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Abstract

Edge computing, which is now a slashing method, allows for the processing and
calculation of upstream data in consideration of IoT properties and downstream
data with the assistance of cloud services. The primary notion of edge computing
is to move calculations closer to data sources, such as edge devices or IoT nodes,
by bringing cloud computing to the network’s edge. By using edge computing,
services may be located close to the original data source in order to satisfy critical
needs in agile connectivity, pragmatic optimization, smart or intelligent applica-
tions, reliability, and secrecy. One of the most pressing issues surrounding edge
computing is the prevention of malware and other security breaches in networks.
Several researchers have developed numerous ensemble approaches to network data
for addressing security issues, however, these methods are unable to neutralize all
modern network incursions in edge computing’s rapidly developing and changing
network traffic data pattern. As a consequence of this, there is a necessity for an
Edge Intrusion attack classifier Framework (EIACF) that monitors the network for
potentially harmful activity. In this study, we have demonstrated different clas-
sifiers such as Random Forest (RF), XGBoost, and KNN classifiers and proposed
a hybrid classifier (EIACF) with the help of ensemble learning which is combined
with Infinite feature selection and PCA for detecting edge network anomalies. The
experimental outcomes illustrate that the ETHCF has an accuracy of 99.33%. When
compared to the findings of the prior work, these results show an improvement in
performance. In our trials, we utilized NSL-KDD datasets to assess the model’s
performance.

1 Introduction

In the foreseeable future, various things and information would be networked or inter-
connected, as well as the people that might anticipate experiencing better and brighter
lifestyles. It is anticipated that the information and the things that are interconnected
will be of greater value in the future. The Internet of Items refers to a network that
connects things and information. IoT produces large amounts of partially processed data
that must be analyzed quickly in order to react. In the present situation, the cloud has
become a crucial component of this development. However, a cloud that is imposed glob-
ally from a central location must be able to handle massive amounts of data. But it also
generates transmission delay, lengthy reaction time, and user tension rise as the user’s



physical distance from the cloud increases. Additionally, the processing speed in this case
heavily depends on the functionality of the consumers’ devices. All of these problems can
be effectively resolved using a technique called edge computing. Edge Computing is a
decentralized computing system that integrates cellular mobile networking like mobile
base stations with computer technology with networking-based components including
hardware, memory, and hypervisor. (Yang et al.2019)It increases the capability of IT
services and cloud computing at the edge of the network. The main idea behind this tech-
nology was to place edge nodes on the mobile network adjacent to cellular subscribers and
consumers so that software and related computer tasks could be carried out there. A cel-
lular operator may provide effective services for a group of clients by using this capability.
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Figure 1: Basic architecture of Edge Computing

Edge computing, on the other hand, allows numerous smart apps to utilize the same
edge device with several users at once. In turn, this makes edge devices more vulnerable
to hacking, which might lead to fake output data, erroneous input data, and inaccurate
outcomes. (Alwarafy et al.2020) Any sensitive application’s performance will be impacted
by this. Additionally, the compromised edge device’s data may be exploited for other
nefarious or criminal activities. In general, edge computing is subject to two main cat-
egories of assaults. After authentication, the first one often involves the edge device being
hacked. Because the device has particular rights for certain inside network activity, any-
body inside may use it to carry out an undesirable action. These are unwanted attacks
where the hacker/attacker attempts to target the edge layer or cloud layer. Secondly, it
involves unauthenticated edge devices that sometimes attempt to use sophisticated at-
tack methods to penetrate the device or cloud layers. An unauthenticated attack, often
known as an outside attack, is this kind of assault. Since resources are shared across



several applications in an edge computing environment with a multitenant architecture,
insider attacks are exceedingly difficult to detect. As a result, the primary disadvantage
of mobile edge computing is malignant edge device assaults(Singh et al.|[2022). In order
to defend such networks, the firewall is the first line of defense. However, a conventional
firewall system can only stop packets that are traveling over the internet and originating
from outside sources. The malicious inside packets created by insider assault, however,
cannot be filtered by this system. Such firewall-based solutions are ineffective because
of the edge nodes’ complexity and unpredictability. Additionally, managing many fire-
walls is expensive and resource-constrained on the majority of edge devices, which makes
security solutions implementation difficult. As shown in [1| the black directional symbol
represents the vulnerabilities in the network so to address this issue there is a need for
security in the network.

1.1 Background and Research motivation

Edge computing acts as a resolution by functioning as an improved form of cloud com-
puting that can reduce network latency and throughput. However, it often demonstrates
a susceptibility to attacks that can jeopardize the security of the system’s network. The
most frequent attacks that weaken the security of edge networks include Distributed
DoS, remote recording, ransomware, routing, as well as data leakage attacks.(Alzahrani &
Alenazil2021)) (Xue et al.|[2022)) As part of this assault, the adversary sends an overwhelm-
ing number of invalid request packets to the edge server, thus blocking all traffic to and
from it, rendering the resources inaccessible and lengthening the response time. To secure
the edge network, several machine learning-based security measures have been developed,
including intrusion detection algorithms and public key-based security algorithms. But
there are no effective security options that secure the edge network completely. This in-
spired the study to try merging a hybrid classifier algorithm with infinite feature selection
and PCA in an effort to obtain a better feature set for filtering and to get beyond the
shortcomings of earlier ensemble techniques.

1.2 Research Objectives

e To implement a hybrid machine learning algorithm by combining the Tree-based al-
gorithms and Hard Voting Classifier.

e Optimally enhancing the model’s accuracy, precision, F1, and recall by integrating in-
finite feature selection with PCA for the voting classifier.

e To conduct a comparison of the proposed approach with existing machine learning
techniques.

1.3 Research Question

In this work, we have proposed the following research question:- ”'To what extent Hybrid
Machine Learning Algorithm can be utilized for edge computing networks to enhance the
precision for security vulnerability detection?”

1.4 Document Struture

In addition to that, this study report is broken up into six pieces. In Section 2, we will
discuss the work that was done in the past about network edge security and intrusions



that occurred in edge networks. In Section 3, we explain how the study was conducted,
including the methodologies and computer programs that were used. In Section 4, the
Design requirements of the proposed research are discussed. The hybrid machine learning
method that was suggested is documented and its step-by-step implementation is shown
in Section 5. Evaluation, findings, and a conclusion are presented in the last sections,
which are numbered 6 and 7, respectively.

2 Related Work

2.1 Security of Edge Computing

The adversarial training method was introduced by (Zhang et al.|2021) as a security
improvement approach for the DL model. This strategy can defend against counter-
attacks, hide certain sensitive data features, and make edge devices more reliable. In
order to determine whether or not the approach can be successfully implemented, it was
applied to a phrase similarity analysis model that was built using a convolutional neural
network (CNN) that was used in the CEC environment. The accuracy of the model that
was created via the use of the confrontation training approach was enhanced by 4.8% in
comparison to the CNN that was originally used. Next, (Singh et al. 2021)) details the
difficulties with security and privacy challenges presented by networking heterogeneous
devices at differing stages of the Edge Computing architecture. Second, it goes through
the variety of deep learning and machine learning methods used in EC application cases.
This is followed by a general description of the many attack types that the Edge network
faces, as well as the intrusion detection systems and accompanying machine learning tech-
niques that address these security and privacy issues. The specifics of deep learning and
machine learning approaches are summarized for EC security. The remaining challenges
in protecting Edge networks are then listed, along with potential research topics. Next,
(Chen![2020)suggested EC’s integrated mobile-based sensitive information security archi-
tecture. The heterogeneous edge computing network was layered for mobile intelligent
private information, as shown by its characteristics. HE (Homomorphism Encryption)
enabled the edge network and mobile terminal to communicate and store sensitive data as
ciphertext. From the simulation results, the framework assessed the consistency between
the optimum defense methods of individual edge network devices and the complete edge
network for diverse edge network devices. This method successfully reduced edge network
device computing resource use.

Additionally, (Zhou et al. 2021) created a security architecture. Three operations
identification, learning, and regulation—protected smart immunity. The author proposes
a smart security defense that authorizes and authenticates users at the network edge
server depending on criteria. Then, in the next evolutionary step, the information is
checked against similar information and scored for learning, system accuracy, and security.
The author suggested a three-phase smart algorithmic strategy for the smart immunity
framework. Mathematical simulations verified the answer. Furthermore, due to the large
amount of sensitive data stored in edge computing equipment, (Chen et al.|2021))indicated
that it is vulnerable to various attacks. MATLAB program simulates the author’s edge
computing vulnerability management method. An object-oriented (C++) generator and
edge devices create service assaults twenty times in this simulator. Memory, CPU, and
data packet delivery and retrieval were simulated. This paper proposed a security-efficient
edge computing technology for the IoT ecosystem. The trials showed that the method
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improved the service-driven security of Edge computing [oT models.

2.2 Class imbalance in edge computing with machine learning

(Kozik et al. 2018) utilized the adaptability of cloud architectures with recent advance-
ments in huge-scale computer vision from transformation to even more difficult com-
putational as well as containers infrastructure to the cloud in utilizing edge computing
techniques for incorporating internet traffic categorizations on extremely complicated ma-
chine learning models prepared for cloud infrastructure, For time-consuming and com-
putationally challenging applications, the author presented a decentralized identification
method employing Extreme Learning Machine (ELM) classifiers and cloud-based com-
puting clusters. To validate the suggested methodologies, a comprehensive experiment
is carried out on a real-world dataset linked to cyber security. ELMs have faster learn-
ing and generalization than other binary classification methods. Next, (Yue et al.|2021)
created a federated learning architecture for secrecy education in class-imbalanced abnor-
mal health detection applications. In order to increase model fidelity, it also created an
original localized update strategy based on curiosity reinforcement learning as well as an
adaptable global update technique. Results indicated that it performed better in terms of
model utilization and accuracy than baselines. A generic framework for class-imbalanced
federated learning was developed by the author. On a multi-board real-time collaborative
edge test bed, the author constructed a prototype of the system. It was evaluated using a
pair of real-time smart healthcare sensor apps for identifying anxiety and tracking driver
fatigue. The technology significantly increases accuracy and energy consumption.

Additionally, (Feng et al.[[2020) used edge computing to estimate assembly perform-
ance in an Ilot scenario, guiding flexible industrial data collecting. The author predicted
assembly quality using edge intelligent services. Edge computing allowed product as-
sembly quality prediction. Second, Random Forest was used to identifying critical-to-
quality qualities and organize them descending, giving management insights to address
essential concerns. SMOTE with cooperatively set parameters and experimental values
for imbalanced categorization is offered. Using our quality prediction technique, Random
Forest evaluates assembly lines and provides guidance and reference for wheel bearing
product assembly. Lastly, (Yuan et al.|2020) presented smart home edge nodes with
intrusion detection systems. Generative Adversarial Networks mitigated the training
dataset’s imbalanced data. The author converts network traffic to graphics and builds
a convolutional neural network for traffic classification. The researcher creates synthetic
samples using a Generative Adversarial Network model to balance data between mild
and severe classifications.

2.3 Existing Security Methods for Edge Computing

To secure radio networks, (Liu et al.|2020]) created a security-enhanced traceback system.
This operation split the network into three. Different nodes are marked differently. Device
marking probability varied by area. Devices farthest from the sink had higher marking
probability while those closer conserved power. This system also saved and moved data
packet marking tuples to devices further from the sink to modify device memory. SET
outperformed traceback in hypothetical and extensive trial simulations. Later, (Bai et al.
2022) introduced the Fine-Grained Access Control method to protect data. This
design protected mobile edge computing data. The new design focused on meta-graph



rules-based active fine-grained dependable customer group system characteristics. By
integrating with standard role-reliant access management systems, this system awarded
customer roles based on customer group dependability. User verification was performed
after feature matching to ensure data security. The testing revealed that the FGAC could
recognize rivals, modify clusters, improve access control, and secure edge computing data.

Furthermore, in order to make MEC secure, (Chen et al.| (2022)) introduced a beginner
deep reinforcement learning technique together with convex optimization. The goal of
deep reinforcement learning was to identify a useful method for the offloading ratio. Con-
vex optimization was used to overcome issues with processing power and transmission
energy distribution. By guaranteeing data security and secrecy, the shown deep reinforce-
ment learning convex optimization approach outperforms more conventional strategies.
Next, (Bai et al. [2022)) introduced Multi-Core Federated Learning (MCFL) to assist
FL intelligence to settle on actual MEC systems. MC-FL maintains and trains many
global models with various learning performance-computational complexity tradeoffs.
This simple update can manage device heterogeneity and device state fluctuations, im-
proving FL compatibility and robustness. MC-FL also supports partial client involvement
that changes over time. MC-FL can operate in unpredictable mobile situations. The au-
thor also proved MC-FL convergence. Specifically, the author proposed an online client
scheduling strategy for MC-FL to intelligently plan clients for training various global
models to decrease MC-FL completion time.

2.4 Network Intrusion Security at Edge computing

(Wang et al. 2022)) suggested a deep reinforcement learning-based intrusion detection
technique that can effectively discriminate aberrant traffic and categorize the different
sorts of attacks in order to improve the security of Smart Vehicular Networks. The use-
fulness of the suggested intrusion detection technique and the classification performance
increase over typical machine learning algorithms, which was up to 80% in test data and
97% in train data, was shown by the author’s simulated tests on the NSL-KDD dataset.
Additionally, Precision was a poor aspect. In order to conduct a lightweight security
detection on a massive proportion of multimedia traffic, (Agrawal et al.||2022) proposed
a distributed intrusion detection system and detection technique for multimedia traffic
in an edge computing (EC) environment. Additionally, the difficult-to-detect traffic was
identified using the C4.5 decision tree technique. The author suggested this feature so
that DIDS may automatically modify the detection strength of multimedia packets in
response to the queue length.

Later, (Khan et al.|[2022) introduced an automated identification of suspicious net-
work activity and intrusions. The primary objective of this research was to compare
and contrast several intrusion detection systems that use deep learning to identify poten-
tial security breaches. The author also extensively investigated and evaluated publicly
available network-based IDS datasets. Various performance criteria have been used in a
critical analysis of deep learning approaches to IDS (accuracy, precision, recall, f-1 score,
false alarm rate, and detection rate). In addition, current problems with networks’ se-
curity and privacy have been examined, along with potential solutions to such problems.
(Guezzaz et al.| 2022) proposed the K-Nearest Neighbor classifier and Principal Com-
ponent Analysis to create a powerful hybrid intrusion detection method. An innovative
hybrid framework, PK-IDS, has been developed by combining Snort IDS for abuse de-
tection with a K-NN classifier to enhance anomaly detection. Non-standardization and



heterogeneity of data are considered during data preparation. The author has used prin-
cipal component analysis (PCA) for feature engineering to improve the created model’s
training time, accuracy, and detection rate. Several recommended techniques are put into
practice to verify the PK-IDS architecture. For this purpose, the Bot-IoT and NSL-KDD
datasets are used to conduct an empirical analysis of this innovative hybrid technique.
The innovative framework provides superior performance and accuracy in comparison to
state-of-the-art methods. Indeed, designing IDS for edge-based IloT security is a chal-
lenging task filled with issues such as where to put IDS.

2.5 Summary of existing work

This assessment of the literature’s first section focuses on works that employ various
simulations and encryption techniques to try to protect the edge computing area. This
approach has previously been used in research to minimize the need for edge computing
resources, improve edge IoT system security, and provide encryption between two edge
devices. The overall objective was to increase security at the edge servers, but the main
focus was on reducing the amount of edge computing resources needed for processing
to be applied at the edge. The emphasis of the research publications that come after
this one is on class inequality in edge computing using machine learning. Many scholars
put a lot of work into implementing various classifiers. The objective was to improve
accuracy and reduce the class imbalance factor at the edge calculation using machine
learning techniques. Later, we spoke about the current security techniques, with a par-
ticular emphasis on building data security techniques, security using deep reinforcement
learning, and multi-core federated learning. Last but not least, a hybrid architectural
technique for a network intrusion system is detailed in the most recent batch of articles.
All previous research in this field aimed to use machine learning techniques to safeguard
the network at edge devices. Additionally, edge-level incursion predictions were made us-
ing ensemble learning research, which combines two or more machine learning methods.
There have also been many hybrid algorithms created, however, no study has combined
hybrid machine learning with infinite feature selection and PCA approach. Therefore,
in order to identify the network-level intrusion at edge computing, a hybrid machine
learning technique is suggested in this study.

3 Methodology

3.1 Proposed Architecture:

Edge-Network traffic categorization(ENTC) involves identifying various sorts of applica-
tion traffic data received by data packets that are examined. Nowadays, it is a vital piece
of communication network technology. Input, pre-processing, attribute extraction, cat-
egorization, and performance analysis are all included in the traffic classification process.
A trustworthy source is used to create the data for the input. Stage two of processing will
purge the data and assist in achieving classification accuracy by removing inaccurate and
ignored information. During the feature extraction stage, a link between each property
and the objective is established, aiding in the identification of the key characteristics in
the dataset. During the classification stage, a classification model will be employed for
the training and test sets, and the outcome will be the predicted set. The accuracy,



precision, and recall performance analysis matrices will be used in the final step to eval-
uate the network traffic categorization model’s performance. Rapid developments in ML
have improved the value of learning algorithms for classifying network traffic, a crucial
aspect of network management. Consistent datasets cause the imbalanced class to begin
scattering due to fundamental characteristics of internet networks. ML-based ENTC has
gained popularity as encrypted communication has become more widespread. But ML
approaches often aim to get the maximum accuracy while disregarding class imbalance.
Figure 2| depicts the recommended architecture for the research project.
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Figure 2: Proposed Architecture

In order to boost efficiency, this research proposes a unique paradigm for classifying
network traffic. The recommended model incorporates three classifiers—KNN, XGB, and
RF, which are integrated for classification using PCA, which minimizes the number of
features. Then, a voting classifier is used, which is trained for a variety of base model or
estimator combinations and makes predictions based on averaging the results of each base
estimator. Voting for each estimates the output that is integrated with the aggregating
criterion.

3.2 Data Gathering

The dataset named NSL-KDD, which was used in data collection includes information
that is equivalent to that found in the KDDcup99 dataset. It is made up of about 1,07,992
single connection vectors, each of which comprises 41 characteristics. In addition to that,
the type of attack labels and complexity level are provided in CSV format inside the
NSL-KDD train data set. The most significant flaw in the KDD dataset is the abund-
ance of duplicated records, which leads learning algorithms to be biased against frequent
records as well as prevents those from learning infrequent records, which are typically
more dangerous to networks, such as U2R & R2L attacks. Therefore, the NSL-KDD



dataset is selected over the original KDD dataset. Additionally, the placement of these
recurring records inside the test set will distort the evaluation results in favor of systems
that identify records more often.

3.2.1 NSL-Various KDD’s Forms of Assault

e Denial of Service, sometimes known as DoS, is an attack that prevents users from
accessing a network or other service.

e User to Root, often known as U2R, is a kind of attack where the attacker tries to
get administrative access while simultaneously trying to enter the local computer
with root rights.

e R2L: An instance of the Remote to Local attack type is triggered when an unauthor-
ized person makes an effort to access the data by transferring data packets from the
remote system to the local one. This kind of attack occurs when an unauthorized
user is attempting to access the data.

e The probe attack falls under this category mainly when the attackers attempt to
gather data on the local or target systems in order to launch the assault on those
machines at a later stage.

3.3 Pre-processing Dataset

In the data processing process, the missing values are removed, the mean function is used
to obtain the average of the missing values, the label data is separated, the label encod-
ing is initialized, and the label data is transformed. Additionally, data is normalized to
accommodate the corresponding input shapes of the type_of_protocol, service_type, flag,
and attack-type_or_normal features in the pre-trained feature set. Additionally, we em-
ployed label encoding since we converted the labels into numeric form, which is a form
that is readable by machines. The operation of such labels may then be better determ-
ined by machine learning techniques.

3.4 Infinite Feature Selection

There may be hundreds of characteristics in a data collection, many of which may not
be connected to the data’s output. The primary goal of feature selection (FS) techniques
is to identify a subgroup of input factors that have a direct impact on the result of the
data while decreasing noise and filtering out the irrelevant variables. In this study, we
used an improved modified form of InfFS to filter out a unique collection of features
from the dataset. This filtering approach uses an unsupervised method to do the ranking
phase, and then a straightforward cross-validation method to choose the top m features.
The approach’s ability to assess the significance of a particular feature while considering
all feasible subsets of characteristics is its most attractive feature. Additionally, each
feature’s score is affected by all the other characteristics in the collection; this method is
like one for creating route integrals, which was developed for the area of data clustering
or the investigation of graph centralities.(Roffo et al.|[2015])
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where a stands for the loading coefficient, o refers to standard deviation, and &, de-
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1 specifies the path length, I and j denote the placement of features, and a refers to the
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here P1(i,j) consists of every path length that is 1 between i as well as j. In addition
to that, the single feature energy score of s(i) is denoted by:

() = R, 7) = 3 AL )), (4)
jEV jEV

Lastly, the vector S is the sum of all the feature energies individually. Next, the feature
energies are sorted from highest to lowest, starting with the highest energy feature, and
then written to vector M.

After calculating all of the feature rank energies, the algorithm automatically decides
how many features to maintain. As a result, certain features are judged unnecessary
and are removed. It is created as a vector that holds the square of each rank energy.
The calculation for each component of B is shown in equation 5. A feature is retained if
its individual energy is greater than the threshold T; else, it is deleted. The remaining
characteristics are then organized in vector M according to the order of their energy
values. N stands for the number of features retained.(Roffo et al.|[2015])

3.5 Principle Component Analysis

Problems with intrusion detection naturally involve large amounts of data. The dimen-
sionality of the data must be decreased to facilitate exploration and subsequent analysis.
This is often accomplished using PCA. PCA is a popular linear dimensionality compres-
sion approach that has been extensively used for datasets from a variety of scientific
disciplines. (Tharwat|[2016))

Using a small number of new variables that are linear combinations of the original
variables, PCA attempts to describe the variance-covariance structure of the original set
of data. The ’s’ random variables x1, x2, x3,..., xs form a linear combination known as
a principal component because of three distinguishing characteristics. To begin, there is
no correlation between the major components. Two, the variance of the first principal
component is the largest, followed by the variance of the second principal component,
and so on. One more equates the sum of the variances in all the PCs to the variance in
the original variables (X1, X2, X3..., Xs). Eigenanalysis of the covariance or correlation
matrix of X1, X2, X3..., Xs yields new variables with the desired characteristics. This
encourages the use of feature extraction techniques designed to speed up the training
process and provide more generalized features. Principal Components Analysis is used
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in this case to extract features from the feature inputs.

3.6 Data Modelling

Training models, putting them into action as standalone classifiers, and creating a hybrid
ensemble classifier are all part of the data modeling process. The models were trained
using the datasets for both training and testing, which were divided with a ratio of 70 to
30 percent. In this part, the classifiers were first developed by using a variety of machine
learning techniques in order to analyze anomalies and protect the edge platform from
attacks in real-time scenarios. From among these models, only the ones with superior
performance were considered for inclusion as possible component options. The compon-
ent models were identified by an analysis of their erroneous assumptions. After then,
an integrated model was developed in order to accomplish better levels of performance.
Below are the individual classifier used and the hybrid one which is a combination of all
individuals:

e KNN: K-closest neighbors, often known as kNN, is a form of controlled learning
computation that is mostly used to deal with relapse and arrangement assignments.
One possible interpretation of the idea that underlies kNN is that the value or
category of a given information point is determined by the information points that
are located nearby. The kNN classifier determines the category that an information
point belongs to by using a greater percentage of the voting guideline.

e RF: The Random Forest is a collection of many different trees to choose from.
Sacking is a method used in the construction of random forests. In this method,
choice trees are used as equal assessors. Random forests are created using this
method. When applied to a problem involving grouping, the result is determined
based on the decision tree outcomes that received the most votes overall. When
it comes to relapse, the expectation of a leaf hub is the mean value of the several
objective attributes that make up that leaf. The average worth of the results from
chosen trees is subtracted from the value of arbitrary woods.

e XGB: The XGBoost algorithm is a Gradient Boosting-based ensemble machine
learning system that makes use of decision trees. Boosting is a class of algorithms
that takes a poor learner and turns it into a strong learner by using weighted
averages. Extreme Gradient Boosting is an improved gradient boosting approach
that makes use of parallel processing, tree pruning, and regularization to prevent
overfitting and bias. By taking into account the feature distribution in a leaf over all
data points, Boost is able to minimize the search area for feature splits, addressing
a significant shortcoming of gradient boost.

e Hybrid: The system employs a Hybrid (Voting) algorithm with the goal of improv-
ing the system’s accuracy as a whole in order to better serve its users. Combining
two or more different models into one algorithm is what hybrid algorithms do. A
voting classifier is a kind of classifier that is made up of two or more different clas-
sifiers that collaborate with one another. Each classifier evaluates the information
in its own unique way and comes up with a conclusion. The ultimate outcome is
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decided upon by polling the majority of voters. In the method that I have presen-
ted, the Voting classifier is made by : (Random forest, KNN, and xgboost). The
result that is acquired by voting will be the most effective of these three methods.
Therefore, the purpose of this system is to use an ensemble-based hybrid algorithm
in order to get superior outcomes compared to those achieved by employing a con-
ventional machine learning method.

3.7 Evaluation and results Parameters

This section determines the evaluation parameter where it shows how well each of the
machine learning classification models performs with respect to the accuracy, recall, F1-
score, and precision. After that, separate classifiers were tested, and then they were
combined with the voting classifier in order to get a greater level of performance. The
suggested model was contrasted with the other three models, and the results were visual-
ized. All assessment metrics are dependent on the various properties utilized. Accuracy

(A), Precision (P), Recall (R), and F-Score (F) are calculated.

e Precision: Demonstrates how the attack classification model accurately categorized
the different assaults, i.e., the model states that the different attacks belong to a
class, and those attacks really do belong to that class. As seen in the following
formula:

TP
Precision = ———— 5
recision = rp e n (5)
TP, or True Positive, refers to the number of attacks that are part of a class and
that were properly categorized, whereas FP, or False Positive, refers to the number

of assaults that are part of a class but that were incorrectly classified.

e Recall: Demonstrates how the attack categorization model accurately categorizes
different attacks if they fall under the same class. As seen in the following formula:

TP
Recall = ———— 6
T TP+ FN (6)
where FN or False Negative is the number of attacks that were incorrectly categor-
ized as belonging to a class of attack while TP or True Positive is the number of

attacks that belong to a class and were properly classified.

e Accuracy: It provides the total number of attacks that the categorization models
successfully identified as either true positives or true negatives. It is represented by
the following formula.

TP+TN (7)
TP+TN+ FP+ FN

where TN, or True Negative, is the number of offenses that were accurately identified
as not falling under a certain category.

Accuracy =

e F'1 Score: This function returns the ratio of the precision to the recall. The following
equation is a representation of it:

(8)

) 5 5 Precision X Recall
— score =
Precision + Recall
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4 Design Specification

The Edge-Based Intrusion Attack Classifier framework architecture combines an Infinite
feature selection with PCA and a Hybrid Classifier as shown in Figure[3] The component
infinite feature selection with PCA is discussed in 4.1. Then the component classification
model includes three different tree-based models and voting models as discussed in 4.2.

FPre-Processing Stage

e Column Missing Calculation Label
— - Rename Values Mean Encoding
MNSL-KDD l

Dataset

Feature Selection Stage

Infinite Feature Selection Method ———»

DivideByMax

Defining bxsfun,
.SubtractMin

function

Obtaining

for Correlation

Using Standard
Deviation of three || Spearman Method

Using Alpha
variable for value
A

Computes

Checking
weight=mean

on Rank based

[eigenualues of . ndexing \"-'ElghtSJ

v, S matrices

I

Sum of features is |
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weights

l

(weight)

Reducing feature

Feature Extraction Stage
upto 17 features
with PCA

[
l

Data Model Stage

Principle Component Analysis ————

)

Dividing Train and
Test data into 70:30
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Applying PCA on
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Train and Test Data

KNM XGEB RF

Proposed Hybrid machine

Learning Algorithm

b

Hard Voting Classifier

l

Model Performance metrics

[ Accuracy J [ Precision J [ Recall J [ F1-Score J

Figure 3: Edge-Based Intrusion Attack Classifier Framework

FPredicted Resulis —— |

4.1 Infinite Feature Selection with Principle Component Ana-

lysis
As illustrated in Figure 3, the procedure is started by utilizing the NSL-KDD network
traffic dataset. Following data retrieval, Null values are verified. At this point, the average

of the missing data is used to derive the mean. Further, we used a label encoding ap-
proach to pre-process the data. The label values are transformed into a machine-readable
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format via label encoding. The next step is feature selection, which is the most crucial
component in this scenario. We employed infinite feature selection. where the mixing
parameter, which is the alpha variable, is defined there. Then, three functions—bsxfun,
DivideByMax, and SubtractMin were defined. Here, the vector is expanded into matrices
of the same size and sorted by order using the bsxfun function. The next function is Sub-
tract min, which subtracts the minimal value from the data, and DivideByMax, which
gets the maximum value and normalizes the data. Additionally, we used the spearman
approach to create the correlation. Then, we determined whether or not a null value was
present. The standard deviation has been mostly utilized for the function we previously
created. Additionally, we used the alpha variable to get the weights. Additionally, we
have calculated the values of r, y, and S, where r is calculated using eigval, y using I and
its inverse, and S is the total of all weights. To do so, we have ranked-ordered the weight
and saved it as a feature.

All of the features have been chosen at this point. Additionally, as seen in Figure 3, we
also employed principle component analysis, and a number of experiments with a feature
set of 10, 15, and 20 have been performed. Here, PCA minimizes information loss while
reducing the dataset’s dimensionality. This is accomplished by repeatedly generating
new, independent variables with the highest possible variance.

4.2 Hybrid Machine Learning Algorithm

As can be seen in figure 3, after the variables have been included, the dataset is next
split into a training portion and a testing portion in the proportion of seventy percent to
thirty percent. During the phase in which classification takes place, the vote classification
approach is used when it comes to danger prediction. The voting classification strategy
utilizes a combination of a wide variety of classifiers, such as XGBoost and Random Forest
(Classifier, in addition to a variety of other potential choices. The Hard Voting Classifier
is a machine learning (ML) model that is applied to train an ensemble of many models
and forecast an output (class) on the basis of their largest likelihood of picking class as
the output. This is done in order to improve the accuracy of the prediction. A tool called
a Hard Voting Classifier is used in order to accomplish this goal. The sum of the results
from each classifier is computed, and then they are sent to the classifier responsible for
voting. The voting results that garnered the biggest majority of votes are then used
to make a determination about which output class will be produced. A single model is
built, the training of which is performed by the deployment of these models, and the
output is projected based on the aggregated majority of votes that each of these models
has received for each output class. We were able to achieve this result by using a hybrid
machine learning method rather than building entirely distinct models and evaluating
the degree of accuracy achieved by each of those models on an individual basis.

5 Implementation

Considering the expense of establishing a real-world cloud edge computing infrastruc-
ture, we have opted to create the proposed hybrid technique using a jupyter notebook.
The Google Colaboratory tool is utilized in this instance to demonstrate and perform
the intricate calculations required for an algorithm. The bulk of faults may be found
using a raspberry pi or any expense edge device before the proposed solution is used
in the real world. Therefore, using this arrangement has the advantage of allowing us
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to take preventive action without having to spend money on putting up a live testing
environment.

The Google Colaboratory, a free tool provided by Google Research that enables users
to develop and run Python code in their web browsers, is also used. Moreover, Python
version 3 was used along with libraries like pandas, numpy, math, Scikit learn, matplotlib,
and ensemble were used in the development of this project.

o from google.colab import files
uploaded = files.upload()
# from google.colab import drive
# drive.mount('/content/drive")

# path="/content/drive/My Drive/Colab Notebooks/'

KDDTrain+.csv

»  KDDTrain+.csv(text/csv) - 13895231 bytes, last modified: 12/3/2022 - 100% done
Saving KDDTrain+.csv to KDDTrain+.csv

Figure 4: Uploading the Dataset

Firstly, we have uploaded our NSL-KDD dataset to jupyter notebook, as seen in figure
above. Additionally, we can retrieve data from the drive as well.

© df_train=pd.read_csv('KDDTrain+.csv', header=8, na_values='?')
df train = df train.fillna(df train.mean())
df_train

[ <ipython-input-6-85d9b2083787>:2: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_o
df_train = df_train.fillna(df_train.mean())

f2 f3 f4 5 fe f7 fs8 f9 fle fi11 ... f33 f34 f35 f3e 37 38 39 f40 F41 Label

0 tcp ftp_data SF 491 0o 0 0 0 0 0 . 25 017 003 017 0.00 000 0.00 005 000 normal

1 udp other SF 146 o 0 0 0 0 0 . 1 000 060 088 0.00 000 000 000 000 normal

2 tcp  private SO 0 0o 0 0 0 0 O 26 010 005 000 000 100 1.00 000 0.00 dos

3 tcp htp SF 232 8153 0 0 0 0 O 255 100 000 003 004 003 001 000 001 normal

4 tcp http SF 199 420 0 0 0 0 O 255 100 000 000 000 000 000 000 0.00 normal
125968 tcp private SO 0 0 0 0 0 O 25 0.10 006 000 000 100 1.00 000 0.00 dos

125969 udp private SF 105 145 0 0 0 0 244 096 001 001 000 000 000 000 000 normal

125970 fcp smip SF 2231 384 30 012 0.06 000 000 072 000 001 000 normal

125971

cp  klogin - S0 0 0 00 0 0 . 8 003 005 000 000 1.00 100 000 0.00 dos

o o o o o
o
o
o
=1

126972 tcp ftp_data SF 151 0 0 0 0 0 .. 77 030 003 030 000 000 000 000 000 normal

125973 rows x 41 columns

Figure 5: Reading the Dataset

Additionally, we have imported the necessary libraries, read the CSV file as shown
in figure 5| and displayed the data. To further clean up our dataset, we additionally
looked for features that may contain null values and obtained an average of nan values,
by calculating the mean.
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# Renaming column names

Q columns = (['type_of_protocol® ,'service_type' ,'flag' ,'src_bytes' ,'dst_bytes' ,'land’ ,'wrong_fragment' ,'urgent' ,'hot' ,
"num_failed_logins' ,'logged in' ,'num_compromised’ ,'root_shell' ,'su_attempted' ,'num_root' ,'num_file creations' ,

) "num_shells' ,'num_access_files' ,'num_outbound_cmds' ,'is_host_login' ,'is_guest_login' ,'count’ ,'srv_count' ,'serror_rate' ,
"srv_serror_rate' ,'rerror_rate' ,'srv_rerror_rate' ,'same_srv_rate' ,'diff srv_rate' ,'sev_diff host_rate' ,'dst_host_count' ,
"dst_host_srv_count' ,'dst_host_same_srv_rate' ,'dst_host diff_srv_rate' ,'dst host_serror_rate' ,'dst host same_src_port _rate' |

[m] "dst_host_srv_diff_host_rate' ,'dst_host_rerror_rate' ,'dst_host_sry_rerror_rate' ,'level’ ,'attack-type_or_normal'])

df_train.columns = columns
df_train.head()

e type_of_protocol service_type flag src_bytes dst_bytes land wrong_fragment urgent hot num_failed_logins ... dst_host_srv_count
0 tcp ftp_ data  SF 491 (] 0 0 0 0 25
1 udp other  SF 146 0 0 0 (V] 0 1
2 fcp private S0 0 0 0 0 0 0 0 26
3 fcp http  SF 232 8153 0 0 0 0 0 255
4 fcp http  SF 199 420 0 0 0 0 0 255

5 rows x 41 columns

Figure 6: Renaming the columns

In order to investigate and preprocess the data, we have renamed the column names
and presented the data, as seen in the figure [] that is located above.

° # Pre-processing Dataset
1bEn = LabelEncoder()
X[ 'type_of protocol’]=1bEn.fit transform(x['type of protocol'])
x[ 'service type']=1bEn.fit transform(x['service type'])
x[ 'flag']=1bEn.fit_transform(x[ 'flag'])
x[ 'attack-type _or normal']=1bEn.fit transform(x['attack-type or normal’])

ytrn=1bEn.fit_transform(ytrn)

Figure 7: Label Encoding

We have performed some preliminary processing on the dataset using Label encoding,
as can be seen in figure[7] The target column includes the kind of protocol, flag, service,
and attack type or normal when we apply Label Encoding to the NSL-KDDdataset. The
labels are transformed into machine-readable numeric values.

As shown in the below figure [§] we have used a feature selection strategy known as
infinite feature selection as it makes use of the convergence characteristics of power series
of matrices to determine the significance of a feature in comparison to all of the other
features taken together, and after that, we have ranked the output that has been created
according to the weights of the features.
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° corr_ij, pval = stats.spearnanr(x)

o @,corr_ij.shape[] ):

8, corr_1].shape[1] ):

th.isnan{corr_ij[i,3]) or corr_ij[i.j] < -1 or corr_ij[i.j] > 1 ):
corr_1j[1,j] = @

STO = np.std(x, ddof = 1, axis = @)

{5TD. shape[8], 5T0.shape[8]) )
STD.shape[8] ): STOMatrdx = bsxfun( STD )
#,5TD. shape[8] }: 5TOMatrix = SubtractMin{STOMatrix)

1 STO[1] > STO[3] ) elgma_t] = DivideByMax(STOMatrix)
a[i,1] = sTO[1] =

m[1,]] = sTO[{] for L in range( @,signa_1j.shape[a] ):
Fetura m for j in 3,signa_ij.shape[1] ):
1( math.1snan(sigma_1i[1,7]) or sigma_ij[1,1] ¢ -1 or slgma 1j[1,4] » 1 ):
signa_ij[i,j] = @

eByMax(corr_1]):

r_1j.shape[8]): # Find the max.s

-‘csr\r_ij.sl'.ape[.]y:- A=

alpha®corr_ij + (1-alpha)*signa ij );

i corr_i[1,9] » m 3
m = corr_1j[1,]] I = np.identity( A.shape[d] )
r i (8,corr_ij.shape[0]): # Divide by the maximum value = ( 8.9/ nax( np.linalg.eigvals(a) ) )
faor 3, corr_13.shape[1]): yal-frea)
4] = eorr_ijli.g) f m S = np.linalg.dm( y ) - I
return corr_1] WEIGHT = np.sum( § , axis=1 )
ef in{corr_ij ): RMIKED = np.argsart (HEIGHT)

RANKED = np. f1ip({RANKED,8)
r_ij.shape[@]): # Find the min.

,corr_ij.shape[1]): i .-
( corr_1[1,1] ¢ m ) RANKED = RANKED.T

m = corr_ij[1,3] HEIGHT = WEIGHT.T

Figure 8: Infinite feature selection

The preceding figure [0 demonstrates that we extracted features using principal com-
ponent analysis. After that, we utilized values as 17 features by altering the output
generated by infinite feature selection, which is the indexed rank weight. This was done
so that we could use the result as features. In addition to that, we have also split the
data from the test and the train into a percentage ratio of 70:30.

v "- # Applying Feature Extraction [ Princple Component Analysis]
pca = PCA(n_components=15)
nSelx = pca.fit_transform(Selx);

# Dividing data into training and testing
X_train,X test,Y train,Y_test=train_test split(nSelx,ytrn,random_state=42,test size=0.3)

Figure 9: Principle Component Analysis

In conclusion, we have utilized data modeling as shown in figure [10, which consists
of three individual classifiers called KNN, RF, and XGB. After that, we utilized a hard

voting classifier to calculate the voting given by separate classifiers for the prediction of
X and Y train data.
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v ° # Applying Data Modelling
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
model_1 = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
model 2 = XGBClassifier()
model 3 = RandomForestClassifier()

classifier = VotingClassifier(
estimators=[("KNN', model 1), ('XGB', model _2), ('RF', model 3)], wvoting="hard')

classifier.fit(X_train, Y_train)
Output=classifier.predict(X_test)

Figure 10: Data Modelling

6 Evaluation

In this part, a thorough evaluation of the suggested hybrid machine-learning method is
carried out so that future improvements may be made. In order to generate results, the
algorithm is put into practice and carried out by using Google Colab’s Jupyter Note-
book. After that, the suggested method is evaluated with regard to a number of criteria,
including Recall, Accuracy, Fl-score, and Precision. The suggested approach for hybrid
machine learning is based on ensemble learning techniques, which are then contrasted
with multiple tree-based model techniques that are already in use. In order to carry out
the tests, the current models were implemented.

6.1 Results

Following the successful development of the hybrid machine learning algorithm, we pro-
ceeded to test and assess the performance of various algorithms by taking into consider-
ation a range of metrics including recall, accuracy, fl-score, and precision.

° ACC = metrics.accuracy_score(Y_test, Output)
P = metrics.precision_score(Y_test, Output,average='weighted')
R = metrics.recall_score(Y_test, Output,average='weighted')
F = metrics.fl_score(Y_test, Output,average='weighted')

plotdata = pd.DataFrame({
"Performance Parameter Comparison":[ACC*1ee,P*10@,R*1ee,F*100],},

index=["Accuracy","Precision" ,"Recall”,"Fl-Score"])

print(plotdata)

[ Performance Parameter Comparison
Accuracy 99.338484
Precision 99.337542
Recall 99.338484
Fl-Score 99.321603

Figure 11: Proposed algorithms results
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Based on the findings and figure[T1] [I2] it is clear that the performance of the proposed
hybrid machine-learning algorithm is superior to that of other machine-learning models
when it comes to the identification of harmful or anomalous behavior.

Accuracy(%) Comparison ° Fl-Score(%) Comparison
i 75.750000 ot 54.508000
l:, MLP 77 .410000 RE 4. 7Te0008
RF 81, 5980008 XGBoost 95.758@00
ABBoosT 95. 558008 Proposed 59.321503
Proposed 58.338434
100
o
£ & £
o 3
] 3
§ "
Y a (]
0 )
NN MLP RF  XGBoost Froposed oT RF XGBoost  Propesed
° Precision(X%) Comparison Recall(X) Comparison
DT 98. 302088 oT 85.e00e00
C+ FRF 90 .200080 RF B2.B00088
XGBoost 91.408888 XGBoost 98. 202080
Proposed 95 .337542 Proposed 99.338484

100 100

80 80
20 20
oT RAF ¥GBoost

Proposed

Recall(%)

Precision| %)

Figure 12: Accuracy, Recall, Precision, F1 score Comparison

Moreover, for the experiment purpose, we put the suggested method to the test by
attempting modification with the feature up to twenty features. Key considerations in
the study of the results from this experiment were determining whether or not an increase
in the number of characteristics causes algorithms to have a greater influence.

° ACC = metrics.accuracy_score(Y_test, Output)

P = metrics.precision_score(Y_test, Output,average='weighted')
R = metrics.recall_score(Y_test, Output,average='weighted')
F = metrics.fl_score(Y_test, Output,average='weighted')

plotdata = pd.DataFrame({
"Performance Parameter Compariscn":[ACC*1ee,P*1ee,R*1ee,F*1e0],},
index=["Accuracy","Precision" ,"Recall"”,"Fl-Score"])

print(plotdata)

[ Performance Parameter Comparison
Accuracy 99.296147
Precision 99.294820
Recall 99.296147
Fl-Score 99.279134

Figure 13: Proposed algorithms results with 20 features

Upon implementing 20 features, still, the performance is 99.29% which is evident that
our model is a successful and effective classifier that is very close to one hundred percent
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and also can immediately represent its use when utilized in an actual work environment.

6.2 Discussion

On the basis of the findings of the experiment described above, it is evident that the
Edge-Based Intrusion Attack Classifier Framework, which consists of a Hybrid machine
method with infinite feature selection and PCA, is successful at detecting edge-based
intrusion attacks based on evaluation criteria. It also demonstrates that the strategy
we recommended would stop the abnormalities in the experimental network dataset.
In addition, the studies demonstrate that the proposed method is robust enough to
survive any other ensemble machine learning methodologies that, on top of that variable
feature set, have provided results that are superior to those produced by the proposed
method. Additionally, as the world becomes more aware of edge computing and energy
consumption, increasing computation and usage at the edge may lead to more edge-
based solutions for both security and energy consumption. This can happen because the
world is becoming more conscious of edge computing. On the other hand, the suggested
algorithm will be effective in accomplishing its goal of getting higher outcomes in a real-
time setting. When implemented as part of a feature set, it has the potential to reach
even better outcomes.

7 Conclusion and Future Work

Edge network security is quickly becoming one of the most critical pieces of technology
for smart applications across a wide variety of industries. This is mostly attributable
to the growing demand for edge computing services and applications. However, when it
comes to the security of networks, there are significant vulnerability risks in the network
traffic sector. In order to address these concerns, we carried out research aimed at
enhancing the network security of edge computing and securing edge devices via the use
of a suggested framework. Combining three tree-based methods with PCA and infinite
feature selection was one of the suggestions that we made in order to achieve the best
potential outcomes. The performance of safeguarding the network traffic between the
edge environment was effectively improved by the technique presented in this research
when compared to a variety of other current ensemble algorithms. Additionally, the goal
of minimizing network intrusion by achieving 99.33% is the highest possible percentage
that was accomplished by this study. The outcomes are visible and can be substantiated
by reviewing the outputs that were generated by the Jupyter Notebook.

Furthermore, this, in turn, is increasing the amount of workload that is being done
at edge devices at any given point in time, which in turn leads to an increase in the
overall consumption of energy and usage. Therefore, there is room for extra research to
be conducted in order to make the suggested method more efficient. Furthermore, the
employment of datasets at the edge may also be regarded as a factor that puts forth a
greater scope of development.
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