/10.1109/tcc.2017.2737628.

Soltanshahi, M., Asemi, R. and Shafiei, N. (2019) “Energy-aware virtual machines allocation
by krill herd algorithm in Cloud Data Centers,” Heliyon, 5(7). Available at:
https://doi.org/10.1016/j.heliyon.2019.e02066.

Wei, J. and Zeng, X.-fa (2018) “Optimal Computing Resource Allocation Algorithm in cloud
computing based on hybrid differential parallel scheduling,” Cluster Computing,
22(S3), pp. 7577–7583. Available at: https://doi.org/10.1007/s10586-018-2138-7.

Zhang, Y. et al. (2022) “Dynamic job shop scheduling based on Deep Reinforcement
Learning for multi-agent manufacturing systems,” Robotics and Computer-Integrated
Manufacturing, 78, p. 102412. Available at:
https://doi.org/10.1016/j.rcim.2022.102412.

