National
College
Ireland

Enhancing Load Balancing in Cloud
Computing and Reducing Makespan by using
Hybrid Particle Swarm Optimisation
Algorithm to Improve Task Scheduling.

MSc Research Project
Cloud Computing

Prathamesh Dattatray Prabhutendolkar
Student ID: x21127352

School of Computing
National College of Ireland

Supervisor:  Rashid Mijumbi

~

\







National College of Ireland National
Project Submission Sheet College of

School of Computing Ireland

Student Name:

Prathamesh Dattatray Prabhutendolkar

Student ID: x21127352
Programme: Cloud Computing
Year: 2022

Module: MSc Research Project
Supervisor: Rashid Mijumbi

Submission Due Date:

15/12/2022

Project Title:

Enhancing Load Balancing in Cloud Computing and Redu-
cing Makespan by using Hybrid Particle Swarm Optimisation
Algorithm to Improve Task Scheduling.

Word Count:

7363

Page Count:

3

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

14th December 2022

PLEASE READ THE

FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | (I
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | [

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):




Enhancing Load Balancing in Cloud Computing and
Reducing Makespan by using Hybrid Particle Swarm
Optimisation Algorithm to Improve Task Scheduling.

Prathamesh Dattatray Prabhutendolkar
x21127352

Abstract

Utilizing virtual machines as the resource unit, cloud computing provides cus-
tomers with a range of computational services through the Internet, including
backups, software, databases, and servers. Tasks are distributed between virtual
machines in a cloud computing ecosystem, each of which has a varied length, begin-
ning, and processing time. Therefore, distributing these loads equally throughout
the available cluster of virtual machines is a critical part. To achieve maximum util-
ization of the cluster’s capabilities and enhance system efficiency, task scheduling
strategies must be implemented in a way that helps balance the workload among all
VMs. Recently, researchers have introduced nature-inspired algorithms into the
field of task scheduling to overcome challenges connected with complexity and
to deliver optimum solutions. In this research paper, we present a unique load-
balancing method called the Hybrid Particle Swarm Optimization Algorithm to
distribute workloads among the available cloud resources in such a way that re-
duces execution time and increases resource utilization. The research is focused
on improving the existing task scheduling strategies to generate the best possible
schedules for the inbound tasks. This is achieved by combining the Honey Badger
algorithm with the already existing PSO algorithm. The digging and honey-finding
phases of the Honey Badger algorithm aid PSO to evade the local optimum and
find a superior solution in the available search space. The proposed task scheduling
algorithm is implemented and evaluated using the Matlab simulation tool. The
simulation results clearly outline that the proposed algorithm in this research is
better in terms of reducing the makespan and increasing resource usage compared
to several existing meta-heuristic optimization algorithms.

1 Introduction

Cloud computing has gained prominence in recent years as one of the Internet’s fastest-
growing technologies and an important area of study. The relevance of utilizing the
cloud has been made increasingly clear to people and businesses by the expansion of
cloud computing recently (Buyya et al.[2017). Users can pay reasonable prices to use the
cloud to achieve higher standard services. Additionally, organizations and individuals can
pick among 550 cloud platform services offered by over 360 vendors across 22 categories
currently. Cloud computing is a technology that is built upon virtualization technology,
which makes use of servers with a huge capacity to provide resources to consumers. These



services are either provided using virtual machines or containers which are also known as
lightweight VMs.

Moreover, as the popularity of such an ”Operational Expenditure” option kept grow-
ing among businesses and individuals, the amount of workload in the cloud was increasing
simultaneously. Also, several organizations started to acquire huge servers provided by
cloud service providers to meet their virtualization demands. Subsequently, to avoid over-
utilization of a specific virtual machine in the cluster, the concept of load balancing was
introduced. Load balancing is one of the crucial components in cloud computing as it
helps to divide the workload accurately among several virtual machines by considering a
variety of parameters such as resource usage, energy utilization, execution time, and many
more. Task scheduling is an important area of research in cloud load balancing. A vast
amount of research is completed in this domain where researchers have tried to develop
algorithms that make use of multiple factors such as energy consumption and resource
utilization to schedule tasks(Arunarani et al.|2019). Several attempts have also been
made where the hybridization of meta-heuristic algorithms is implemented to schedule
tasks in a VM cluster. However, there are still some gaps in the research already imple-
mented using such hybridization techniques such as longer execution time of tasks and
underutilization of resources available. In this paper, a similar hybridization approach of
combining Particle swarm optimization and the Honey Badger algorithm is proposed to
reduce the makespan and increase the resource utilization of the cluster.

1.1 Research Motivation and Background

The introduction of a unique approach to proactively balance load among virtual ma-
chines using a combination of an updated Q-learning and an enhanced Particle Swarm
Optimization algorithm was done by (Jena et al.[2022). The objective of maximizing
machine productivity by balancing the load among VMs was achieved in this research.
Nevertheless, the research was more focused on scheduling the tasks based on priority,
which leads to longer waiting times for tasks with lesser weightage. Additionally, a sim-
ilar attempt at hybridization was made by (Thakur & Gorayal[2022)) who introduced
a brand-new multi-objective optimization algorithmic technique known as PPSO-DA
that is based on a dragonfly model and phasor particle swarm optimization. Several
attempts were made to integrate the standard particle swarm optimization algorithm
with a nature-inspired/meta-heuristic technique. Optimization of the existing PSO al-
gorithm was observed through the results but the issue of the standard PSO algorithm
of getting stagnated in finding a better solution persisted across all the existing research.
Also, there were no attempts made to integrate the recently proposed Honey Badger al-
gorithm with the standard PSO technique. Hence, this motivated the proposed research
to make an attempt of combining the HBA and PSO algorithms to find a better solution
in the available search space and overcome the drawback of the standard PSO algorithm.

1.2 Research Objectives

e To implement a hybrid algorithm combining the standard Particle swarm optimiz-
ation and Honey Badger algorithm.

e To optimize the mathematical formulas for task scheduling to enhance execution
time and resource consumption in load balancing.



e To perform a comparative analysis of the proposed system with existing meta-
heuristic optimization algorithms.

1.3 Research Question

The research question proposed in this paper is as follows - "To what extent does Hy-
brid Particle Swarm Optimization Algorithm in task scheduling improves makespan and
resource utilization to enhance cloud load balancing.”

1.4 Document Structure

This research paper is further divided into 6 sections. Section 2 outlines the related work
previously carried out in the domain of task scheduling and hybridization of algorithms.
Section 3 describes the research process, including the techniques and algorithms adopted.
Section 4 describes the Design specifications of the proposed research. Section 5 docu-
ments the step-wise implementation of the proposed load-balancing algorithm. Finally,
section 6 and 7 consists of experimental results and conclusion respectively.

2 Related Work

2.1 Energy Aware/Efficient Load balancing techniques.

(Kaur & Aron|[2020) explained how workload could only be completed on the fog nodes
if they had been assigned to all of the nodes. In this paper, the Energy-Aware Load Bal-
ancing algorithm for the fog/edge computing domain was investigated. This algorithm’s
major objective was to decrease the power needed to utilize Edge resources and to fully
utilize those that are available at a fog node. On iFogSim, a comparison between the
researched method and the Tabu Search approach was done. The emphasis of the upcom-
ing study would be on applying a meta-heuristic method to adjust the workload in Fog
Computing. Next, according to (Velde et al.2021), the previous development of cloud
activities was reorganized and illustrated the scheduling methodology. The general focus
of the improvement concerns was Quality of Service in cloud architecture. The ”plan-
ning technique” at Level-1, which was built on SLA, provided comprehensive information
about the jobs and distribution to the nodes. The Level 2 monitoring process for idle
machines changed the load on multiple hosts in each group. Instead of making judgments
based on ordinary, constrained allotment feedback, the load balancer in the research that
is being given must acquire knowledge of the provider’s present state. Moreover, (So-
hani & Jain 2021)) studied the PMHEFT method which is abbreviated as the Predictive
Priority-based Modified Heterogeneous Earliest Finish Time algorithm with the aim of
determining the application’s anticipated resource requirements. The author created a
prediction-based method to offer the resource in a heterogamous system efficiently and
dynamically while meeting end-user requirements. The tested method assisted in redu-
cing the makespan of a particular series of activities in a virtual machine when the load
was evenly spread among all of the VMs. In contrast to other well-known algorithms, the
experiment’s findings demonstrated that the explored approach was efficient and used
less energy.

Furthermore, A dual-staged cloud-based container management system was suggested
by (Zhang et al.[2022). In the proposed architecture, stages for deployment and relocation



of the container have been incorporated. In an attempt to distribute the load over the
long run, the investigation primarily focused on the container placement method used
by cloud nodes. It is characterized as a two-stage technique for container management
in the cloud that comprises deployment and relocation. The initial stage was to develop
a long-term load-balancing plan for container deployment onto the cloud servers. The
second phase was using a rapid container migration strategy among cloud servers. In
conclusion, it was advised to use a two-objective optimization approach to lower the
load disparity ratio while lowering the relocation expense. Finally, A basic framework for
interactive optimization-based scheduling algorithm for Cloud Computing based scenarios
was proposed by (Wang et al.|[2021). The purpose of this research was to facilitate a model
for resource provisioning that supports collaborative optimization of power usage and QoS
in a cloud computing environment, hence decreasing data center power consumption while
preserving QoS. This research built a multi-VM buffering infrastructure and examined the
connections between the queue of job sequencing and the power used by the framework.
The results of the studies demonstrated that the scheduling technique has the ability to
effectively lower the power needed by cloud data centers while ensuring QoS.

2.2 Leveraging comparative optimization techniques for load
balancing

(Haris & Zubair|2021) introduced the Mantaray modified multi-objective Harris hawk
optimization a dynamic approach to distributing the workload evenly on the founda-
tion of a computational framework. The Harris Hawk Optimization investigation zone
was updated using Manta-Ray Forging Optimization in order to improve price, reaction
speed, and equipment use. According to this method’s resilience, the performance was
raised, the workload remained regulated, as well as harmony among work prioritization
was achieved. The results of the simulation (obtained using CloudSim) demonstrated
the superiority of the recommended algorithm over competing methods. Additionally,
(Balaji et al.[2021) examined the devastating effects on the environment caused by DC’s
enormous power demand and massive carbon footprint. This study offered a method for
increasing the system resource use of the VM while consuming less electricity. With the
help of optimal cryptographic encryption techniques, this study presents an approach for
relocating virtual machines that are both secure and energy efficient. Using a sanitiz-
ation method, the sent information is encrypted for safety purposes. The performance
is evaluated using parameters such as make span, energy utilization, and memory use.
Moreover, A load balancing method enabled by an enhanced Particle swarm schedul-
ing algorithm was described by (Pradhan & Bisoy|[2022). This system scheduled tasks
using the currently offered cloud environment, thereby shortening the runtime and us-
ing more resources. The enhanced task allocation algorithm is based on the Particle
Swarm approach, which assesses every particle’s optimal solution utilizing the fitness
function. This project used the CloudSim modeling toolbox to build the proposed al-
gorithm. The provided approach demonstrated enhanced results in contrast to the other
existing strategies with respect to throughput duration and resource consumption in the
simulated output.

The two primary difficulties with security and optimal workload balancing in the cloud
were described by (Kaviarasan et al.|[2022)). Monarch butterfly behavior served as a bio-
inspiration for the suggested work’s structure. The suggested Meta-heuristic method
precludes striking a near-optimal solution when looking for the optimal outcome. It is



evident that the exploration speed is higher than singular solution-based methodologies
because the technique can migrate into intriguing sections of the investigation area. The
findings were compared to many well-known benchmarked algorithms, including Common
Scrambling, and Honey Badger algorithm based on experimental research outcomes. The
suggested algorithm was shown to have more fault tolerance compared to its competition.
Furthermore, It was suggested to solve an optimisation issue using the Artificial Bee
Colony load balancing technique (Shen et al.[2019). To enhance the overall effectiveness of
the load-balancing approach and obtain enhanced agility, an optimisation strategy of the
Artificial Bee Colony is recommended by the author. The ABC approach was improved
in this research, and a group of VMs was built using cloud resources from the smart grid.
The outcomes demonstrate that the technique may be used to decrease latency, reaction
speed, and resource usage in a cloud-based system for a smart grid. The efficiency of
the suggested strategy was validated by comparing the outcomes of several simulations.
Lastly, (Priya et al.2019) proposed a task scheduling/load balancing strategy based
on resource assignment in the cluster to economically provide cloud services. For the
purpose of improving the effectiveness of resource scheduling in the cloud environment,
this strategy creates a multifunctional resource scheduling solution that utilizes fuzzy
logic. Then, it is feasible to enhance the utilisation of VMs through accurate and logical
load balancing by using the Multi-dimensional Queuing Load Optimisation technique to
automatically select a query from a group. It is evident from the simulation results that
the proposed technique is better in terms of success rate, execution time, and resource
scheduling.

2.3 Hybrid algorithms in Load Balancing

(Junaid et al.[2020) suggested a novel hybrid strategy to equalize the information for clas-
sifying the quantity of records that exist in the cloud depending upon file type formatting.
To evenly spread the burden in the cloud computing environment, a meta-heuristic op-
timization technique known as Ant Colony Optimization distributed this information
dependent on FTF. In respect of SLA violations, the migration duration, performance,
delay, as well as optimisation duration, all components of the Quality-of-Service of the
suggested system were contrasted to the present approach. Next, (Kruekaew & Kimpan
2022)) forecast a MOABCQ-style autonomous job scheduling approach for cloud comput-
ing. The Artificial Bee Colony algorithm’s output was enhanced in this study using the
Multi-Objective Task Scheduling Optimization technique, a supervised learning strategy,
and a Q-Learning algorithm. With this approach, planning and asset use were stream-
lined, VM performance was increased, as well as the workload was distributed across
VMs according to computation time, expense, and capacity utilization. The experimental
findings showed that the proposed approach worked better to increase productivity and
median resource utilisation while minimizing makespan, cost, and degree of imbalance.
Moreover, (Li et al.[2020) examined how the cloud computing service providers concen-
trated upon sharing the computational prospects with the assistance of virtualization.
These jobs then were distributed to distant data centers via cloud services to analyze the
information. Throughout this period, the scheduling algorithm process was successful in
reducing runtime, improving the quality of service, and optimising the overall workload
upon that VMs. This approach sought to shorten the number of iterations and increase
the level of VM equilibrium.

Furthermore, The Integrated Multi-Objective Particle Swarm Optimization and Fire-



fly techniques were combined to create the upgraded load balancing method proposed in
this paper (Devaraj et al.|2020). The IMPSO method and the Firefly algorithm are used
in the suggested study to find the heightened responses and also to condense the search
space. The recommended FIMPSO solution enhanced critical indicators, such as the best
resource usage and task latencies, and provided an optimum overall mean. In order to ex-
amine the results, measures such as timeframe, resource utilisation, reliability, makespan,
and transmission rate were used. Subsequently, An EDA-GA framework that combines
a genetic algorithm with an estimation of distribution approach was proposed by (Pang
et al./|2019)). Initially, a particular scale of potential solutions was offered using the prob-
abilistic model and sampling method of EDA. Then, crossover extension and mutation
operations were included to expand the search field for solutions. In the end, the jobs were
distributed among the virtual machines (VMs) using the most effective scheduling meth-
odology. The test findings demonstrated how effectively the created strategy decreased
job completion times and enhanced load balancing efficacy. In addition to that, (Thakur
& Goraya 2022)) introduced a brand-new multi-objective optimisation algorithmic tech-
nique known as PPSO-DA that is based on a dragonfly model and phasor particle swarm
optimization. As an holistic approach to equalise the workload of active PMs with their
anticipated resource capacity, a resource provisioning concept called RAFL is introduced.
It is also advised to use PPSO-DA, a hybrid metaheuristic-based optimization method-
ology, to analyse and effectively use the available search space. This study examined
the characteristics of load imbalance between dynamic hardware resources and their es-
timated resource capacities by implementing simulation testing using CloudSim. Finally,
(Jena et al|?2022) introduced a unique approach to proactively balance load among vir-
tual machines using a combination of an updated Q-learning and an enhanced Particle
Swarm Optimization, or QMPSO algorithm. The conventional Q-learning weight-based
MPSO approach is enhanced in this study to measure the workload of every VM and
balance it with the help of objective function. The objective of the proposed algorithmic
approach was to maximize machine productivity by balancing load amongst VMs, optim-
izing VM productive capacity, and keeping a balance among priority workloads through
minimization of the workload waiting period.

2.4 Summary of Literature Review and Proposed method

In this literature review, the first section focuses on the papers which have tried to optim-
ize the load-balancing domain using the energy-efficient approach. Using this approach,
the existing research managed to improve several quality-of-service parameters in cloud
architectures majorly makespan and energy usage. The overall target was on improving
the load balancing techniques but focusing mainly on reducing the energy consumption in
terms of makespan and relocation. The next set of research papers is based on improving
the capability of optimization algorithms in terms of resource allocation. Considerable
efforts were made with evident results by several researchers to reduce the overall cost
and maximize the equipment utilization while allocating the task to a set of virtual ma-
chines. The focus was to improve the Quality-of-Service parameters like throughput,
resource scheduling efficiency, and response time by implementing resource allocation op-
timization techniques beforehand. The last set of papers describes a hybrid architecture
approach to balance the load in the cloud. Various researchers took efforts to precisely
combine two or more algorithms to improve overall productivity and average resource
utilization. The goal of all previous research in this field has been to maximize cluster



utilization and minimize disruption by applying optimization techniques to the clusters
upon virtual machine overload. Also, the research conducted in the field of task schedul-
ing utilizing optimization algorithms is based on allocating the task effectively first by
taking into account factors like energy consumption or failure rate. Additionally, there
have been several attempts to create a hybrid algorithm, but none of the research has
concentrated on hybridizing the honey badger algorithm with Particle Swarm Optim-
ization. Therefore, a hybrid particle swarm optimization approach is suggested in this
study that combines the benefits of HBA and the standard PSO to determine the best
virtual machine to distribute workloads, minimize the makespan, and maximize resource
utilization.

3 Methodology

The research proposed in this paper mainly focuses on improving network efficiency while
maintaining the standard of Quality-of-Service parameters. The primary objective of this
study is to effectively schedule the tasks to the optimal virtual machine available in the
cluster depending upon factors like makespan. This goal is achieved by employing a
hybrid version of the standard PSO algorithm and comparing it with a set of existing
optimization algorithms. The results will be compared based on Total execution time,
Resource Utilisation, and Convergence Curve. This section provides a brief overview of
methods, procedures, and approaches that have been employed in our study.

3.1 Particle Swarm Optimisation and its drawbacks

PSO, also known as Particle Swarm Optimization, is an organism-inspired algorithm
that looks for the best outcome possible inside the available search area. This tech-
nique varies from many other optimization strategies because it only needs the fitness
method/function and does not rely upon patterns or any kind of distinctive format of the
objective.(Juneja & Nagar 2016) The algorithm is highly dependent on the population
size hence it is also called as a population-dependent algorithm. It is directly compar-
able to the genetic algorithm in this respect. In PSO, Particles are indeed a group of
discrete components that move through a space in a sequence of phases. The technique
analyses the objective function, individually on the particle level at each stage. After
such evaluation, the program calculates the updated velocity of every particle. Follow-
ing a particle’s movement, the code is re-evaluated. In a utility computing context, one
method of task scheduling workloads is to shift them to an existing virtual machine in the
network. This optimization technique/algorithm is mostly used to identify answers for
continuous optimization problems without any previous information (Freitas et al.|2020).
This leads to numerous task migration and scheduling problems in the infrastructure.
Also, sometimes the standard PSO gets stuck in its local optimum and cannot update
the global optimum value (gbest). To overcome this drawback of the standard PSO al-
gorithm, hybridization with some other algorithm was required which will help in finding
a more efficient solution from the provided search space.

3.2 Hybridisation of PSO with Honey Badger Algorithm

The Honey Badger Algorithm takes its reference points from the animal honey badger,
which inhabits deserts and woodlands in Asia and Asian Subcontinent. It uses its sense



of smell and movement to find prey. The HBA algorithm developed implements the
behavior of honey badger with the help of two distinct phases. The honey badger first
goes through a digging phase during which it relies on its sense of smell to find its prey
and the best location to grab it. The next stage is the honey phase, during which the
honey badger searches for the beehive by following the honey bird. The HBA algorithm
is initialized by calculating the solution inside the lower-bound and upper-bound of the
provided search space. For balancing between the exploration and exploitation of the
HBA, a density factor alpha is defined (Hashim et al.|[2022)).

a=0Cx% exp(ft/T) (1)

Here, T denotes the total number of iterations, t is the current iteration, and C
denotes a constant having a value larger than zero. The Initialisation is then followed by
the digging phase where the movements of the particle in the solution space are updated
using the specific equation. Finally, there is a honey phase where the actual global optimal
solution is updated (Hashim et al.2022]).

Given the benefits of the HBA algorithm, A Hybrid algorithm that is defined on a
swarm-based approach is proposed in this paper. The amazing foraging skills of honey
badgers serve as the inspiration for the proposed algorithm. The HYPSO approach uses
a searching method to solve an optimization problem and is given quantitatively. If the
PSO algorithm fails to provide with a Global Optimum value, It uses two Honey Badger
algorithm strategies, honey finding and digging to offer a successful resolution. In order
to find the optimal answer in a bigger landscape region, this HYPSO is supplied with a
sufficient population and a variety of procedures.

3.3 Proposed Research Architecture

Task 1 Task 2 Task 3 Task 4 Task N

H B E
1 ||||| TN

Hybnd Particle Swarm Opumlsanon with Honey Badger
Algorithm

Allocating Task to best fit
Resource Resource
Information Information

Y o

J4_

Figure 1: Proposed Research

The workflow is initialized by a user at a remote site by generating a range of workloads
that the Virtual Machines will execute, as shown in Figure [2. The spawned set of tasks

8



are then passed to the task queue. subsequently, the generated series of tasks are then
stored in a buffer according to the specified priority. At this stage, in a normal scenario,
the tasks will be distributed among the available set of virtual machines using legacy
task scheduling algorithms like weighted round robin or least connections. In this case,
the current resource utilization of the host VM is not taken into consideration and the
tasks are distributed among the available virtual machines. This leads to the problem
of overscheduling the tasks on a single VM or in simple words overloads the virtual
machine which will lead to a delay in executing the task. To overcome this scenario,
in the proposed research (Figure [2)) a hybrid particle swarm optimization algorithm is
implemented which will calculate the local optimal (pbest) and global optimal (gbest)
values using the standard particle swarm optimization algorithm. Additionally, when the
standard PSO is stuck in the local optimal and is unable to find a better solution in the
search space, the honey badger algorithms digging and honey phases are used to explore
more in the search space and update the global optimal value (gbest). In simple words,
the Honey Badger algorithm will find the best virtual machine in the available search
space to facilitate optimal task scheduling.

3.4 Pseudo-code of the Algorithm

Input Data = P - Population Size, Cl & C2 - PSO algorithms Learning Factors
[E W - Inertia Weight, Max iteration, Flag - HBA Flags to alter direction
Beta - ability to find optimal best, C - Constant wvalue for HBR
output Data = Optimal Schedule for Tasks.

set pbest
set gbest

inf // initialising local optimal as infinite
inf // initialising global optimal as infinite

for each particle in P

Intialise particle // Generate random schedule for tasks
Endfor
Do
for each particle // For ever task schedule
Calculate Fitness function // here fitness is considered as makespan
] if Firness(new) > pbest(current)
= update pbest(current) = fitness(new)
Endif
= if pbest{new) < gbest(current)
E then set gbest(current) = pbest (new)
= else // hybridisation with Honey Badger Algorithm
calculate o = C**(-1/max_iterations)
Calculate the intensity using D and S // here D is distance and 5 is concentration strength
H for i = 1:N // W is No. of Tasks
= Update the position using HBA digging phase
- Endfor
> EndIf
Endfor
B for each particle in P
Calculate particle welocity using PSOC
H Set position = welocity + position

. Endfor
While Max iteration reached or minimum error criteria is not attended

Figure 2: Pseudocode of the proposed algorithm

The proposed algorithm aims to successfully schedule incoming tasks while maintain-
ing the Quality of Service parameters. The suggested approach uses a Hybrid particle
swarm optimization technique to increase the network efficiency. At the initial stage,
the algorithm captures parameters such as weight (w), Learning factors (c1 & ¢2), pop-
ulation size (p), Flag (F), and maximum iterations which are required by the Standard
PSO and Honey badger algorithm. Next, it initializes the local and global best values



as infinite so that the fitness function of the proposed algorithm can update these values
in the first iteration. Next, for every particle in the population, that is for every task, a
random schedule is generated initially. Further, a loop is executed which will run until
it reaches the maximum number of iterations defined, which in our case is 100, or until
the minimum error condition is not met. Then, for every particle in the population, a
fitness/objective function is calculated and compared with the existing pbest value. If
the new fitness generated is better than the existing value of pbest, then the value of
the newly generated fitness is assigned to the pbest variable. Next, a similar comparison
between the pbest and gbest values is performed and if the current ghest value is greater
than the pbest, the value of pbest is assigned to the gbest variable. In contrast, if the
value of pbest is not smaller than gbest, then the calculation of the density factor alpha
and Intensity is carried out to initiate the Honey Badger algorithm. Subsequently, a for
loop is executed which will start the execution of the digging and honey-finding phase of
the HBA algorithm which will aid PSO to find a better solution to schedule that task in
the available cluster of virtual machines. After that, for every particle in the population,
that is for every task a velocity is calculated. In the proposed algorithm, Velocity is the
information exchanged between the task and the virtual machine. Lastly, the position is
updated using the value of velocity, and optimal schedules for tasks are generated. In ad-
dition to that, performance factors such as Makespan, Convergence Curve, and Resource
utilization are also recorded for evaluation.

3.5 Evaluation Parameters

For the purposes of this study, relevant parameters were determined for algorithms eval-
uation and to perform a comparison with an existing task scheduling method. The
primary objective of the algorithm is to efficiently schedule the incoming tasks, calcu-
late the time consumed for execution (Makespan) and determine the resource utilization.
Also, the convergence curve is an important factor when it comes to optimization-based
task scheduling algorithms which is also taken into account while comparing the proposed
research with the existing ones. The performance measurement factors were selected such
that the algorithm’s effectiveness could be easily evaluated. The three parameters used
for the evaluation are as follows.

e Makespan - This is the overall amount of time consumed for the execution of
the tasks after scheduling. The time will be reduced as the proposed algorithm will
distribute every task to an optimal virtual machine which will be the best fit to
perform its execution.

e Resource Utilisation - This parameter defines the total amount of resources in
the cluster utilized for the execution of allocated tasks. Resource utilization will also
be optimized as the proposed algorithms’ fitness function takes into consideration
the load of every virtual machine and schedules the task to the least loaded one in
the network. This maintains a balance in resource utilization and also protects the
infrastructure from failure due to overloading.

e Convergence Curve - This parameter describes the overall number of iterations
which is required by the algorithm to produce an optimal solution. In our case,
the convergence curve of the Hybrid particle Swarm Optimisation algorithm will be
evaluated to determine the speed of finding the optimal solution.

10



4 Design Specification

A significant problem in load balancing is the algorithm’s capability to accurately assign
activities to a collection of virtual machines in such a way that the entire cluster maintains
a Highly Significant Quality of Service. Also, the existing PSO algorithm has signific-
ant drawbacks which are required to be addressed. The standard PSO algorithm gets
stagnated in finding a local optimal in the predefined search space, which in our case is
the cluster of VM. Hence, to facilitate a Load Balancing Algorithm that overcomes these
drawbacks and provides Improved Quality of Service, we developed a hybrid algorithm
that improves on the one developed by (Pradhan & Bisoy|2022).

[ Define No. of VM's and Task ]

v

[ Define No. of Population, max }

iteration, PSO constants c1,c2,w
and HBA algorithm parameters

v

Initialise fitness function as
makespan

Y

FOR
| <= Max lteration

Generate random Population and
calculate fitness function

v

Generate value for pbest and
gbest on the basis of fitness

v

Update Population using Velocity

' :

Calculate fitness and compare
pbest and gbest

Repeat

!

IF
Fitness (new) < ghest

No-

v

T [ Update the Solution using Honey

Yes Badger Algorithm
v

Calculate fitness and compare
pbest and gbest

[ Schedule the Tasks }4

v

Figure 3: Flowchart of the proposed HYPSO algorithm

11



The proposed research integrates the HBA algorithm with Standard PSO to maximize
resource utilization and makespan, whereas preceding research was focused on optimizing
the Standard PSO by taking into consideration factors like task and resource information.
Figure |3 represents the flowchart of the proposed HYPSO algorithm. The Process starts
with Defining the number of cloudlets(VMs) and Tasks to be assigned in the cluster. Next,
Several parameters and constant values are initialized which are required by the Standard
PSO and HBA algorithm to be implemented such as weight, maximum iterations, and
intensity. After that, makespan is initialized as the fitness function which is also called
the objective function in terms of PSO, and the For loop is executed which repeats the
process until it reaches the maximum number of iterations. When the loop executes for
the first time, it generates a random population to calculate the fitness function which is
based on makespan, and also sets the value for pbest (Local Optimum) and gbest(Global
optimum) depending on the value generated by the fitness function. Further, it updates
the population generated using velocity and calculates the fitness to compare the pbest
and gbest values generated. If the value generated by the fitness function is less than
the gbest value, it updates the gbest value with the new fitness value. Also, if the newly
generated fitness value is not less than the current value of gbest, the Honey Badger
algorithm is initialized to find the best solution and overcome the drawback of Standard
PSO. After that, once again the fitness value is calculated and compared with pbest. If
the newly generated solution is better than the one generated previously, the global value
is updated and the loop is repeated. The loop keeps on executing until the maximum
number of iterations is completed and all the scheduled tasks are allocated to the most
efficient virtual machine.

5 Implementation

Given the expense of building up a real-world cloud computing infrastructure, the research
has chosen to develop the suggested hybrid method using simulations. In this case,
MATLAB is used to illustrate and carry out the complex computations necessary for
an algorithm based on optimization techniques. Prior to the live deployment of the
suggested method, using a simulator will aid in detecting the majority of errors. The
benefit of employing this configuration is that we may take preventative action, saving
us the expense of setting up a live testing environment. Additionally, The Simulation
software was installed on a device running a 64-bit Windows 11 operating system with an
AMD Ryzen 5, 6-core CPU. Moreover, the built-in IDE offered by MATLAB was utilized
in conjunction with the C language to develop the suggested optimization method.

5.1 Tool used for Evaluation

MATLAB, a tool provided by MathWorks, is a specialized programming interface for
developing techniques to replicate the operation of algorithms. It discusses problems and
produces solutions by merging technology, and graphic elements, with programming in
an easy-to-use user interface, all while employing a properly ordered technical termin-
ology. The unified simulation model, MATLAB considers a collection to constitute a
simple data object if that array does not require it to be dimensioned. This allows many
advanced programming tasks, particularly those that use vector or matrix compositions,

to be completed much more quickly than they could be by implementing programming
languages like C. (CIMMSEducation| 2020)

12



Matlab Simulation Environment

HYPSO.m Outputs
Hybrid Algorithm Mathematical il add’
Toolboxes

|}
Statistical

Intensity.m
Makespan.m Supporting Functions()—s

v

imi Graph = o
CheckLimit.m - H ,ono:
= = Graphical g :Q‘.’. o

Main Function() Toolboxes Matlab/Simulink
Simulation

Figure 4: Architecture of Matlab Implemented

Additionally, it permits us to explore with a wide range of ideas or methods. By ad-
opting a high-level coding interface, which takes care of lower-level programming concerns
like resource use and parameter class effectively, users may focus on how the algorithm
must operate. Once it has been operationally tested, the load balancing technique could
be enhanced for effectiveness and dependability. Tools included within the system can
detect problems and provide fixes. To ensure that the approach works consistently on
predefined CPUs, we can employ a collection of data structures and arithmetic calcula-
tions (Mathworks|2018). To implement the proposed research, We have utilized several
in-built toolboxes provided by Matlab.

5.2 Formulating the Objective function required

The Particle Swarm optimization algorithm requires an objective function to run in the
background to calculate the fitness of a particular task. Makespan is considered as the
objective function in our case, to minimize the overall execution time of the tasks. Also,
this objective function acts as a main pillar for the newly proposed HYPSO algorithm. To
define this characteristic of the optimization algorithm, which is to calculate the fitness
function, we have implemented a Matlab function and stored it in a separate file called
”fmakespan.m”.

| fmakespan.m | =+ |

1 function fit= fmakespan (pSocl,nProcess)
2l= No=size (nProcess,1);

3= T=zeros(1,No);

4= while 1

&= for i=1:No

6 — T(i)=T (i) +nProcess(i,psSol(l));
7= psol(1l)=[1:

BI= if isempty(pSol)

9 — break;
10 — end
L= end
13 = if isempty (pSol)
13 — break;
14 — end|
1E5|= end
16 — fit=max(T):
L7 |= end

Figure 5: Objective Function to calculate fitness

This function is then utilized in the "MainCode.m” file to calculate the objective
function (Figure . Also, to make it simple to call this function in the code, we have

13



created a function handle using the ”@” symbol which is reserved for function handling in
Matlab. Furthermore, the newly created function handle also acts as the main argument
to be passed for the execution of the proposed Hybrid Particle Swarm Optimisation
algorithm.

5.3 Checking the Upper bounds of position generated

To check the upper bounds of the solution generated for the position of the particle in the
solution space, we have formulated a Matlab function called ” CheckLimit.m” (Figure @
In simple terms, the function checks the solution generated by the Hybrid PSO algorithm,
that is the position (Virtual Machine) to which the task will be assigned. Also, it checks
whether the position of the particle is inside the upper limit of the virtual machine cluster.

fmakespan.m MainCode.m CheckLimit.m +
1 function [bSolution] = CheckLimit (bSclution,ULlimit,dim)
2= bsolution=round (bSolution) ;
3= for i=l:size (bSclution,1)
4 - for j=l:size(bSolution,2)
5— if bSolution(i,j)<=ULlimit (1)
6 — bsolution (i, j)=randi (ULlimit,1):
7 - end
8 — if bsSolution(i,j)>=ULlimit(2)
9 — bSolution(i,j)=randi (ULlimit,1);
10 — end
il = if bSolution(i,])<0
g = bSolution(i,j)=randi(ULlimit,1);
13 — end
14 — end
15 — if length (unigue (bSolution(i, :)))~=dim
16 — temp=randperm (ULlimit (2)):
iy = bSolution (i, :)=temp(l:dim);
18 = end
i1g)|= end

Figure 6: The CheckLimit.m function

This function is created and stored in a separate Matlab file for the purpose of code
re-usability. The Defined function first rounds up the value of solution-generated and
checks for four conditions. First, it checks whether the solution generated for the task
placement is under the upper-bound defined or not. If it is not under the defined limit,
it generates a random value between the upper bound defined. Furthermore, it continues
to check conditions like "IF the value is negative” or "IF the value is Equal to Zero
after roundup” and performs a similar procedure of generating a random value between
the specified upper bounds as defined in the first "IF” condition. Lastly, The function
also checks whether the position is unique in every iteration to avoid virtual machine
overloading which can lead to failure in task execution.

5.4 Calculating the Intensity Factor HBA

As the proposed algorithm is a combination of Particle Swarm Optimisation and the
Honey Badger algorithm, calculating the intensity is an important aspect of the proposed
research. The Intensity factor is derived from the ”strength of the prey” (defined as S)
and the distance between the ”prey and the ith honey badger” (defined as D).

To define this functionality in Matlab, we have designed a function called ”Intens-
ity m” (Figure [7) and stored it in an isolated ”.m” file for the purpose of code reuse.

14



fmakespan.m | MainCode.m | CheckLimit.m | Intensity.m |+ |

|
1 function TI=Tntensity (N,Xprey,X)
2= for i=1:N-1
3= di(i) =( norm((X(i,:)-Xprey+eps)))."2; F#ok<RGROW>
1|— S(i)=( norm((X(i,:)-X(i+1l,:)+eps)))."2; Z#ok<hGROW>
Gl= end
6
7= di (N)=( norm({ (X (N, :)-Xpreyt+teps)}))."2;
i[= S(N)={ norm({ (X (N, :)-X(1,:)+eps)))."2;
9 — for i=1:N
10 — r2=rand;
il [= I(i)=r2*s(i)/(4*pi*di(i))-
12z — end
13 — end

Figure 7: The Intensity.m function

Also, while calculating the values for S and D in the Matlab function, we have used
an "eps” value which is by default defined in Matlab. The "eps” value is a very small
number (for instance 2.2204e-16) which avoids the multiplication value generated from
being zero. This value is applied here as the formula for calculating the Intensity has a
divisible value of the parameter "D” and multiplication value of parameter ”S”.

5.5 Hybridisation of PSO and HBA

To simulate the working of the proposed algorithm, we have created an "HYPSO.m” file
(Figure [8)) which consists of programmatical steps to execute the Hybrid algorithm. This
function consists of all phases of the Particle swarm optimization algorithm and some
phases of the Honey Badger algorithm. This is to overcome the drawback of stagnation
in the standard PSO algorithm of finding the local optimum. The recently proposed HBA
algorithm helps PSO to better explore the available search space to find a better ” Global
Optimum Value”.

32 - for 1=1:Max_iteration T

35|= for i=l:size(Position, 1)

34 — Position(i,:) = CheckLimit (Position(i,:), [l nTask],noV):;

35 — fitness=ObjectiveFunction(Position (i, :),nPT) :

36 — if (pBestScore (i) >fitness)

S |= pBestScore (i)=fitness;

38 - pBest (1, :)=Position(i,:);

39 — end

40 - if(gBestScore>fitness)

41 — gBestScore=fitness;

42 — gBest=Position(i, :);

43 — else

44 — alpha=C*exp (-1/Max_iteration);

45 — F=vec flag(floor(2*rand()+1));

46 — I=Intensity(noV,gBest',pBest');

47 — r3=rand;

48 — r4=rand;

49 — r5=rand;

S|= for il=l:nov

Fil|= di={((gBest(il)-pBest(il))};

52 — Position(i,il)=gBest(il)+F*beta*I(il)* gBest(il)+F*r3*alpha* (di) *abs (cos (2*pi*rd)* (l-cos(2*pi*r5))):

53 — end

54 — end

55 — end

56 — for i=l:size(Position,1)

37|= for j=1:size(Position,2)

58 — Velocity(i,j)=w*Velocity(i,j)+cl*rand()* (pBest (i,j)-Position(i,j))+c2*rand()* (gBest(j)-Pasition(i,J));

59 — Position=Velocity+Position; v
< >

Figure 8: Integration of PSO and HBA through Matlab

15



The Function starts with finding the solution by using the PSO algorithm. It updates
the Local Optimal(pbest) and Global Optimal(gbest) values and also compares them with
previous iterations. Additionally, when the PSO algorithm gets stuck and is unable to
find the best virtual machine for task allocation, starting from the ”Initialisation phase”
to the ”Digging phase” of the Honey Badger Algorithm are executed and the position
value is updated with a better alternative. Finally, using the updated values, the velocity
of the particles and position is calculated and an optimal schedule for tasks is generated.

6 Evaluation

In this section, a comprehensive evaluation is performed to evaluate the proposed Hybrid
Particle Swarm Optimisation algorithm. The algorithm is implemented using Matlab
and simulation is performed to generate results. The proposed algorithm is then com-
pared using several factors such as Convergence Curve, Execution time, and Resource
utilization. The proposed task-scheduling algorithm is a combination of optimization
techniques called Particle Swarm Optimisation and Honey Badger Algorithm which are
then compared with several existing optimization techniques documented in (Pradhan &
Bisoy|2022]).

The experiments were conducted by generating a specific amount of workload that
is to be distributed among a fixed number of virtual machines. Using Matlab, we have
simulated this exact scenario where a specified number of tasks are created by assigning
them a makespan time. Makespan in our case is a random number that is generated
using Matlab and assigned to the task which will indicate the exact amount of time
required by the task to complete its execution. To evaluate the results dynamically, three
experiments/cases were considered where factors such as the number of Virtual machines
in the cluster and the required amount of tasks to be assigned were varied while keeping
other factors constant.

Table 1: Experiment Setup

Experlm(?nt/ Cluster Size | Total No. of Tasks
Scenario
1 3 VM’s 10
2 5 VM’s 15
3 15 VM’s 25

6.1 Experiment / Case Study 1

In this experiment, we are going to perform tests on the proposed hybrid PSO algorithm
and analyze the test results by using QoS parameters. We are going to compare and
analyze the performance of the algorithm by considering factors like Resource Utilisation
and Makespan. Furthermore, an in-depth comparison of the results with already existing
meta-heuristic optimization techniques like LBMPSO, PSOBTS, L-PSO, TBSLB-PSO,
and DLBA is performed.

As mentioned in Table 1, we are considering scenario 1, where we have a cluster of
3 Virtual machines to assign 10 tasks with 30 processes. The results from the tests are

mentioned in Figures [9] [10] and [11]

16



800

700

[22]
(=]
(=]

[#1)
o
o

Makespan Time (Seconds)
w B
(= (=]
(=] [=]

s8]
(=]
o

s
o
o

Figure 9: Makespan of HYPSO with 3 VMs and 10 Tasks

Results of makespan for a cluster size of 3 Virtual machines and 10 tasks are depicted
in figure 0l From the results, we can observe that our goal to reduce the makespan
Also, when we compare the results with other
meta-heuristic techniques, the proposed HYPSO algorithm has a very minimal makespan

of the tasks is achieved successfully.

Makespan Time with 3 VMs and 10 Task

I HYPSO
[ LEMPSO
[CrsoeTs
L -FsO
[ TBSLB-PSO | -
[CbLea

1 2 3
Different Algorithm

compared to the existing techniques.

Resource utilization

o
w
T

o
]
T

=
=,
T

Figure 10: Resource Utilisation of HYPSO with 3 VMs and 10 Tasks

Results of resource utilization for a cluster size of 3 Virtual machines and 10 tasks
are outlined in figure From the results, it is evident that the tasks are distributed
evenly among all the virtual machines in the cluster, and hence increment in resource
utilization is observed. Also, the best optimal solution was found on the 40th iteration as
observed from figure The convergence curve is a parameter that defines how quickly
the algorithm completes the optimization process and finds the best optimal solution for

task scheduling.

o
<]
T

o
o
T

e
~
T

(=}

Resource utilization with 3 VMs and 10 Task

Different Algorithm

17



Figure 11:

Convergence Curve for 3 VMs

12 T T
10 \
108 -

106 [

fitness

104

102

100

98 . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
Iteration

Convergence Curve of HYPSO with 3 VMs and 10 Tasks

6.2 Experiment / Case Study 2

In the second experiment, We tried to change the configuration of the Virtual machine
cluster and the number of tasks assigned to them. Analysis of the results obtained from
this experiment will be determined by factors like resource utilization and execution
time required to complete the tasks. Comparison with already existing meta-heuristic
algorithms will be made to evaluate the performance improvement. As mentioned in
Table 1, we are considering scenario 2, where we have a cluster of 5 Virtual machines
to assign 15 tasks with 30 processes. The results from the tests are mentioned below in

Figures [12] [13] and

Makespan Time (Seconds)

Makespan Time with 5 VMs and 15 Task

I HYPSO
350 - N LBMPSO
[ IPsoBTS
I L-FSO
[ TBSLB-PSO |
[CbLBA

400

(48]
(=]
o

250 -

200 -

—

(4]

[=]
T

e
(=}
(=}

[41]
o

3
Different Algorithm

Figure 12: Makespan of HYPSO with 5 VMs and 15 Tasks

Results of makespan for a cluster size of 5 Virtual machines and 15 tasks are mentioned
in figure From the results, it can be noted that the proposed Hybrid PSO algorithm
is slightly better than the LBMPSO algorithm but outperforms others marginally.

18



Resource utilization with 5 VMs and 15 Task

0.9
I HvPSO
0.8 I LBMPSO | -
[ 1rsoBTS
0.7 | -PSO
’ LA
5 06
m
N
= 05
=}
8
5041
o
o
r 0.3
0.2
0.1

(=]

Different Algorithm

Figure 13: Resource Utilisation of HYPSO with 5 VMs and 15 Tasks

Results of resource utilization for a cluster size of 5 Virtual machines and 15 tasks are
mentioned in figure(13] From the results, it is evident that the tasks are distributed evenly
among all the virtual machines in the cluster, and hence increment in resource utilization
is observed. Also, the resource utilization of the cluster is almost 85% which directly
reflects improvements in cluster efficiency and utilization when applied in a practical
scenario. Additionally, the optimal solution was found on the 28th iteration as observed
from the Figure

0 Convergence Curve for 5 VMs

160

160 |

140

fitness

130

120

1Mo

100 . . ! ; ; ; ; ; ;
0 10 20 30 40 50 60 70 80 90 100
Iteration

Figure 14: Resource Utilisation of HYPSO with 5 VMs and 15 Tasks

6.3 Experiment / Case Study 3

In the third experiment, we tested the proposed algorithm by altering the virtual machine
cluster’s setup and the amount of workload that was given to the cluster. As mentioned
in Table 1, we are considering scenario 3, where we have a cluster of 15 Virtual machines
to assign 28 tasks with 30 processes. Resource utilization and the amount of time needed

19



to execute the activities were key aspects in the analysis of the outcomes from this
experiment. To assess the performance increase, comparisons with already existing meta-
heuristic algorithms were performed. The results from the tests are mentioned below in

Figure [T5]

Makespan Time with 15 VMs and 25 Task Resource utilization with 15 VMs and 25 Task

400

=
o)

I HYPSO I HYPSO
350 F [ LBMPSO [ LBMPSO
[__1rsoBTs 06 [ IpsoBTs | ]
B L-PSO I PsO
300 [ [ TBSLB-PSO | [ oLea
IoLea 05

]
o
o
T
o
'S

o
o
T
o
w

Resource utilization

Makespan Time (Seconds)
8
(=]
o
LS

o
[S]

o
=]
T
=

[=]

1 2 3 4 5 6
Different Algorithm Different Algorithm

Figure 15: Makespan of HYPSO with 15 VM’s and 25 Tasks

Results of makespan for a cluster size of 15 Virtual machines and 25 tasks are men-
tioned in figure [15| From the results, It is evident that the proposed Hybrid PSO al-
gorithm can also effectively reduce the makespan in a larger cluster of virtual machines.
Also, when compared to a few existing meta-heuristic algorithms, the proposed approach
outperforms every algorithm marginally. Figure [L5 mentions the results of resource util-
ization for a cluster size of 15 Virtual machines and 25 tasks. Better task distribution
throughout the virtual machines in the cluster is apparent from the data, and a rise in
resource usage is therefore observed. Additionally, the cluster uses approximately 70% of
the available resources in the cluster while other algorithms use less than 50%.

6.4 Discussion

Based on the results of the above experiment, we can claim that the Hybrid load balan-
cing algorithm in cloud computing is effective at task scheduling based on virtual machine
capacity and fitness function. It even reveals that our suggested technique would prevent
the virtual machines in the cluster from being overloaded. Also, the experiments prove
that the suggested approach can withstand and be deployed on clusters of varied sizes and
will still give better results than any other existing optimization approaches. Further-
more, the Hybrid PSO algorithm also distributed the tasks evenly so that the maximum
amount of resources available in the cluster would be utilized to avoid the problem of
underutilization of resources in the cluster.

Moreover, as the world is getting more aware of green computing and energy effi-
ciency, increased resource utilization can lead to a higher amount of energy consumption.
However, In a practical situation, the suggested algorithm will succeed in producing bet-
ter outcomes. It can also produce better results when implemented in a bigger cluster
because the availability of resources to schedule the task increases marginally.

20



7 Conclusion and Future Work

Due to the rising demand for cloud computing services and applications, load balancing is
turning into one of the most critical piece of technology for distributing workloads across
the virtual machines available in a cluster. Nevertheless, when it comes to task schedul-
ing, there are substantial challenges in the load-balancing domain. To address these
issues, we conducted research to reduce makespan and improve resource utilization in the
area of task scheduling. To generate the best schedule possible for the inbound tasks,
we suggested combining two meta-heuristic algorithms through a hybridization process.
While scheduling the tasks to a cluster of virtual machines, the suggested approach in
this study successfully minimized the execution time when compared to various other
existing meta-heuristic algorithms. Additionally, this research also achieved the aim of
maximal resource utilization and reduced idle time of VMs in the cluster. The results
are evident and can be verified through the simulation outputs produced by Matlab.

However, in terms of limitations and future work, the proposed task scheduling al-
gorithm is designed to utilize the cluster optimally and reduce the execution time of
tasks. This in turn is increasing the amount of resource usage at any point in time which
leads to a rise in overall energy consumption. Hence, there is scope to conduct additional
research in making the proposed algorithm more energy aware and put forward a more
greener solution.

References

Arunarani, A., Manjula, D. & Sugumaran, V. (2019), ‘Task scheduling techniques in
cloud computing: A literature survey’, Future Generation Computer Systems 91, 407—
415.

URL: https://www.sciencedirect.com/science/article/pii/S0167739X17321519

Balaji, K., Kiran, P. S. & Kumar, M. S. (2021), ‘An energy efficient load balancing on
cloud computing using adaptive cat swarm optimization’, Materials Today: Proceedings

URL: https://www.sciencedirect.com/science/article/pii/S2214785320387125

Buyya, R., Srirama, S. N., Casale, G., Calheiros, R. N. & et al., Y. S. (2017), ‘A manifesto
for future generation cloud computing: Research directions for the next decade’, CoRR
abs/1711.09123.

URL: http://arziv.org/abs/1711.09123

CIMMSEducation (2020), ‘Introduction to matlab and its workfolow’.
URL: https://cimss.ssec.wisc.edu/wrwise/class/a0s340/spr00/whatismatlab.htm

Devaraj, A. F. S., Elhoseny, M., Dhanasekaran, S., Lydia, E. L. & Shankar, K. (2020),
‘Hybridization of firefly and improved multi-objective particle swarm optimization al-
gorithm for energy efficient load balancing in cloud computing environments’; Journal
of Parallel and Distributed Computing 142, 36-45.

URL: https://www.sciencedirect.com/science/article/pii/S0743731520300459

Freitas, D., Lopes, L. G. & Morgado-Dias, F. (2020), ‘Particle swarm optimisation: A
historical review up to the current developments’, Entropy 22(3).
URL: https://www.mdpi.com/1099-4300/22/3/362

21



Haris, M. & Zubair, S. (2021), ‘Mantaray modified multi-objective harris hawk optimiza-
tion algorithm expedites optimal load balancing in cloud computing’, Journal of King

Saud University - Computer and Information Sciences .
URL: https://www.sciencedirect.com/science/article/pii/S1319157821003372

Hashim, F. A., Houssein, E. H., Hussain, K., Mabrouk, M. S. & Al-Atabany, W. (2022),
‘Honey badger algorithm: New metaheuristic algorithm for solving optimization prob-
lems’, Mathematics and Computers in Simulation 192, 84-110.

URL: https://www.sciencedirect.com/science/article/pii/S03784 75421002901

Jena, U., Das, P. & Kabat, M. (2022), ‘Hybridization of meta-heuristic algorithm for
load balancing in cloud computing environment’, Journal of King Saud University -
Computer and Information Sciences 34(6, Part A), 2332-2342.

URL: https://www.sciencedirect.com/science/article/pii/S1319157819309267

Junaid, M., Sohail, A., Ahmed, A., Baz, A., Khan, I. A. & Alhakami, H. (2020), ‘A hybrid
model for load balancing in cloud using file type formatting’, IEEE Access 8, 118135—
118155.

URL: https://iecexplore.ieee.org/abstract/document/9121263

Juneja, M. & Nagar, S. K. (2016), Particle swarm optimization algorithm and its para-
meters: A review, in ‘2016 International Conference on Control, Computing, Commu-
nication and Materials (ICCCCM)’, pp. 1-5.

URL: https://ieeexplore.ieee.org/abstract/document/ 7918233

Kaur, M. & Aron, R. (2020), ‘Withdrawn: Energy-aware load balancing in fog cloud
computing’, Materials Today: Proceedings .
URL: https://www.sciencedirect.com/science/article/pii/S2214 785320381277

Kaviarasan, R., Harikrishna, P. & Arulmurugan, A. (2022), ‘Load balancing in cloud en-
vironment using enhanced migration and adjustment operator based monarch butterfly
optimization’, Advances in Engineering Software 169, 103128.

URL: https://www.sciencedirect.com/science/article/pii/S0965997822000394

Kruekaew, B. & Kimpan, W. (2022), ‘Multi-objective task scheduling optimization for
load balancing in cloud computing environment using hybrid artificial bee colony al-
gorithm with reinforcement learning’, IEEFE Access 10, 17803-17818.

URL: https://ieecexplore.ieee.org/abstract/document/9708723

Li, W., Tang, Z. & Qi, F. (2020), A hybrid task scheduling algorithm combining symbiotic
organisms search with fuzzy logic in cloud computing, in ‘2020 IEEE 23rd International
Conference on Computational Science and Engineering (CSE)’, pp. 16-23.

URAL: https://ieeexplore.ieee.org/abstract/document/9345878

Mathworks (2018), ‘Algorithm development and simulink solutions’.
URL: https://www.mathworks.com/solutions/algorithm-development.html

Pang, S., Li, W., He, H., Shan, Z. & Wang, X. (2019), ‘An eda-ga hybrid algorithm for
multi-objective task scheduling in cloud computing’, IEEFE Access 7, 146379-146389.
URL: https://ieeexplore.ieee.org/abstract/document /8862833

22



Pradhan, A. & Bisoy, S. K. (2022), ‘A novel load balancing technique for cloud computing
platform based on pso’, Journal of King Saud University - Computer and Information
Sciences 34(7), 3988-3995.

URL: https://www.sciencedirect.com/science/article/pii/S1319157820304961

Priya, V., Sathiya Kumar, C. & Kannan, R. (2019), ‘Resource scheduling algorithm with
load balancing for cloud service provisioning’, Applied Soft Computing 76, 416-424.
URL: https://www.sciencedirect.com/science/article/pii/S15684 94618307105

Shen, L., Li, J., Wu, Y., Tang, Z. & Wang, Y. (2019), Optimization of artificial bee
colony algorithm based load balancing in smart grid cloud, in ‘2019 IEEE Innovative
Smart Grid Technologies - Asia (ISGT Asia)’, pp. 1131-1134.

URL: https://ieeexplore.ieece.org/abstract/document /8881232

Sohani, M. & Jain, S. C. (2021), ‘A predictive priority-based dynamic resource provi-
sioning scheme with load balancing in heterogeneous cloud computing’, IEEE Access
9, 62653-62664.

URL: https://ieeexplore.ieee.org/abstract/document /9410259

Thakur, A. & Goraya, M. S. (2022), ‘Rafl: A hybrid metaheuristic based resource al-
location framework for load balancing in cloud computing environment’, Simulation
Modelling Practice and Theory 116, 102485.

URL: https://www.sciencedirect.com/science/article/pii/S1569190X21001702

Velde, V., Enumala, K. & Bandi, K. (2021), ‘Optimized adaptive load balancing algorithm
in cloud computing’, Materials Today: Proceedings .
URL: https://www.sciencedirect.com/science/article/pii/S2214785321008476

Wang, B., Liu, F., Lin, W., Ma, Z. & Xu, D. (2021), ‘Energy-efficient collaborative
optimization for v scheduling in cloud computing’, Computer Networks 201, 108565.
URL: https://www.sciencedirect.com/science/article/pii/S1389128621004783

Zhang, W., Chen, L., Luo, J. & Liu, J. (2022), ‘A two-stage container management in
the cloud for optimizing the load balancing and migration cost’, Future Generation
Computer Systems 135, 303-314.

URL: https://www.sciencedirect.com/science/article/pii/S0167739X22001674

23



	Introduction
	Research Motivation and Background
	Research Objectives
	Research Question
	Document Structure

	Related Work
	Energy Aware/Efficient Load balancing techniques.
	Leveraging comparative optimization techniques for load balancing
	Hybrid algorithms in Load Balancing
	Summary of Literature Review and Proposed method

	Methodology
	Particle Swarm Optimisation and its drawbacks
	Hybridisation of PSO with Honey Badger Algorithm
	Proposed Research Architecture
	Pseudo-code of the Algorithm
	Evaluation Parameters

	Design Specification
	Implementation
	Tool used for Evaluation
	Formulating the Objective function required
	Checking the Upper bounds of position generated
	Calculating the Intensity Factor HBA
	Hybridisation of PSO and HBA

	Evaluation
	Experiment / Case Study 1
	Experiment / Case Study 2
	Experiment / Case Study 3
	Discussion

	Conclusion and Future Work

