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Abstract 
Cloud computing (CC) technology has received a great deal of interest in recent 

years from both academics and businesses. To boost the scalability and flexibility of 
cloud Data Centers (DC), load-balancing solutions are essential. One of the most 
important concerns in a distributed computing system is the Load Balancing (LB) 
technique. Because a cloud provider must service several customers in a cloud setting, 
task scheduling with efficient LB is a key issue in CC. Many strategies, algorithms, and 
methodologies have been developed over the years to enhance the LB approach in CC. 
These strategies are primarily concerned with minimizing execution time, cutting energy 
consumption and overall resource utilization, and rapid task scheduling by swiftly 
distributing the tasks in a cluster of Virtual Machines (VM). Because no consideration is 
given to the present load of the VM, the VM in the cluster may begin to experience 
overloading concerns. As a result, there is a need for a technique that considers not only 
the load of the VM but also resource, time, and energy metrics. To apply flexible and 
effective LB in a cloud system, this research suggests an Enhanced Genetic Algorithm 
(EGA) based on the Genetic Algorithm (GA). The goal of this method is to analyze the 
load of the VMs and allocate jobs to VMs that will not get overloaded. Based on 
performance parameters such as resource usage, energy, and time consumption, the 
algorithm's results will be compared to Particle Swarm Optimization (PSO), a popular 
LB technique. The results demonstrate that, as the number of cloudlets increases, EGA's 
execution time, resource utilization, and energy consumption are much lower than those 
of PSO. 

 
 

1 Introduction 
 
CC as a distributed computing paradigm, delivers scalable and virtualized computing 
infrastructure to its users over the internet to provide computing services as a utility. With 
recent technological breakthroughs, CC has grown in recent years and will continue to be a 
comprehensive computing service in the future. As the use of CC expands, so do the issues, 
with new ones emerging daily. LB is one such common challenge that occurs in CC. The 
goal of LB is to distribute the local workload evenly and dynamically among all the nodes 
that exist in the existing cluster of VMs. In a CC environment, intake of random tasks with an 
unpredictable CPU service time needs can overload a certain VM while the rest of the VMs 
are occupying less load or kept idle. As a result, the primary usage of LB techniques is to 
balance the current and incoming load on the existing set of VMs or deploy new VM and 
ensure that the system is constantly stable. Most LB techniques exploits the use of various 



 

2 
 

 

optimization algorithms to balance the load between the VMs. However, these optimization 
strategies are ideally suited for task scheduling for recently deployed tasks. As a result, these 
optimization strategies are restricted since they are largely concerned with distributing the 
most recent task and do not consider the overall balance of the existing cluster of VMs. 
Simultaneously, the efficiency of Load Balance Techniques is diminished, causing 
consumers to wait for an unusually lengthy period. This necessitates the use of a Load 
Balancing mechanism that considers the existing load on a cluster of VMs. 

1.1 Background 
 
Various meta-heuristic optimization algorithms were developed by researchers such as 
Hybrid Firefly-Genetic Algorithm, which was developed by Rajagopalan A et al. (2019) to 
accelerate the convergence of solutions to near-optimal levels and to schedule activities with 
the goal of minimizing execution time across the board. To evaluate the performance, 
execution time was used as the evaluation metric. Although the suggested method 
accomplished its primary goal of shortening execution time, it employs a huge solution space 
in the algorithm, which makes it not load efficient. Alameen A et al. (2020) proposed Fitness 
Rate-Based Rider Optimization Algorithm (FR-ROA), a meta-heuristic algorithm based on 
Rider Optimization Algorithm (ROA). To evaluate the performance of this method, the 
completion time as well as the aggregate of all task completion times were employed. The 
findings of this method revealed that it worked well under smaller jobs and for shorter 
periods of time, but it was sophisticated and encountered a complexity issue. Abualigah L et 
al. (2020) introduced a unique hybrid antlion optimization technique based on elite-based 
differential evolution to address multi-objective job scheduling challenges in cloud systems. 
Execution time, response time, and imbalance degree were utilized to evaluate performance. 
The outcomes of this method indicated that it had a faster execution time than other 
algorithms, but it used a significant amount of memory and did not take the overload factor 
into account. These studies showed disadvantages in terms of high cost, poor execution time, 
and no consideration of existing load on the VMs and overloading issues. Disadvantages in 
terms of high cost, short execution time, and no consideration of existing load on VMs and 
overloading concerns were observed in these studies. 

1.2 Motivation 
 
To maximize resource productivity and equally distribute tasks to VMs to keep a constant 
rate of load among the cluster of VMs, an efficient load balancing technique is needed. The 
efficiency of a cloud system is affected when certain VMs in a cluster are overloading due 
high number of tasks allocated to them. As the time taken to execute these tasks will be 
increased and hence the overall cloud system will be constrained. Simultaneously, when the 
cloud system is overloaded with high volume of tasks, the cloud system must provision the 
incoming tasks and must divide its tasks equally among the existing VMs in a cluster or 
deploy new VM if required. The performance of the overall cloud system will enhance and 
increase efficiently if the cloud system can allocate the incoming task among the VMs while 
also considering the existing load on them. As a result, the aim of the research project is to 
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provide an effective and efficient load balancing algorithm which is based on Genetic 
Algorithm (GA) to avoid scheduling tasks to VMs that are already under massive load due to 
high volume of tasks and subsequently overloading them. The goal of the proposed algorithm 
is to find the best possible VM among a cluster of VM. The incoming task that needs to be 
allocated to a VM, will be allocated to the best possible VM which is found out from the 
Enhanced Genetic Algorithm (EGA) which will not overload the VM. The cloud system’s 
effectiveness will be affected in proportion to the prolonged execution time of EGA will be. 
As a result, the overall cost and the number of migrants is lowered in order to shorten the 
time necessary to execute the algorithm. This will be achieved by modifying the GA to 
improve the reliability and efficiency of the load balancing process. 

1.3 Problem Statement 
 
The major issue of CC that affects network performance is load balancing. The VM's load is 
unbalanced because of the machine's over-utilization of its resources. The techniques that 
have already been proposed transfer the load of one machine to another, but it increases the 
likelihood that the machine on which the load is transferred will become overloaded. An 
optimization algorithm for load balancing in CC will be proposed in this research work. 

1.4 Research Question 
 
How can an improved genetic algorithm that assigns optimal resource allocation in cloud 
computing improve load balancing efficiency? 
 
2 Related Work 
 
The cloud provides scalable and efficient services to its users without the need for 
provisioning and managing physical infrastructure. As the cloud sector expands daily, new 
challenges emerge. One such challenge is cloud load balancing. A significant amount of 
recent research has been conducted to overcome these challenges, which proposes various 
methodologies, algorithms, frameworks, and so on. This section will provide an in-depth 
overview of research in Task Scheduling, VM Allocation, and Resource Allocation Using 
Optimization Methodologies. 

2.1 Task Scheduling in Cloud Computing 
 
In the cloud, task scheduling is critical because inefficient task scheduling can lead to overall 
cloud performance degradation. As a result, compared to the traditional methods, task 
scheduling in cloud environment is different. In Task Scheduling, priority is assigned to the 
tasks and subsequently these tasks are assigned to the available resources in order of their 
priority. Various recent algorithms have been proposed to improve the efficiency of task 
scheduling. This section elaborates such recent proposed algorithms. 

Hongji Liu et al. (2022) created an adaptive task scheduling method based on the ant 
colony algorithm (ACO). The pheromones in the polymorphic ACO are significantly altered 
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in response to changes in the environment, avoiding the creation of a local optimal solution 
and enhancing the algorithm's convergence speed. The new algorithm produced a distribution 
plan that had a balanced load rate, a quicker execution time, and a cheaper cost. Xuan Chen 
et al. (2020) employed the meta-heuristic whale optimization algorithm (WOA) to increase 
the performance of a cloud system with restricted computational resources for cloud job 
scheduling. Based on WOA, an enhanced WOA was constructed, which also enhances the 
optimum search optimal solution capacity in task scheduling. The method increased the 
efficiency with which small and large task system resources were utilized. For efficient task 
scheduling makespan minimization and energy consumption, Gokuldhev Mony et al. (2020) 
introduced Local Pollination-based Gray Wolf Optimizer (LPGWO) algorithm. The metrics 
used for performance evaluation were the makespan and energy usage. To distribute the data 
to the next packet of the candidate solution, the optimal searching factor was used to 
maximize the convergence speed. Kumar KP et al. (2020) designed a crow search algorithm 
(CSA) for task scheduling in the CC environment to shorten the work schedule's duration. 
This CSA finds the appropriate VM (VM) and shortens the makespan. CSA was used to 
schedule tasks with permanently set flight duration values. The main disadvantage of this 
strategy was that the flight length was not changed and an alternate VM was not recognized 
by the local search algorithm in place of the random selection. 

The main technological gaps discovered in recent research are that the efficiency of 
contemporary algorithms has reduced and customers must wait a long time before their 
activity is scheduled in a cloud system. This occurs because of a strong emphasis on reducing 
algorithm execution time, resource consumption, and cost while ignoring the load on the 
VMs in issue. 

2.2 Virtual Machine Allocation in Cloud Computing 
 
One of the key challenges faced when allocating or Migrating VMs is to recognize whether a 
server is being overloaded. Many recent studies have been undertaken in this regard to 
efficiently and appropriately assign or migrate VMs in a server. This section discusses some 
of the most recent studies. 

To handle the VM migration in the cloud, Mohd Sha Alam Khan et al. (2022) 
presented a hybrid optimization algorithm. This hybrid optimization technique is based on 
the cuckoo search and particle swarm optimization algorithms. This approach successfully 
reduced computation time, migration costs, and energy consumption. Additionally, this 
method achieved maximum resource allocation. Haiying Shen et al. (2020) presented an 
approach for balancing loads based on resource intensity (RIAL). RIAL considers 
communication interdependence between VMs while picking destination PMs to limit 
communication between VMs after migration. The algorithm enables quicker and lower-cost 
load balance convergence and minimizes the likelihood of future load imbalance by 
considering weights while picking VMs to migrate out and destination Physical Machines. 
Minoo Soltanshahi et al. (2019) created the Krill Herd technique for distributing VMs to 
physical hosts in cloud DCs. According to the simulation results, an efficient integration, and 
the selection of simple VM migration helped to improve energy efficiency. The algorithm for 
VM selection reduces energy consumption by 35% and 17%, respectively, by showing 
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random selection and lowest migration time. In a heterogeneous cloud environment, a 
multiobjective Emperor Penguin Optimization (EPO) technique is suggested by Jitendra 
Kumar Samriya et al. (2021) to distribute VMs with power consumption. The preliminary 
findings show that the proposed EPO-based system is extremely successful in limiting energy 
usage, SLA violations (SLAV), and expanding QoS requirements for providing adequate 
cloud service. 

Recent study has mostly concentrated on time or cost-efficient approaches to handle the 
problem of assigning or relocating VMs and increasing the resource allocation of the VMs 
but has not focused on services and load on the VMs, which can be regarded major 
shortcomings of these studies. 

2.3 Resource Allocation using Optimization Methodologies in Cloud 
Computing 

 
Due to limited available resources and growing consumer demands, the work of resource 
distribution becomes increasingly difficult. As a result, several novel models, and strategies 
for allocating resources have been developed. This section further elaborates some recent 
research conducted to develop optimization methods for enhancing resource allocation in CC. 

A load balancing-based CC resource node allocation technique (NA-LB) was 
presented by Ye Bo et al. (2022). The deviations in the VM process parameter were detected 
by the algorithm as vector values of geographical vectors. Additionally, NA-LB algorithm is 
provided and employed as a load balancing index to evaluate the allocation of resource 
nodes. The algorithm performs well in terms of load balancing and significantly enhances the 
data processing efficiency of CC clusters. An optimum resource allocation based on hybrid 
differential parallel scheduling is proposed by Jing Wei et al. (2018) enhance resource 
allocation and task scheduling in CC. The algorithm optimizes resource allocation and boosts 
the efficiency of CC. The use of the algorithm shows enhanced clustering performance, 
strong ability to manage convergence computing resources. Ali Belgacem et al. (2020) 
proposed a dynamic resource allocation methodology that more efficiently and quickly fulfils 
the demands for resource allocation. The methodology is based on Spacing Multi-Objective 
Antlion Method (S-MOAL), a multi-objective search algorithm, to reduce both the time and 
cost of employing VMs. Results showed that it had a great influence on energy usage and 
fault tolerance and decreased the overall makespan. Zhao Tong et al. (2020) designed an 
algorithm based on Deep reinforcement learning (DRL) which determines if the work should 
be offloaded and assigns computer resources to the task. The best computing node is selected 
using DRL approach based on optimization objective and the best strategy for the objective 
problem is addressed. The DRL approach shows enhance performance in minimizing overall 
energy consumption and average task reaction time which boasts systems utility. 
The recent studies have revealed that although the priority and cost of task scheduling has 
been greatly enhanced, there’s a need for methodologies that optimize the existing resource 
allocation in load balancing by undertaking the current and maximum load of the subsequent 
load of a VM. 
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2.4 Summary of Literature Review 

The Table 1 shows the overall summary of the Literature Review.  

Table 1:  Summary of Literature Review 

Article Optimization 
method 

Concept Description Findings 

Hongji Liu 
et al 

Ant Colony 
Optimization 

Actual ant colonies' 
foraging behavior. 

Created an adaptive task 
scheduling method based 
on the ant colony 
algorithm (ACO). 

balanced load rate, a 
quicker execution 
time, and a cheaper 
cost. 

Xuan Chen 
et al 

Whale 
Optimization 
Algorithm 

The social hunting 
behaviors of 
humpback whales. 

Employed the meta-
heuristic WOA to increase 
the performance of cloud 
job scheduling. 

Increased efficiency 
of large and small 
tasks. 

Gokuldhev 
Mony et al 

Local 
Pollination-
based Gray 
Wolf 
Optimizer 
Algorithm 

Non-linear model of 
grey wolf position. 

Introduced LPGWO 
algorithm to optimal 
searching factor was used 
to maximize the 
convergence speed. 

efficient task 
scheduling 
makespan 
minimization and 
energy consumption. 

Kumar KP 
et al 

Crow search 
algorithm 

Crows' intelligent 
behavior of hiding 
and retrieving food. 

Designed a crow search 
algorithm (CSA) for task 
scheduling in the CC 
environment to shorten the 
work schedule's duration. 

Permanently set 
flight duration values 
to shorten the 
makespan. 

Mohd Sha 
Alam Khan 
et al 

Hybrid cuckoo 
search and 
particle swarm 
optimization 
algorithms 

CSA is based on 
reproduction of 
cuckoo birds and 
PSO is based on the 
study of the predation 
behavior of birds. 

To handle the VM 
migration in the cloud, 
presented a hybrid 
optimization algorithm 
based on the cuckoo search 
and particle swarm 
optimization algorithms. 

Reduced 
computation time, 
migration costs, and 
energy consumption. 

Minoo 
Soltanshahi 
et al 

Krill Herd 
technique 

Based on the least 
distance between the 
food location and 
position of a krill. 

Created the Krill Herd 
technique for distributing 
VMs to physical hosts in 
cloud DCs. 

Efficient integration 
and the selection of 
simple VM 
migration helped to 
improve energy 
efficiency. 

Jitendra 
Kumar 
Samriya et 
al. 

Emperor 
Penguin 
Optimization 

Inspired by social 
huddling behavior of 
emperor penguins  

A multiobjective (EPO) 
technique is suggested to 
distribute VMs with power 
consumption. 

Extremely successful 
in limiting energy 
usage, SLA 
violations (SLAV), 
and expanding QoS 
requirements. 

Ali 
Belgacem et 
al 

Spacing Multi-
Objective 
Antlion 
Method 

Based on Nature-
inspired 
metaheuristics of the 
swarm intelligence 
field. 

A dynamic resource 
allocation methodology 
that more efficiently and 
quickly fulfils the demands 
for resource allocation. 

Great influence on 
energy usage and 
fault tolerance and 
decreased the overall 
makespan. 
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3 Research Methodology 
 
The focus of this research is to improve the traditional GA's mutation process in order to 
improve the efficiency of load balancing in CC. The typical GA passes through three stages: 
initial population, crossover, and mutation. The EGA will aid in reducing the time it takes the 
DC to handle all the work performed by its VMs. 

3.1 Genetic Algorithm 
 
GAs are meta-heuristic algorithms that are based on natural processes. It is a well-known 
optimization procedure that is used to identify the best potential solutions. The GA contains 
three phases: Initial Population, Crossover, and Mutation. 

3.1.1 Initial Population 
 
The initial population is generated during the first step of the GA. The initial population 
consists of a group of individuals who are potential solutions to an issue. The most popular 
way of initializing the population based on a set of rules is heuristic initialization. The initial 
population is made up of chromosomes that function as individuals. Genes that contain 
information about the chromosomes live on the chromosomes. Figure 1 depicts the initial 
population. 
 

 
 

Figure 1:Initial Population. 
 

3.1.2 Fitness Function 
 
This phase is regarded to be part of the initial population phase. This phase assesses how well 
the chromosome in the original population fits the needed parameters. The fitness score 
identifies which individual is the best viable solution to replicate to address a set of problems. 

3.1.3 Crossover 
 
Using the fitness function, two parent genes are chosen as the fittest individuals in this phase. 
A crossover operator is applied to the chromosome using these two genes as the fittest 
parents to build a new fittest chromosome. The most frequent crossover procedure is single-
point crossover, in which two parent genes are switched directly. The crossover phase is 
depicted in Figure 2. 
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Figure 2: Crossover. 

 

3.1.4 Mutation 
 
The offspring chromosome is mutated with a low random frequency, where the value of the 
gene is altered to a new random best suited value for the chromosome. This procedure is 
mostly used to increase variety among the best-fitting genes on the chromosomes. The 
Mutation Phase is depicted in Figure 3. 
 

 
Figure 3: Mutation. 

 
This mutated chromosome is used to provide the best potential solution for a set of problems 
using a GA. 

3.1.5 Process Flowchart 
 
The GA's flowchart is shown in Figure 4. Six different steps make up the GA method. The 
algorithms' parameters are initialized during the initialization step. The parameters that were 
passed in the previous stage are used to produce a population in the following phase. The 
population's best fitness function value and the two fittest parents  

 
Figure 4: Genetic algorithm flowchart. 
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are computed in the subsequent step. In the crossover procedure, these two parents are 
immediately switched, and a random gene from the population is modified by altering its 
parameters. If the termination criteria are satisfied as a new unique population is produced 
utilizing the preceding stages, the process is terminated. 
 
4 Design Specification 
 
The conventional GA's method will be performed by the EGA, although the mutation process 
will be improved. The specifications for the DC, VMs, and cloudlets are set during the 
initialization process. These specifications are used to establish the DC, VMs, and cloudlets, 
which will serve as the initial population for the EGA. After successfully creating the initial 
population, the best fitness value function is applied to it in order to determine the best fitness 
value and the two best fit VMs, parent A and parent B. Then, using a single-point crossover 
procedure, the two VMs that fit the best are immediately switched, producing an offspring. 
The following phase will include mutating these offspring. In a typical GA, one parameter of 
a VM that is chosen at random is modified, which causes the VM to mutate. But as a result, 
the resultant VM might not work since the parameters weren't allocated properly. To prevent 
this, the VM will be modified by switching it out completely with a different VM that has the 
appropriate specifications, rather than merely altering one parameter. The resulting mutated 
population will be used to generate a cloud infrastructure with DCs, VMs and cloudlets and a 
simulation will be run which will process the cloudlets in the VMs created in the DC and 
output the overall task completion time of the cloudlets. 
 

4.1 Enhanced Genetic Algorithm 
 
The EGA is based on the GA. This algorithm will be used to generate the best possible VM 
deployment in a CC infrastructure while also taking the load of the VMs into consideration. 
The EGA will also have three phases like the GA, but the mutation phase will be enhanced to 
deploy a better VM in the architecture. 
 

4.1.1 Initial Population 
 
During the initial process of the EGA, the initial population is generated. The initial 
population will consist of the individuals that are important to solve a problem. In our case, 
the problem is improving the efficiency of load balancing and the individuals that contribute 
to finding a solution to this problem is the DC, the VMs and the Cloudlets. As we need to 
find the ideal placement of VMs, the chromosomes will be the group of VMs where each VM 
represents an individual gene. Figure 5 depicts the initial population of the proposed 
architecture.  
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Figure 5: Initial Population EGA. 

 

4.1.2 Fitness Function 
 
This phase will be the part of the Initial Population process where the fitness function of the 
VMs will be calculated. The fitness function will be calculated using a threshold value, that 
being the maximum threshold load of the VMs. Using this, the two best fit parents will also 
be determined will be the input for the next process of EGA. The two best fit parents will be 
the two best VMs. 
 

4.1.3 Crossover 
 
Taking the input from the previous process, the two determined best fittest parents are 
swapped using a crossover operator. This process is called crossover. The two fittest parents 
will be the two best fittest VMs determined by the fitness function. The crossover process is 
depicted in Figure 6. 
 

 
Figure 6: Crossover. 
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4.1.4 Mutation 
 
The generated offspring VM will be mutated in this process. In a tradition mutation process, 
a random VM will be selected from the pool of VMs and a parameter of the VM would have 
been changed, like the number of CPUs, RAM, Storage, etc. However, this process will be 
enhanced by changing the whole VM with better parameters. This process is depicted in the 
Figure 7. 
 

 
Figure 7: Mutation EGA. 

 
Using this mutated list of VMs, the load will be balanced across the CC architecture. 

4.2 Pseudocode 
 
 The Pseudocode of the algorithm is given as follows: 
 
Step 1: Generate Specifications for DCs, VMs and Cloudlets. 
Step 2: Initialize Initail Population by creating DCs, VMs and Cloudlets  using the 
specifications. 
Step 3: Find the fitness value, best_fit_parent_and best_fit_parent_b using the fitness  
 function: 

Set threshold = 10000 
Set temp = 0 
Set parent_a = 0 
Set parent_b = 0 
For i = 0 to number of VMs 
For j = 0 to number of cloudlets 
temp = length of cloudlet / mips of VMs 
Set sum = sum +temp 
If sum < threshold 
threshold = sum 
parent_b = parent_a 
parent_a = i 
End If 
End For 
End for 

Step 4: Crossover Machines by swapping VMs parent_a with VM  parent_b. 
Step 5: Select a random VM from the list of VMs and mutate it by  changing the VM to a 
new and better VM. 
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Step 6: Submit the DCs, Mutated VMs and Cloudlets to the simulation  tool and run the 
simulation. 
 
 

5 Implementation 
 
CloudSim simulations are utilized to carry out the proposed study. CloudSim is a platform 
for CC that simulates a virtual CC environment utilizing necessary provisioned resources. 
Figure 8 shows the Cloud architecture produced in CloudSim. 

 

Figure 8: Proposed Architecture. 

5.1 Data center 
It performs the functions of a physical machine. It serves as a server for the creation of VMs. 
It is one of a CC infrastructure's crucial parts. Low level processing duties will be handled by 
the VMs that were established in the DC. The parameters listed in Table 2 are used to 
establish one DC to implement EGA. 

Table 2:  Data Center Parameters 

Parameter Value 
RAM 16384 

Storage 100000 
Bandwidth 10000 

Architecture x86 
OS Linux 

VMM Xen 
Cost 5 

Cost per Memory 0.1 
Cost per Storage 0.2 

Cost per Bandwidth 0.2 
Timezone 10 

 

5.2 Virtual Machine 
A DC builds VMs, which are not physical machines. Being a separate computer inside the 
DC allows it to replicate the architecture of physical machines while operating on resources 
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provided by the DC. These VMs are hosted by the DCs and carry out the execution of tasks 
allocated to them. Table 3 shows the parameters used to created VMs in CloudSim. 

Table 3:  Virtual Machine Parameters 

Parameters Value 
Size 8000 
Ram 512 
Mips 4000 

Bandwidth 20 
Pesnumber 2 

Vmm Xen 
 

5.3 Cloudlets 
A cloudlet in CloudSim is an equivalent of a task that is assigned to a VM to execute. The 
length of the cloudlet is the total number of instructions taken by a cloudlet to complete. 
Table 4 shows the parameters of the cloudlet. 

Table 4:  Cloudlets Parameters 

Parameters Value 
Length 4000 

File size 200 
Output size 200 
Pesnumber 1 

 
The EGA and the well-known particle swarm optimization method will be applied in 
CloudSim using this CC scenario to produce the optimal VMs for the DCs to conduct a 
variety of experiments. The overall number of experiments will be Ten, with Five in EGA 
and Five in PSO, each with various numbers of cloudlets. The parameters for the experiments 
are given in Table 5: 

Table 5:  Number of VMs and Cloudlets 

Iteration VMs Cloudlets 
1 10 50 
2 10 75 
3 10 100 
4 10 125 
5 10 150 

 
 
6 Evaluation 
 
In CloudSim, the Cloud Architecture is built, and two different simulations are run. In the 
first set of simulations, different numbers of cloudlets are used to balance the load throughout 
the proposed architecture using the EGA. The second set use the PSO method to evenly 
distribute the load across the suggested architecture's various cloudlet sizes. The simulation's 
outcomes are as follows: 
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6.1 Execution Time 
 
Figure 9 depicts the time it takes the VMs to execute all the cloudlets. Execution time is 
measured by the overall time taken by the DC to execute all the cloudlets. As shown in 
Figure 9, the EGA algorithm outperforms the PSO algorithm. This is because the EGA-
allocated mutated VMs execute the cloudlets faster than the PSO-allocated VMs. 
 

 
Figure 9: Execution Time Comparison. 

6.2 Resource Utilization 
 
The execution time of all cloudlets combined is shorter than that of PSO assigned resources 
when EGA is used to allocate resources. Using this, the resource utilization of all the VMs 
can be estimated by multiplying the entire cloudlet execution time into CPU utilization time. 
Figure 10 depicts the EGA and PSO algorithms' resource utilization. It can be observed that 
EGA algorithm lends to better results compared to PSO and utilizes less resources as the 
number of cloudlet increases. 
 

 
Figure 10: Resource Utilization Comparison. 
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6.3 Energy Consumption 
 
Figure 11 shows that the simulation results of EGA are more energy-efficient than that of 
PSO Algorithm. Energy consumption can be calculated by dividing the resource allocation 
over time. EGA has been able to reduce energy consumptions more significantly than PSO.  
 

 
Figure 11: Energy Consumption Comparison. 

6.4 Discussion 
 
The results which are obtained, it clearly indicates that performing load balancing in CC 
using EGA is more efficient than performing with PSO algorithm which is one of the well-
known load balancing algorithms. As seen in the results, the increase in time, resource, and 
energy consumption in PSO algorithm with increasing cloudlets is way more than the 
increase in time, resource, and energy consumption in EGA algorithm. PSO uses large 
number of particles and iterates them for large number of times to swamp the best fitted VMs 
to improve load balancing. This leads to increase in time needed for the algorithm to execute, 
increases the resource utilization of the VMs and in turn increases the energy consumption of 
the VMs. On other hand, EGA uses the fitness function to calculate the best two fit VMs, 
swaps them and then randomly mutates one VM to significantly increase the efficiency of the 
VMs. As a result, it can be observed that the EGA is better at balancing load throughout 
different loads of cloudlets. This proposed research fulfils the research objectives of 
increasing the load balancing efficiency of the CC by decreasing the execution time, resource 
utilization, and energy consumption by using EGA. 
 
 

7 Conclusion and Future Work 
 
In this research, the concept of GA is used to propose EGA and enhanced to increase the 
efficiency of load balancing in CC. During the initialization phase of GA, DCs, VMs and 
cloudlets are created using their parameters and the Initial population is generated. Using the 
fitness function, the best two fitted parents are in the population of VMs and are swapped. 
The offspring generated after crossover is further mutated by randomly swapping out VM for 
a newly created VM. Using the DC, mutated VMs and the Cloulets, a load balancing 
simulation is run and it is observed that load balancing carried out using EGA takes less 
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execution time, resource utilization and energy consumption when compared to PSO 
algorithm, one of the well-known load balancing algorithm. In future, other features such as 
scalability, security, newtwork traffic accessibility, latency, and reliability can be extended 
by enhancing the EGA Furthermore. Furthermore, EGA has a scope to be further enhanced to 
also carry out load balancing in CC by allocating tasks that are dependent dynamically.  
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