~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Shilpi Madan
Student I1D: x21145059

School of Computing
National College of Ireland

Supervisor: Rashid Mijumbi

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Shilpi Madan
Student ID: x21145059
Programme: Cloud Computing
Year: 2022
Module: MSc Research Project
Supervisor: Rashid Mijumbi
Submission Due Date: 15/12/2022
Project Title: Systemization and Evaluation for Data deduplication by de-
ploying competitive chunking algorithm in polymorphic thread
environment and avant-garde hashing techniques
Word Count: 673
Page Count:]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shilpi Madan

Date: 14th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | (I
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Shilpi Madan
x21145059

1 Introduction

In the setup module, we will provide specifics on all of the libraries used to implement
the suggested algorithm, as well as a step-by-step process for configuring the same in the
AWS Cloud environment. The outcome of executing the algorithm on the cloud with a
dataset on a different number of processors was described.

2 Software Requirements and Modules

2.1 Local System

For testing purpose we have deployed it on local system with below configuration:
RAM: 16 GB

Operating System: MacOS Ventura

Hard Drive: 512GB

Software: Visual Studio

2.2 Cloud

Implemented the overall project on AWS cloud account, under cloud the configuration
used is Ubuntu 20.04 with memory of 8GB, 2VCPU.

Processor: Neoverse cores 64-bit Arm

Storage: NVMe

2.3 Python Modules

We have imported below modules in Python 3.7 to proceed with our algorithm function-
ality:

Table 1: Python Modules

H Modules Description
Time For displaying and calculation of time
Multiprocessing For many processor at a time
Threading For running various function together

import sys

import multiprocessing

from time import time
import

Figure 1: Python

3 Implementation on Cloud

In this section, we will build an EC2 Akil et al.| (2019)instance and deploy our application
to it by following the procedures below:

1. Connect to the AWS account and create EC2 Ubuntu instance and launch the
instance.

X21145059_Project 1.0d534ff56552905 3¢ QRuming @Q t2miaro ©2/2 checks passe Noalarms + eu-west-b

Instance: i-0d534ff565529053e (x21145059_Project) ¢

Details | Security | Networking | Storage | Statuschecks | Monitoring | Tags

Private IPu4 addresses
313230

1PV address Public IPv4 DNS

3-251-80-40.eu-west-1.compute amazonaws.com | ope

wate IP DNS nam
ip-172-31-32-

(IPv4 only)
i-west-1.compute internal

Figure 2: EC2 Instance

2. To connect our EC2 to our local terminal we used pem key and below commands
with ”ssh” protocol with the details of DNS connection.

EC2) Instances » i-0d534ff565529053e » Connect to instance

Connect to instance info
Connect to your instance i-0d534ff565529053e (x21145059_Project) using any of these options

EC2 Instance Connect Session Manager SSH client EC2 serial console

Instance ID

i-0d534ff565529053e (x21145059_Project)

1. Open an SSH client.

2. Locate your private key file. The key used to launch this instance is x21145059_project.pem

3. Run this command, if necessary, to ensure your key is not publicly viewable.
chmod 400 x21145059_project.pem

4. Connect to your instance using its Public DNS:
ec2-3-251-80-40.eu-west-1.compute.amazonaws.com
Example:

ssh -i "x21145059_project.pem" ubuntu@ec2-3-251-80-40.eu-west-1.compute.amazonaws.com

@ Note: In most cases, the guessed user name is correct. However, read your AMI usage instructions to check if
the AMI owner has changed the default AMI user name.

Figure 3: Connect EC2 to Terminal

ssh -i ”x21145059 _project.pem” ubuntu@ec2-3-251-80-40.eu-
westl.compute.amazonaws.com

Once we define the above command that connect our EC2 instance and to terminal

our local machine is running Ubuntu and all the resources linked to that cloud
infrastructure.

© @ ® M Research — ubuntu@ip-172-31-32-30: ~ — ssh -i x21145059_project.pem ubuntu@ec2-3-251-80-40.eu-west-1.compute.amazon,
Last login: Tue Dec 13 21:39:12 on ttys@es4
Ishilpimadan@pc-65-180 ~ % cd Research

Jshilpimadan@pc-65-180 Research % ssh —i "x21145859_project.pem” ubuntu@ec2-3-251-80-48.eu-west~1.compute.amazonaws.com
elcome to Ubuntu 20.64.5 LTS (GNU/Linux 5.15.0-1026-aws x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://1landscape.canonical.com
* Support: https://ubuntu.com/advantage

System information as of Wed Dec 14 13:14:01 UTC 2022

System load: 0.0 Processes: 98
Usage of /: 34.7% of 7.576B Users logged in:)

Memory usage: 24% IPv4 address for ethd: 172.31.32.30
Swap usage: 0%

* Ubuntu Pro delivers the most comprehensive open source security and
compliance features.

https://ubuntu.com/aws/pro

19 updates can be applied immediately.
ITo see these additional updates run: apt list —-upgradable

Last login: Tue Dec 13 21:40:25 2022 from 185.134.146.107

[To run a command as administrator (user "root"), use "sudo <command>".
ISee "man sudo_root" for details.

ubuntueip-172-31-32-30:~$ [

Figure 4: Connected to Ubuntu

4. To execute the chunking algorithm we need to deploy our application to AWS cloud
along with the 3 datasets for evaluation.

5. Using Secure Copy Protocol (SCP)File (2022)) we will transfer the data from local

terminal to cloud and for that we need more parameters like: Public Pem key, file
name, public IP address DNS of cloud, location of home directory.

$ scp -i pemfile.pem your_filename ubuntu@pPublic_DNS:/<path>/

Figure 5: Command to copy file

scp -i x21145059 _project.pem -r ./Datasetl ubuntu@ec2-3-251-80-40.eu-
west-1.compute.amazonaws.com:/home/ubuntu

shilpimadan@pc-65-180 Research % scp -1 x21145059_project.pem -r ./Datasetl

ubuntu@Pec2-3-251-80-40.eu-west-1.compute.amazonaws.com: /home/ubuntu
[Datasetl

100% 28MB 11.6MB/s 00:02

Figure 6: Transfer file to Cloud

6. Once all the files are being copied to cloud lets verify all the files.

ubuntu@ip-172-31-32-30:~% 1s
Chunking-Algorithm.py ChunkingOut Datasetl Dataset2 Dataset3

Parallel-Chunking.py homes1212 result

Figure 7: List of files

4 File Execution

To obtain desired results we will be executing serial and Parallel python programs by
using different number of ProcessorgSobe et al.| (2015)) and on all 3 datasets.

4.1 Serial Chunking

To work on data de-duplication technique we have to go for chunking and hashing process.
Here, in this section we will see the processing the hashing and chunking stages in single
thread processor and the time it takes to execute a dataset of size 48MB. The python
code for this is given in the artefacts submitted on moddle and various test are being
conducted to achieve desired results.

for i in range(numTests):
start = time()
serialResult = serialCode(LBAlist)

t = time() - start
print(*Time for 1 Processors: “.format(t))
avgTime.append(t)

Figure 8: Serial Processor

The output while executing the dataset-3 to calculate average time to chunk the entire
file using 10 iterations.

ubuntu@ip-172-31-32-30:~$ python3 Chunking-Algorithm.py
Time for 1 Processors: 8.925203800201416
Time for Processors: 8.739416599273682
Time for Processors: 8.95130181312561
Time for Processors: 8.890659809112549
Time for Processors: 8.898515224456787
Time for Processors: 8.808566808700562
Time for Processors: 8.70194959640503
Time for Processors: 8.883328437805176
Time for Processors: 8.542064428329468
Time for 1 Processors: 8.919476985931396
Average Serial Runtime: 8.826048350334167

al
i,
i,
al
i,
i,
al
1

Figure 9: Serial Processor Output

4.2 Multi-Thread Chunking

In this section we are executing the chunking algorithm using 20 threads at a time that
will execute the various section of the datastreams parallely.

4

for p in range(@,numProcs):
q = multiprocessing.Queue()
if p != numProcs-1:

proc = multiprocessing.Process(target = globalCDC, args = (chunkSizexp,chunkSizex(p+1),q))
else:
proc = multiprocessing.Process(target = globalCDC, args = (chunkSizexp, len(LBAlist),q))

Figure 10: Multi-Thread Processor

The output of the average time chunking process with 20 processors running at the same
time.

ubuntu@ip-172-31-32-30:~$% python3 Parallel-Chunking.py

Testing Source File: Datasetl

Time for Processors: 5.7801961898808371

Time for Processors: 5.573897123336792

Time for Processors: 5.671887397766113

Time for Processors: 5.664926767349243
for Processors: 5.55240797996521
for Processors: 5.567561388015747
for Processors: 5.514532566070557
for Processors: 5.570092439651489
for Processors: 5.477118730545044
for Processors: 5.622833728790283

5
5
5
5
5
5
5
5

Average Runtime for 20 Processes: 5.599545431137085
Testing Source File: Datasetl
for Processors: 5.743909120559692

.885350942611694
.888677358627319

for Processors: 5

for Processors: 5

for Processors: 5.815004587173462
for Processors: 5.859370708465576
for Processors: 5.8452265262608376
for Processors: 5.779861927032471
for Processors: 5.762841463088989
for Processors: 5.876147985458374
for Processors: 5.788475751876831

Figure 11: Multi Processors Output

References

Akil, M., Mancini, L. V. and Venturi, D. (2019). Multi-covert channel attack in the
cloud, 2019 Sixth International Conference on Software Defined Systems (SDS), IEEE,
pp. 160-165.

File, T. (2022). Local windows or mac pc to linux aws ec2, Amazon Doc., managedser-
vices. appguide. .

Sobe, P., Pazak, D. and Stiehr, M. (2015). Parallel processing for data deduplication,
PARS-Mitteilungen: Vol. 32, Nr. 1.

	Introduction
	Software Requirements and Modules
	Local System
	Cloud
	Python Modules

	Implementation on Cloud
	File Execution
	Serial Chunking
	Multi-Thread Chunking

