
Microservices vs Monolithic Architecture:
Load Testing in AWS on ReactJS Web

Application for Performance

MSc Research Project

Programme Name

Parag Sharad Salunkhe
Student ID: 20224699

School of Computing

National College of Ireland

Supervisor: Jitendra Sharma

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Parag Sharad Salunkhe

Student ID: 20224699

Programme: Programme Name

Year: 2022

Module: MSc Research Project

Supervisor: Jitendra Sharma

Submission Due Date: 15/12/2022

Project Title: Microservices vs Monolithic Architecture: Load Testing in
AWS on ReactJS Web Application for Performance

Word Count: 5595

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 15th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Microservices vs Monolithic Architecture: Load
Testing in AWS on ReactJS Web Application for

Performance

Parag Sharad Salunkhe
20224699

Abstract

Microservice and Monolithic cloud native architetures are in very demand right
now. When many giants are migrating to microservice architecture researchers
say monolithic architecture still use full for many reasons, We deployed a NodeJS
monolithic application to EC2 and micro service architecture to the EKS cluster.
An analysis of performance was made after putting the architectures under different
test using the Locust load testing tool. Evaluation say that under less time the
monolithic provided a very good response time whereas for high load microservice
was able to stay stable and kept the response time much less compared to monolithic
architecture.

1 Introduction

The use of cloud computing has increased significantly over the past few years, and that
many businesses are moving to microservice cloud-based native architecture in order to
take advantage of the benefits offered by the cloud. However, some businesses are only
partially migrating to the microservice architecture, and are continuing to use older,
monolithic architectures for some of their applications. This is because moving to the
microservice architecture from monolithic can be a complex and challenging process,
and many businesses are still experimenting with different architectures and deployment
strategies in order to find the most efficient and effective way to use the cloud. While
some businesses are moving to microservice cloud-native architecture, others are adopting
a hybrid approach, in which some applications are run in the cloud and others are run
on-premises. This allows businesses to take advantage of the benefits of the cloud while
still using their existing infrastructure and systems. Ultimately, the best architecture
and deployment strategy for a particular business will depend on its specific needs and
requirements.

A monolithic application is a software application that consists of a single, large code-
base that contains all the functionality of the application. This type of architecture is
often seen in traditional enterprise applications, where all the different services and com-
ponents of the application are tightly coupled and interdependent. While this approach
has some advantages, such as simplicity and ease of deployment, it can also make it diffi-
cult to scale and maintain the application over time.. This means that all components of
the system share the same resources, such as memory, databases, and files. Because of this

1



tight coupling, the components of a monolithic system are not independently executable.
Monolithic architectures can be contrasted with microservice architectures, in which the
system is composed of smaller, independently deployable components that communicate
with each other through well-defined interfaces. This allows for greater flexibility and
scalability, as individual components can be developed and updated independently of the
rest of the system. However, monolithic architectures can still be effective for certain
types of applications, particularly those that are relatively simple and do not require a
high degree of flexibility or scalability.

Although microservice provides more benefits it is faced with several challenges as
well. Microservice architecture can be complex to design, implement, and maintain. It
requires a deep understanding of the system and its dependencies, as well as careful
planning and coordination across teams. In a microservice architecture, individual ser-
vices need to communicate and share data with each other. This can be challenging to
implement and manage, especially at scale. In a monolithic system, dependencies are
typically managed at the application level. In microservice architecture, dependencies
need to be managed at the service level, which can be complex and time-consuming. In
a microservice architecture, individual services can be developed and deployed independ-
ently. This can make it more challenging to test and deploy the system as a whole, as
the services need to be tested and deployed together to ensure that they work correctly.
In a microservice architecture, individual services can be scaled independently. This can
be challenging to manage and optimize, as it requires careful planning and monitoring to
ensure that the system is meeting the performance and scalability needs of the business.

Monolithic also faces several challenges like the entire application is deployed as a
single unit. This means that the entire application must be scaled together, which can
be challenging and may not provide the flexibility and scalability needed to meet the
changing needs of the business. In a monolithic system, changes to the application
must be made at the application level, which can be difficult and time-consuming. This
can make it challenging to iterate and experiment with new features and functionality,
which can limit the flexibility and adaptability of the system. Also the entire application
must be tested and deployed together. This can be time-consuming and may require
the application to be taken offline, which can be disruptive to the business. Monolithic
systems can be complex to design, implement, and maintain. This can make it difficult
for teams to work with and understand the system, which can impact productivity and
efficiency. In a monolithic system, dependencies are typically managed at the application
level. This can be challenging and may not provide the flexibility and control needed to
manage dependencies effectively.

In contrast, the microservice architecture is a more modular and flexible approach
to building applications. In this architecture, the application is divided into smaller,
independent services that communicate with each other through well-defined interfaces.
This makes it easier to scale and maintain the application, as each service can be scaled
independently and changes can be made to individual services without impacting the
entire system.

Many companies are starting to migrate their traditional, monolithic applications to
the cloud, where they can take advantage of the scalability and flexibility of cloud com-
puting. This typically involves deploying the application using infrastructure-as-a-service
(IaaS) or platform-as-a-service (PaaS) solutions, which provide a flexible and scalable
platform for deploying and running applications. In some cases, companies may choose
to redesign their monolithic applications as microservices in order to take full advantage

2



of the benefits of cloud computing. Microservice architectures offer several benefits over
monolithic architectures, particularly when it comes to scalability and flexibility. By de-
composing a large, monolithic application into smaller, independent services, it becomes
easier to scale and maintain the overall system. Each service can be scaled independently,
allowing for better resource utilization and more efficient use of computing resources. Ad-
ditionally, because the services are loosely coupled, changes can be made to individual
services without impacting the rest of the system, making it easier to manage and main-
tain the overall application. However, implementing a microservice architecture can be
challenging, as it requires significant effort to deploy and manage each individual service.

A web application is created in both a monolithic and a microservice architecture
as part of the proposed study. The apps make use of the NodeJS Framework. Both
should maintain to use the same infrastructure in order to produce reliable outcomes.
For creating the application images, Docker Hub is bring used. AWS EKS is mostly used
by us to create our cluster and get the image from Docker Hub. AWS CloudWatch is
used to collect different metrics. The Locust tool is used to vary the load on the web
application during testing of the API. We’ll deploy monolithic applications using AWS
EC2.

The following sections constitute the next part of the research. The findings of ex-
amined research publications that were relevant to our study were described in Section
2. the author’s contribution, including the techniques used and the individual authors’
discoveries of their varied results. The highlights of the authors work and evaluation are
thoroughly covered. This section’s subtopics talk about the technologies that made the
project successful. The approach of the proposed project is covered in Section 3. The ap-
proach includes the architecture that was utilized and the steps we took to provide a valid
evaluation. Section 4 goes into great detail on both architectures, how they interact with
one another, and which AWS services they each utilize. Section 5, implementation of the
methods discussed is being conducted. Different test cases are being implemented to get
results. Metrics are collected for further evaluation. Use of the tools for conducting tests
will be discussed. In Section 6, assessment is done using the metrics that were gathered
from various test scenarios. After examining all of the test cases, an extensive discussion
regarding the evaluation is made. In Section 7, we provide a summary of the research
results and the objective we were able to accomplish. highlighting the main conclusions
reached during the review and the limitations taken into consideration when creating the
project. Finally, we address potential directions for future work and strategies to further
our program objectives or strengthen the validity of the study’s findings.

1.1 Research Question

Will the performance and latency be improved in microservice/cloud native architecture
than the monolithic architecture by using NodeJS app in AWS?

2 Related Work

In this section, previous research related to topic of microservice and monolithic archi-
tecture will be discussed. Previous valuable findings and their critical evaluations and
comparing it with each other.

3



2.1 Architecture migration, challenges faced and reason for mi-
gration related papers

According to Newman (2021), 70 percent of companies have migrated from a monolithic
architecture to a microservice cloud-native architecture. Microservice architecture allows
for independent scaling of individual services, which can improve overall system perform-
ance and availability. This is particularly useful in cloud environments, where resources
can be easily added or removed to meet changing demand. Brunner et al. (2015)explains
that with microservice architecture, individual services can be developed and deployed
independently, allowing for greater flexibility in the development process. This can make
it easier to iterate and experiment with new features and functionality. In contrast, a
failure in a monolithic system can affect the entire system, whereas in a microservice
architecture, failures are isolated to individual services, making the system more resilient
and reducing the impact of failures. Kalske et al. (2017) studied the difficulties of migrat-
ing from a monolithic architecture to a microservice architecture and found that if the
legacy architecture was monolithic, it was difficult to migrate, but it was still possible.
The author suggested that businesses should only consider the transition if the benefits
outweigh the costs. Bucchiarone et al. (2018) explains why Danske Bank migrated to a
microservice architecture for a number of reasons, including simple deployment, central-
ized logging and monitoring, and the ability to act proactively on suspicious or faulty
behavior. However, the adoption of microservices also comes with challenges, such as the
time and effort needed to design and expand each microservice to the cloud. The author
Mendonça et al. (2021) Istio, a company that was a collaboration between Google and
IBM, initially used a microservice architecture for the control plane but later switched to
a monolithic architecture based on feedback from users. This simplification improved in-
stallation, configuration, and debugging, as well as scalability and reduced start, upgrade,
and removal times. The team believes the change has improved the lives of Istio users
Shahid (2019) and Pianini and Neri (2021) discuss how DevOps, Kubernetes, Docker,
and automatic scaling can be used to save time and resources, but may also require addi-
tional migration, development, and integration. Haugeland et al. (2021)suggests migrat-
ing monolithic applications to cloud-native microservice-based SaaS that is customizable,
with a focus on enabling tenant-specific customization while ensuring data isolation and
avoiding competition for resources. This approach allows for customization outside of the
main application’s execution context. Brunner et al. (2015) conducted a case study on
the migration of a monolithic application to a microservice architecture in the cloud, and
found that the benefits of the transition outweighed the costs and challenges. The author
Bajaj et al. (2020) proposed a hybrid solution as an alternative to traditional monolithic
applications. This approach allowed businesses to reap the benefits of both architectures
simultaneously by only migrating selected sections of the application.

2.2 Architecture Comparison and Evaluation related papers

The goal of this study is to evaluate and compare the performance and cost-effectiveness
of monolithic and microservice architectures in the context of cloud computing. Previ-
ous research conducted by authors Villamizar et al. (2016) and Al-Debagy and Martinek
(2018), has provided valuable insights and motivation for this study. The author Villam-
izar et al. (2016), evaluated the performance, cost analysis, and response time of a web
application were examined under three different scalability scenarios in order to compare

4



the expenses associated with its development and implementation. The first phase of the
research consisted of conducting tests on all three architectures, analyzing the results,
and comparing those findings with the costs of the underlying infrastructure for each of
the three use cases. In the end, a third study was conducted to estimate the average
response time while the architecture was being put through performance testing. This
study showed how the architectures impacted response times for requests made during
peak hours. The findings of the tests showed that the use of microservices led to a de-
crease in the amount of money spent on infrastructure compared to traditional monolithic
architectures. Similarly, the author Al-Debagy and Martinek (2018), the performance of
monolithic and microservice architectures was examined in more detail. The authors con-
ducted simulations using a web application hosted on Azure, using the Apache Jmeter
tool to simulate excessive traffic. The simulations involved a varying number of users, and
the evaluation lasted for three minutes. It was observed that as the number of users in-
creased, the CPU consumption and response time for the microservice architecture grew.
This is because microservices require data from multiple services, which takes more time
to process. The authors concluded that while microservices are useful for handling large
numbers of users, they come at a higher cost due to the increased CPU and RAM usage.
Overall, this study aims to build on the previous research by conducting a more in-depth
analysis of the performance and cost-effectiveness of monolithic and microservice architec-
tures in the cloud. The results of this study will provide valuable insights for companies
looking to adopt either of these architectures for their web applications.

The author Akbulut and Perros (2019) conducted performance analysis on microservice
architecture and came to a conclusion that adopting a microservice architecture can have
a significant impact on the performance and scalability of a web application. To fully
realize the benefits of this architecture, practitioners should follow a series of steps. The
first step is to conduct unit testing to verify that the services work as intended. This
can be done using automated testing frameworks such as NUnit or JUnit. Load testing
should also be performed periodically to assess the application’s topology and identify
bottlenecks. It is important to use service-level agreements (SLAs) and have knowledge
of user behavior to better characterize traffic patterns and perform more realistic tests.
Architects can use simulators such as Hoverfly or Vagrant to evaluate different config-
urations without disrupting the ecosystem’s traffic. Finally, testing the resiliency of the
microservices can reveal potential infrastructure failures. Monitoring the system will
provide valuable insights into its performance and scalability.

The author Tapia et al. (2020), the performance of both monolithic and microservice
architectures was evaluated through stress testing, using equivalent levels of hardware
resources for each architecture. The same web application was deployed using a mono-
lithic architecture on a KVM virtual server, and a microservice-based architecture on
containers. The evaluation included computational metrics such as CPU performance,
disk reading and writing speed, memory, and network reception and transmission. The
results showed that using a microservice architecture can be useful in cases where massive
scaling is needed, as the services can be automated to improve response time.

The author Astyrakakis et al. (2019) evaluated a framework for automating the de-
ployment of Kubernetes clusters on the OpenStack platform and validating cloud-native
applications. The framework uses OpenStack as a hypervisor for building virtual ma-
chines and Firebase Database for storing settings and information. It also includes a
tool for building Kubernetes clusters using custom automated scripts and the cloud-init
application on custom Linux images, as well as a unique tool for validating microservice

5



cloud-native applications. the proposed framework revealed that its functionalities are
completed in relatively low average times, compared to manual or semi-manual solutions.
In specific experiments, the average completion time for the cluster deployment function-
ality was 5.7 minutes, which is significantly lower than what is typically required for such
a task. Similarly, the average completion time for the application validation functionality
was 11.4 minutes. These results suggest that the framework is effective in automating the
deployment of Kubernetes clusters and applications. Similarly, the author Gupta et al.
(2021) in his proposed method in this paper involves setting up a Kubernetes cluster
and connecting multiple nodes to the internal application running on them. This manual
approach to implementation allows for better organization and the ability to perform
custom configurations that are not possible with preconfigured clusters offered by cloud
platforms. The proposed work will also deploy an architecture that includes a website
and an externally connected database. This will allow for scalability of resources across
multiple nodes, as well as improved design and security. The database will be abstrac-
ted at the backend and only accessible through the website, protecting it from direct
access by users or clients. Overall, this setup will provide better control and flexibility
in managing the application and its associated resources. Similarly author Carroll et al.
(2021) presents a solution for setting up and maintaining a scalable preproduction en-
vironment for integration testing. The proposed approach involves routing test traffic
through preproduction deploys within the production cloud before they are released to
production traffic. These preproduction deploys are isolated from the production system
using staging databases that are copied daily from the production system. This provides
sufficient isolation without the need for a complete staging environment. The technical
foundations of this solution are the separation of the deploy step from the release step,
and the extension of the microservice architecture to support multiple concurrent versions
with independent traffic routing. This forms a cloud-native development (CND) architec-
ture that can be used for regression testing immediately before production release. The
testing is scalable and of high quality, as it is performed on the same system that will be
released after a successful test run.

The author of Barczak et al. (n.d.) conducted research on the performance of mono-
lithic and microservice architectures in a web application hosted on Azure. The Apache
Jmeter tool was used to simulate excessive traffic, with simulations involving 50 users
lasting for three minutes. The results showed that as the number of users increased, the
CPU consumption and response time for the microservice architecture grew. This is be-
cause microservices require data from multiple services, which takes more time to process.
The author concluded that while microservices are useful for handling large numbers of
users, they come at a higher cost due to the increased CPU and RAM usage.

In contrast, the author of Balalaie et al. (2015) found that microservices can introduce
new complexities to a system and may not always be the best solution for all cases. The
decision to hire additional highly-trained software engineers and test professionals also
contributed to the overall cost. However, microservices can also increase productivity
and reduce costs in the long run due to their lower energy consumption. In general, no
single microservice design was found to be superior in terms of effectiveness or efficiency,
and the authors concluded that microservices have not yet reached their full potential.

6



3 Methodology

Node.js which JavaScript runtime is used to build web applications using a monolithic
or microservice architecture. In a monolithic architecture, a single Node.js application is
built and deployed as a single unit. This approach is suitable for smaller applications that
do not require complex interactions between different components. In a Node.js mono-
lithic architecture, the entire application is written in JavaScript and run on the Node.js
runtime. This allows for a single codebase and a consistent development experience, but
can make it difficult to scale and maintain the application as it grows in complexity. In
a microservice architecture, on the other hand, the application is divided into smaller,
independent services that communicate with each other through APIs. This approach is
suitable for larger, more complex applications that require more flexibility and scalability.
In a Node.js microservice architecture, each service can be written in Node.js and run on
the Node.js runtime, allowing for a consistent development experience across the services.
However, managing and deploying multiple services can be more complex than managing
a single monolithic application. Overall, Node.js can be a powerful framework for build-
ing web applications using either a monolithic or microservice architecture. Its popularity
and extensive ecosystem of libraries and tools make it a good choice for developers who
want to build scalable and maintainable web applications. For both the applications we
have 5 services, a) userManagement, b) dataManagement, c) atandanceManagement, d)
salaryManagement and e) APIgateway.

In a monolithic architecture, a single application is built and deployed as a single unit.
This means that the entire application, including the front-end, back-end, and database,
is contained within a single instance. However, it is possible to use multiple instances with
a monolithic architecture, but this is not typically necessary unless the application has a
very large number of users or requires a high level of availability. Whereas, Microservice
architecture application will have different pods for each service in the EKS, and with
the use of ingress controller the traffic will be rerouted to any given service accessed by
the user.

The microservice application is deployed on EKS, with the help of ingress controller
we can reroute the traffic to services needed by the user. Each service will have its own
pod in the cluster. For the monolith application, it is deployed in the EC2 cluster. After
all the setup is ready on the AWS, Load testing tool called Locust can be setup on
the local machine. Locust is an open-source load testing tool that allows to define user
behavior in Python code and simulate a large number of users accessing your application
simultaneously. It is designed to be easy to use and flexible, so it tests the performance
of your application under various load conditions.To use Locust, will need to install it on
your local computer and create a Python script that defines the user behavior you want
to simulate. This script can include user actions such as logging in, accessing different
pages, and submitting forms.Once your script is ready, you can run Locust and specify the
number of users you want to simulate and the rate at which they should perform actions.
Locust will then simulate the specified number of users and track their performance,
such as the response time of your application and any errors that may occur. You can
use the results of your load test to identify bottlenecks and other issues that may affect
the performance of your application under heavy load. You can also use Locust’s web
interface to monitor the progress of your load test in real-time and view detailed statistics
and graphs.

Amazon CloudWatch is a monitoring service provided by Amazon Web Services that

7



allows developers to monitor their Amazon EC2 instances and other AWS resources in
real-time. With CloudWatch, developers can collect and track metrics, set alarms, and
automatically react to changes in their AWS resources. This is important because it allows
developers to ensure that their applications are running smoothly and efficiently. One of
the key metrics that CloudWatch can help developers monitor is CPU utilization. CPU
utilization is a measure of how much of a computer’s processing capacity is being used at
any given time. This is important because it can help developers understand how much
of their resources are being used, and whether their applications are running optimally.
Another important metric that CloudWatch can help developers monitor is CPU credit
usage and CPU credit balance. CPU credits are a measure of the amount of processing
power that an Amazon EC2 instance can use over a certain amount of time. CPU credit
usage is a measure of how many CPU credits an instance has used, while CPU credit
balance is a measure of how many CPU credits an instance has remaining. Monitoring
these metrics can help developers understand the performance of their applications, and
identify potential bottlenecks or other issues.

By monitoring key metrics like CPU utilization, CPU credit usage and CPU credit
balance with the help of AWS CloudWatch, and using load testing tool Locust to simulate
real-world usage scenarios, developers can gain valuable insights into the performance of
their applications. This can help them identify potential bottlenecks and optimize the
performance of their applications.

To make complications less before deploying applications to the cloud. Postman tool
was used. Postman is a tool that allows developers to send and receive HTTP requests
and responses. It was used for testing APIs to ensure that they are working as expected.
Open the Postman application and create a new request. In the request, enter the URL
for the application that you want to test. Select the HTTP method e.g like our application
had GET, POST, PUT that were tested. The application will respond with a response,
which will be displayed in the Postman application. This can help developer quickly and
easily test multiple requests and scenarios.

4 Design Specification

4.1 Monolith Architecture

Monolithic architecture is supposed to be deployed to ec2. To deploy monolithic archi-
tecture to ec2 follow the steps:

• Create ec2 instance, we choose free tier instance, t2micro, which allots 1cpu only.

• install application on ec2 instance, connect to ec2 using ssh, we use yum package
manger to install dependencies. Run ’Server.js” application script.

• Create and configure security group to control inbound and outbound traffic. The
ports open for inbound traffic are 80,82,443. Outbound all ports.

• Ip will be assigned to the instance

After the instance is successfully launch we can further configure the instance for
autoscaling group if needed. In this case there is no attachment of any auto scaling
group. Select the instance created to check what cloudwatch is monitoring and by default
cloudWatch monitors some statistics. By default every 5 minutes instance metrics are

8



gathered, if needed detailed statistics can be achieved by configuring detailed monitoring
settings.

In the figure 5 we see the monoliths application architecture based on the deployment
on AWS Cloud.

Figure 1: Monolithic Application Architecture on AWS Cloud

4.2 Microservice Architecture

To deploy Microservices application in EKS cluster we need to create k8’s deployment
files, Push the images from docker hub to EKS and deploy the EKS cluster. The images
of the application are uploaded to docker hub with each service having its own container,
in our case 5 containers. Following are the steps used for further deployment:

Figure 2: Microservice Application Architecture on AWS Cloud

9



• Created new user giving programmatic access

• 2 roles were created, one was EKS role. On role page , choose EKS service and
select EKS cluster

• Role 2 was for Node group role , we assign 3 permissions to this role, theses per-
missons help EC2 create nodes, pull images from dockerhub -

AmazonEKSWorkerNodePolicy

AmazonEC2ContainerRegistryReadOnly

AmazonEKS_CNI_Policy

• Got to EKS from AWS dashboard, name the cluster , choose latest kubernetes
version, select the role 1 created before

• configure network, subnets are automatically created , keep default security group,

• chose t3.medium, as resources were low for the applications pods below these con-
figurations for ec2 instances .

• Create Node Group assigning it role 2 we made before, set minimum and maximum
node size of 1 and 3, desired size 2.

Figure 3: Nodes Created

• cluster is created and 2 instances of t3.micro are launched.

• the following command should respond on aws-cli app

aws sts get-caller-identity

• to connect kubectl with AWS use the following command where ’Research’ is my
clusters name. To get nodes write 2nd command below

10



aws eks --region eu-west-1 update-kubeconfig --Research

kubectl get nodes -o wide

• create deployment files . The yaml files of individual services would look like the
following:

apiVersion: apps/v1

kind: Deployment

metadata:

name: usermanagement

spec:

replicas: 1

selector:

matchLabels:

app: usermanagement

template:

metadata:

labels:

app: usermanagement

spec:

containers:

- name: user-backend

image: parag2608/usermanagement:latest

imagePullPolicy: IfNotPresent

---

apiVersion: v1

kind: Service

metadata:

name: user-srv-cluster

spec:

type: ClusterIP

selector:

app: usermanagement

ports:

- name: user-backend-cluster-ip

protocol: TCP

port: 3000

targetPort: 3000

---

apiVersion: v1

kind: Service

metadata:

name: user-lb-srv

spec:

ports:

- protocol: TCP

port: 80

11



targetPort: 3000

selector:

app: usermanagement

type: LoadBalancer

image url is taken from dockerhub .There are three objects in the yaml file, a)
deployment b)service and a type ’LoadBalancer’ which on EKS cluster will be
rerouting all the traffic from port 80 to port 3000

• deploying services to EKS is made by next command and the 2nd command is used
for accessing load balancer

kubectl apply -f <path-to-deployment-file>

kubetctl get services

Figure 4: Images pushed to EKS cluster

Figure 5: Each service assigned a pod in the cluster

• For all the containers in dockerhub we deploy each service to EKS.

12



5 Implementation

Three test case scenarios implemented and evaluated. Locust will be used for swarming
users at a given rate by giving the public IP that we get from aws. With the help of AWS
cloud watch we can get metrics for the instances. From fig 6 we can see a preview of how
after testing we can see number of requests and response time also for our test scenarios
we will see the graph like in fig 7 which shoes graph of total requests, response time and
number of users and see how with time the servers of both architecture respond. And
from fig 8 and 9 we can see cpu credit usage spike during tests and cpu utilization.

Figure 6: Example of locust on testing

Figure 7: Example of locust Graph on testing

In test case 1 we will set number of users as 100 and spawn rate 10, test goes on for
10 seconds.

13



Figure 8: CPU credit usage

Figure 9: CPU utilazation

In test case 2 we will set number of user 1000 and spawn rate 100, test goes on for 10
seconds.

In test 3 we will set number of users at 10000 and spawn rate 1000, test goes on for
10 seconds.

6 Evaluation

In this section we will review all 3 tests and its analysis.

6.1 Experiment / Case Study 1

In test 1 when the number of users were kept 1– and spawn rate at 10 for 10 seconds
we observe that there is low response time for the monolithic architecture whereas mi-
croservice architecture has high response time. Monolithic delivers a smooth constant
response overall, whereas microservices has spikes up and comes down although deliver-
ing a high response time. From the figure 10 and 11 we can observe the overall results of
test 1. from figure 12 and 13 we can compare both the graphs for response rate of both
the architectures.

6.2 Experiment / Case Study 2

In the test scenario 2 we had kept number of users at 1000 and spawn rate of 100 for 10
seconds. We can observe that the microsrevice architecture rises a bit and becomes stable
and declines a little giving a good response time than the monolithic. We see response

14



Figure 10: Locust UI on test 1 on Monolithic Architecture

Figure 11: Locust UI on test 1 on Microservice architecture

Figure 12: Graph of test 1 on Mono-
lithic architecture

Figure 13: Graph of test 1 on Mi-
croservice architecture

15



time increasing towards the end in the monolithic. So by increasing a stress we observe
microservice remains stable and monolithic gives a little high response rate. From the
figure 14 and 15 we can observe the overall results of test 1. from figure 16 and 17 we
can compare both the graphs for response rate of both the architectures.

Figure 14: Locust UI on test 2 on Monolithic Architecture

Figure 15: Locust UI on test 2 on Microservice Architecture

Figure 16: Graph of test 2 on Mono-
lithic architecture

Figure 17: Graph of test 2 on Mono-
lithic architecture

6.3 Experiment / Case Study 3

In the test case 3 we expose both the architectures to a very high stress, number of users
at 10 thousand and a spawn rate of 1000 for 10 seconds. We observe that the api’s in
monolithic architecture apis have failed to respond due to instant burst of load. whereas
we do see a rise in response time of microservice architecture but the response time keeps
getting stable. Response time for the apis are monolithic are relatively high compared
to those of microservice. We can say that at higher traffic on both the architectures the
EKS cluster stays stable and delivers a good response time. From the figure 18 and 19
we can observe the overall results of test 1. from figure 20 and 21 we can compare both
the graphs for response rate of both the architectures.

16



Figure 18: Locust UI on test 3 on Monolithic Architecture

Figure 19: Locust UI on test 3 on Microservice Architecture

Figure 20: Graph of test 3 on Mono-
lithic architecture

Figure 21: Graph of test 3 on Mono-
lithic architecture

17



6.4 Discussion

From all the test cases that we have alayzed and after comparing with the evaluations
of authors Gos and Zabierowski (2020) and Blinowski et al. (2022) who tested their
application on azure cloud on simple instance and both having tested java applications,
we can say that a different framework is not making any significant difference in the
response time. Where as we can say that kubernetes does help maintaining stability for
high traffic load. Also cpu consumption rate can stay healthy even after burst of traffic.
From figure 22 and 23 we can see that for the same tests the cost of utilizing these services
is very high in the Microservice architecture on EKS. We can say that when there are
less number of users for the application and the team is small they can opt for monolithic
as they would be on a budget. Also if its a big company they can choose to opt for
microsrervice on eks cluster as it provides immense stability with its auto scaling feature.
Also the instance are automatically created if any of the instance fails in the cluster.
The limitations to this research is the related to the application. We have deployed a
very simple application but to test the real dense and heavy applications can give more
reliable outputs.

Figure 22: Microservice architecture Credit usage

Figure 23: Monolithic architecture credit usage

7 Conclusion and Future Work

The objective of the research was to check if there will be any performance difference due
to nodeJS framework and using of kubernetes. After an evaluation we can say that there
is no significant enhancement or reduction in performance with the type of framework or
language used for building the application. Kubernetes microservice adoption does show a
huge difference in performance compare to monolithic application but we have to outweigh
the budget for it before making decision of deploying there. Both the architectures have
different performance to different loads hence we can conclude that a small company may
choose to adopt monolithic architecture as the respone time is good for low traffic and
ec2 handle the cpu utilization very well keeping the costs very low compared to the other.

18



Analysis say the adoption of microservice architecture is going to be high in future.
Hence a research can be done regarding Disaster Recovery and how much rto and rpo
they provide. Disaster Recovery is a huge topic to dig in as many availability zone are
also included and many regions are in sync with each other.

References

Akbulut, A. and Perros, H. G. (2019). Performance analysis of microservice design pat-
terns, IEEE Internet Computing 23(6): 19–27. JCR Impact Factor 2019: 2.68, Cited
by=36.

Al-Debagy, O. and Martinek, P. (2018). A comparative review of microservices and
monolithic architectures, 2018 IEEE 18th International Symposium on Computational
Intelligence and Informatics (CINTI), IEEE, pp. 000149–000154. Cited by=56.

Astyrakakis, N., Nikoloudakis, Y., Kefaloukos, I., Skianis, C., Pallis, E. and Markakis,
E. K. (2019). Cloud-native application validation stress testing through a framework
for auto-cluster deployment, 2019 IEEE 24th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 1–
5.

Bajaj, D., Bharti, U., Goel, A. and Gupta, S. (2020). Partial migration for re-architecting
a cloud native monolithic application into microservices and faas, International Confer-
ence on Information, Communication and Computing Technology, Springer, pp. 111–
124.

Balalaie, A., Heydarnoori, A. and Jamshidi, P. (2015). Migrating to cloud-native archi-
tectures using microservices: an experience report, European Conference on Service-
Oriented and Cloud Computing, Springer, pp. 201–215.

Barczak, A., Barczak, P. M. and Toledo, M. (n.d.). Performance comparison of monolith
and microservices based applications.

Blinowski, G., Ojdowska, A. and Przyby lek, A. (2022). Monolithic vs. microservice ar-
chitecture: A performance and scalability evaluation, IEEE Access 10: 20357–20374.
JCR Impact Factor : 3.476.

Brunner, S., Blöchlinger, M., Toffetti, G., Spillner, J. and Bohnert, T. M. (2015). Ex-
perimental evaluation of the cloud-native application design, 2015 IEEE/ACM 8th
International Conference on Utility and Cloud Computing (UCC), IEEE, pp. 488–493.

Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S. T. and Mazzara, M. (2018). From
monolithic to microservices: An experience report from the banking domain, IEEE
Software 35(3): 50–55.

Carroll, J. J., Anand, P. and Guo, D. (2021). Preproduction deploys: Cloud-native
integration testing, 2021 IEEE Cloud Summit (Cloud Summit), IEEE, pp. 41–48.

Gos, K. and Zabierowski, W. (2020). The comparison of microservice and monolithic ar-
chitecture, 2020 IEEE XVIth International Conference on the Perspective Technologies
and Methods in MEMS Design (MEMSTECH), IEEE, pp. 150–153. Cited by=26.

19



Gupta, M., Sanjana, K., Akhilesh, K. and Chowdary, M. N. (2021). Deployment of
multi-tier application on cloud and continuous monitoring using kubernetes, 2021 5th
International Conference on Electrical, Electronics, Communication, Computer Tech-
nologies and Optimization Techniques (ICEECCOT), pp. 602–607.

Haugeland, S. G., Nguyen, P. H., Song, H. and Chauvel, F. (2021). Migrating monoliths to
microservices-based customizable multi-tenant cloud-native apps, 2021 47th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), pp. 170–177.

Kalske, M., Mäkitalo, N. and Mikkonen, T. (2017). Challenges when moving from
monolith to microservice architecture, International Conference on Web Engineering,
Springer, pp. 32–47. Cited by=84.

Mendonça, N. C., Box, C., Manolache, C. and Ryan, L. (2021). The monolith strikes back:
Why istio migrated from microservices to a monolithic architecture, IEEE Software
38(5): 17–22.

Newman, S. (2021). Building microservices, ” O’Reilly Media, Inc.”. Cited by=2320.

Pianini, D. and Neri, A. (2021). Breaking down monoliths with microservices and de-
vops: an industrial experience report, 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, pp. 505–514.

Shahid, H. (2019). Refactoring monolithic application into cloud-native architecture, Mas-
ter’s thesis, University of Stavanger, Norway.

Tapia, F., Mora, M. Á., Fuertes, W., Aules, H., Flores, E. and Toulkeridis, T. (2020).
From monolithic systems to microservices: A comparative study of performance, Ap-
plied sciences 10(17): 5797. Cited by=18.

Villamizar, M., Garces, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., Casallas,
R., Gil, S., Valencia, C., Zambrano, A. et al. (2016). Infrastructure cost comparison
of running web applications in the cloud using aws lambda and monolithic and mi-
croservice architectures, 2016 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), IEEE, pp. 179–182. Cited by=207.

20


	Introduction
	Research Question

	Related Work
	Architecture migration, challenges faced and reason for migration related papers
	Architecture Comparison and Evaluation related papers

	Methodology
	Design Specification
	Monolith Architecture
	Microservice Architecture

	Implementation
	Evaluation
	Experiment / Case Study 1
	Experiment / Case Study 2
	Experiment / Case Study 3
	Discussion

	Conclusion and Future Work

