~

National
College
Ireland

Systemization and Evaluation for Data
deduplication by deploying competitive
chunking algorithm in polymorphic thread
environment and avant-garde hashing
techniques

MSc Research Project
Cloud Computing

Shilpi Madan
Student 1D: x21145059

School of Computing
National College of Ireland

Supervisor: Rashid Mijumbi

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Shilpi Madan
Student ID: x21145059
Programme: Cloud Computing
Year: 2022
Module: MSc Research Project
Supervisor: Rashid Mijumbi
Submission Due Date: 15/12/2022
Project Title: Systemization and Evaluation for Data deduplication by de-
ploying competitive chunking algorithm in polymorphic thread
environment and avant-garde hashing techniques
Word Count: 6210
Page Count: [19]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shilpi Madan

Date: 14th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | (I
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Systemization and Evaluation for Data deduplication
by deploying competitive chunking algorithm in
polymorphic thread environment and avant-garde
hashing techniques

Shilpi Madan
x21145059

Abstract

From the past 3 decades the entire world is rapidly transitioning from the tradi-
tional analogue methodologies by adapting to more digital technologies thus mark-
ing the “Great Digital Revolution”. Vast amount of data is created in several forms
from digital footprints of consumers to development and research of new technolo-
gies across the globe. It is estimated that by 2025 almost 400+ exabytes of data
will be generated globally every day. However efficient storage, management, and
processing of this size of data can be a strenuous task for even larger corporations.
There are several roadblocks towards attaining the efficient storage and utilization
of data. “Data Deduplication” is one of the most efficient methods implemented to
improve the storage abilities. This technique helps in identification and eradication
of duplicate data. Due to the ability of identification of large levels of redundancy,
‘CDC’ better known as content-defined chunking is the key aspect of “Data Dedu-
plication Systems”. In this research paper we are focusing on optimization of “Data
Deduplication systems, by analysis and updating of the current CDC parameters
which will further enable efficient identification of chunk cut-points and fingerprint
the dataset by applying a Novel- Hash function. In this research paper will also
introduce the multi-threading content-defined chunking algorithm to enhance the
computational process using multiprocessor technique. The given algorithm works
on the concept of shifting window that slides one byte at a time in case there is
no match with the hash value pool. Verifying the same on the AWS cloud infra-
structure using different datasets and evaluating the average time for processing
a file using parallel environment versus serial method. According on the findings
of the research, our technique reduces execution time and the storage efficiency is
increased by 70%.

Table Of Contents

1__Introduction| 2
L1 Motivation and Research Probleml 3
(1.2 Report Structure| 4

2__Related Workl 4
[2.1 De-duplication Chunking Algorithm|. 4

[3 Methodology| 6
[3.1 Architectural Diagram ot De-duplication| 7
[3.2 Proposed Chunking Algorithm|. 8
[3.3 Chunks Generation using Multi-Threads| 9
[3.4 Proposed Hashing Technique|. 10

[4 Implementation| 11
4.1 Content Defined Chunking| 11
4.2 Implementation on Cloud| 12

5__Fvaluation| 13
(5.1 Time Complexity tfor Parallel Approachl. 14
(5.2 Experimental Datasets| 0. 14

[5.2.1 Evaluating Dataset-1{ 14
[>.2.2 Evaluating Dataset-2| 15
[5.2.3 Evaluating Dataset-3f 16
(5.3 Duplicate Elimination Ratio (DER)| 16
[5.3.1 De-duplication Ratio| 16

6__Conclusion and Future Workl 17
6.1 Conclusionl. 17
6.2 Future Workl.o 17

1 Introduction

With the evolution of business in recent years, almost all the industries of our modern
Society from Banking, Financial, Healthcare, to even traditional industries like Manu-
facturing adopted data driven business life-cycle processes. This rise of demand in data
also created a scenario best described as “Data Flood”, which is creating a big challenge
for efficient Data storage and management protocols that were traditionally followed.
Further with the sharp increase and growth of Cloud Services, “Data Flood” can have a
severe impact on critical arrears of Data management like Data Transfer, Backup main-
tenance and Storage management. The process of “Data Deduplication” methodologies
have proven to be a very effective solution to the problems arising due to this. It helps in
identification of duplicate data or data with similar contents thus helping to control the
data transfer costs in cloud environments, reduction in unnecessary storage and optimiz-
ation of the network performance. “Data Deduplication” works at the very block level of
a file and follows several steps of Chucking, Hashing, Fingerprinting and Managing the
data based on the deployed algorithm of “Data Duplication”. It breaks down the incom-
ing stream of data into many data ”chunks” that are each individually identifiable (e.g.,
SHA1 and SHA256). Through a process known as ”content-defined chunking,” the size
of these chunks is determined and can either be fixed or changeable based on the content
(CDC).As per the current search, variable-size CDC techniques are more successful than
fixed-size ones at identifying redundant data and even avoid the boundary shift problem.
The pictorial form of de-duplication is shown in below Figure

The basic aim of this research is to offer a chunking technique that addresses and
solves efficiency and output challenges of previously used algorithms using multi-core
processors. DER or ‘Duplication Estimation ratio’ is one of the crucial metrics used for

ks b iy Dl ¢

Figure 1: Data Chunks Formation

evaluating the result as it displays the percentage of data eliminated. To resolve the
challenges arising due to them, we would propose to deploy Chunking and increasing
the window size by shifting it gradually, to observe the efficiency outcome of Data De-
duplication methodology in a cloud environment. Its primary objective is to improve the
average chunking time what we can achieve through parallel architecture. This will have
low computational overhead and will have a higher deduplication throughput than the
previous one without affecting the duplication ratio. The key focus of our proposed work
will be retaining both the DER and the primary of the input data stream. Performance
is also determined by chunking throughput, which is simply the count of bytes every
second. You may determine the amount of duplicates by dividing the total number of
handled data files by the result multiplied by the throughput. Data-deduplication is an
expensive task specially Content-defined Chunking and calculating Hashing index stage
requires more processing time and are CPU intensive, that eventually leads to bottleneck
in its performance. To work on this issue here in this paper we are proposing parallelism
in de-duplication technique that will focus to parallelize the chunking stage, where entire
dataset will be divided into various segments and further CDC will execute on individual
segments parallelly on seperate thread and afterwards re-chunk & enrols the boundaries
of the corresponding point. This is based on MapReduce functionality, which ensures that
output of parallel CDC is similar as sequential one. Incorporating cloud services for any
business judgment necessitates controlled resources, and cloud storage is no exception, as
backups kept in the cloud and later utilized for restoration must ideally be contradictory
free. The copy or clone may be uploaded into the system after restoration, guaranteeing
that the data is not destroyed and may be utilized and kept safely. As a result, we will
implement a data de-duplication mechanism in our cloud platform using several AWS
services.

1.1 Motivation and Research Problem

Goal of this research article is to propose a superior Content Defined chunking approach
than the prior one, as well as a suitable Hashing algorithm employing the notion of
multi-threads. This even discusses how, with the aid of threads, they may improve total
chunking efficiency and its influence on average chunk time. The use of this method will
boost cloud storage management since no repetitive data will be transmitted over the
cloud, hence saving network capacity. This investigation gives an answer to the following
question:

Data de-duplication Systemization and evaluation using a competitive chunking algorithm
in a polymorphic thread context and cutting-edge hashing techniques

1.2 Report Structure

Section 2 presents a thorough evaluation of numerous Chunking algorithms, including
their limitations and strengths. It also provides all of the features required to trans-
mit data to AWS data storage and perform de-duplication on the provided content,
such as security and encryption procedures. Section 3 outlines the mechanism for de-
duplication, followed by the appropriate chunking technique and hashing algorithm with
multi-processors. The planned study and its execution on the AWS cloud are covered
in Section 4. Section 5 describes the assessments of supplied datasets based on two factors.

2 Related Work

Initially Huffman coding and LZ Ziv and Lempel (1978)compression were the most com-
mon ways to manage redundant data. Due to its time-consuming nature and as it is
specific to certain amount of data, de-duplication came into picture. De-duplication is a
technique of deleting redundant information using Hash value and deriving chunks with
the help of various chunking algorithm. Logical pointers are being used to maintain the
duplicate data and the chunking is further classified into fixed and variable sized chunks.
Content Defined chunking was introduced to get rid of drawback defined by fixed sized
chunking of boundary shift that arises in the event of a byte expansion or removal by
Yuan and Yu (2013)Yuan and Yu| (2013) to obtain cut-points for further chunking, where
Venish and Siva Sankar (2016)Venish and Siva Sankar| (2016) assessed several chunking
algorithms that focus on its performance and efficiency in case of chunked material of
exact type.

2.1 De-duplication Chunking Algorithm

Eshghi and Tang (2005)Eshghi and Tang| (2005) devised TTTD (Two Threshold and
Two Divisors) to solve previous shortcomings. It has dual divisors, one as the primary
divisor and one as a standby, which aids in obtaining the stoppage if the primary divisor
misses to do so. The limitation of TTTD is that the primary divisor value isn’t really
content-based, but rather an expected value, and the standby denominator is not used
until it exceeds the maximum cutoff point, which is usually close to Tmax, which creates
unnecessary computation and tends to make the methodology computationally expens-
ive.

Local Maximum Chunking (LMC) by Bjrner et al.(2010)Bjgrner et al| (2010a), which
focuses on discovering the local maximum valued byte by employing the same dynamic
panel model, will seek the local maximum value somewhere around two fixed size win-
dows. The cut-point is defined whenever the derived identity is larger than the number
of bytes in that adapting. The drawback is it matches the byte range every-time the
window shift takes place and that result to be slow.

Zhang et al. (2016)Zhang et al.| (2016]) introduced Asymmetric Extremum(AE), to over-
come LMC which operates on bytes and treats them as digits. It picks 2 windows, the
left side is variable-sized and the right is fixed-sized, excessive value is found in between
window and the cut-points too. It increments the window size. It has low computing
needs, but is it not appropriate for byte shifting.

FastCDC Xia et al.|(2020]) chunking is the most recent CDC approach presented by Xia et

al.(2020), that follow gear driven rolling to derive hash value along with hash judgement
and primarily it ignores cut-points and works on minimum chunk size. This algorithm
rolls 2 bytes at a time and separates the even and odd bytes that makes the process faster
by 1.5 to 3 times, however this leads to low duplication ratio.

Nikolaj et al. (2010)Bjgrner et al. (2010b) developed the MAXP method that computes
the hash value before-hand, it takes bytes directly as digits and to locate local maximum
values it scans entire fixed-size symmetric windows which eventually becomes chunks.
The limitation occurs when any insertion takes place this algorithm scan the window
back and forth leading to low throughput.

Kruus et al. (2010) created the Bimodal MethodKruus et al.| (2010), which is an mod-
ernized version of the original CDC algorithm. Entire datastream is divided into larger
chunks and turn into smaller pieces, in case of undetected redundant, when the inform-
ation that is now altered is present in both chunks in that location, its size will be
updated, and that comparably little unobserved information within this altered region
will be thrown and developed into a new variety.

MCDC seems to be an upgraded variant of Bimodal described by Wei et al. (2014)Wei
et al. (2014) its dependency is on (CR), it determines the unchanging size of information,
and the ratio is categorized into three separate variants, and the three chunk sizes are set
based on these ranges. The fundamental problem of this method is that it is not resistant
to boundary shift because the portion size is set only by three rectified limits. Chunk size
is derived using Uni-modal technique. With the chunk size the CR is defined, because
of increased workload, the efficiency of this method is poor, with a very low throughput
value.

Yu et al. (2015) presented Leap Based chunkingYu et al. (2015), it is implemented on
randomly transformed to confirm if the defined slide is competent or not, and it eradicates
the functionality of rolling hash. This chunking technique analyzes the window overall
satisfaction using two parameters, size and power and from them we can determine which
CDC performs best.

Kaur et al. (2018) Kaur et al.| (2018) grasp all of the numerous data de-duplication
strategies in use and categorize them based on the method they have adopted for cloud
storage. In addition, this research classed data de-duplication algorithms that deal with
texts and other forms of multimedia data streams, outlining their issues and identifying
their limits.

The Low Bandwidth File System (LBFS) (2001)Muthitacharoen et al.| (2001)) is another
sort of CDC algorithm developed by Muthitacharoen et al. Because the main purpose is
to decrease border displacement difficulties, it separates the input files flow into pieces
based on its content. It additionally functions on the file data directly, assessing the
checksum or, in all the other cases, fingerprints of the suitable frame using a template
matching approach and splitting the chunks depending on its split, which are defined
by satisfying certain predetermined specifications. Nie et al. (2019)Nie et al.| (2019) de-
veloped an analysis in which the size of clustering block could be optimized in order to
boost the effectiveness of dedupe techniques, whilst taking into account that the size of
the clustering block ought not to be far too large or far too tiny. To increase the removal
of redundant value, the block size used during the chunking operation must be optimal.
Ni (2019) [Ni| (2019)elaborates on the current CDC methods and developed a new two-
phase method (SS-CDC) that has significantly improved chunking performance and ob-
tained the very same repetition proportion as conventional and concurrent approaches.
By employing weak signatures for detecting copying using fast, hash value that doesn’t

collides with the existing values.

Gholami Taghizadeh et al (2020)Gholami Taghizadeh et al.| (2020]) study provided a new
advanced method of flash memory de-duplication. The write requests were classified ac-
cording to the type and substance of the data, and the related metadata was separated
into categories to aid in the search process. This shortened the time consumption and
considerably enhanced the rate of de-duplication.

Guo et al\Guo and Efstathopoulos| (2011) notifies an incident-driven diversly client-server
multiplexed interactivity model to increment the throughput of the fixed chunks certified
de duplicative simulation system. It also sets forth mod us of border indexing specimens
and classified mark and sweep to amend and enhance the attainment benchmark and
extendibility of deduplication system. Ma et alMa et al| (2012) proposes an adaptive
and robust channelized compute-accelerated subtasks of fingerprinting, transcoding etc
in a rigid chunking based de-duplicative simulation system. Liu et al. Liu et al.| (2009)
imitate fingerprinting computation for de-duplicative simulation by first partitioning each
data set into several chunks then fingerprinting synchronously each set and merge the
fingerprints as the chunk.

Below is the circumscribed Table defining the observations made on distinct chunking
methodologies based on its leverages and subservience’s. In this suggested paper we
will be evaluating the functions of the algorithms which best performs on variable sized
chunks and will augment the window size by 1 byte at a time and configuring the same on
diversely threaded environment to enhance the time efficiency of chunking process. The
implementation would be capable of delivering an exquisite throughput while staying
elusive from the effects of chunk volatility.

Table: Summary of reviewed Chunking Algorithms

Year | Algorithm | Disadvantages
2005 TTTD Eliminate extraneous calculations Minimal chunking performance 4
2010 MAXP Cut down on computational Chunking Throughput is Low 8
overhead
2014 MCDC Deliver the recommended chunk Degrade performance in case of byte 10
size addition
2020 FastCDC Enhance the performance of de- High in computational complexity 7
duplication utilization
2010 LMmcC Perform more accurate in finding Overall slow in performance 5
chunks
2016 AE Computational cost is low Performance degrades in case of byte 6
addition

3 Methodology

Data Deduplication is one of the foremost necessity for eradication of corresponding
data to maintain optimum requisites for achieving an efficient storage services in IT
architecture. Deduplication methodologies not only plays a paramount role to address the
rising cost of cloud storage but also helps in cultivation and support for accelerated backup
speeds and optimizes the data transmission rate by eliminating duplicate data across the
computing grid structure. In this paper we would like to introduce an algorithm primarily
positioned augmenting every byte in order to improve divergent onset and a cluttering
function that operates on the very principle of multi layered cluttering behaviour. This
will help us achieving the ability to reduce the probable hashing collisions without any

adverse consequences on computing abilities of a network. In order to expedite the de-
duplication algorithms, a diversely threaded de-duplication methodology is introduced in
this paper where the CDC modus operation will be performed co extensively on manifold
datastreams along with this on Hashing stage.

3.1

Architectural Diagram of De-duplication

The procedural manoeuvre for the architecture of deploying de-duplication methodolo-
gies must be followed throughout irrespective of IT environment cloud or on-premise.
These standards processes involve multifarious steps involving chunking the manifold of
datastream, estimation and computation of its hash value and ensuring the hash must
correspond with the current Hash Database. Below is the outflow of the steps in form of
a diagram Figure [2| with excerpting all the stages.

Stage 1:

Stage 2:

Stage 3:

Stage 4:

Stage 5:

Step 6

File Downloaded

Check Duplication | Step 3
Step 4

Similar Check
Non Duplicates Detections

‘ Similar ‘

Valid Key

Step 1

User
Registration Step2 |Upload Files

Key

Duplicate Values

|

Valid User

Remove Duplicates

Authentication

Non Similar

Resemblance
Reduce

Additional resemblance
detection of the improve
featured module

Step 5

Figure 2: Data-Flow in De-duplication Architecture

Intendment of the data stream.

Chunks will be collected respective to the suggested chunking algorithm. The data
stream will be bifurcated and branched into chunks. Further the hash value will be
determined for using chuck by utilizing the in-use hashing algorithms.

Post-determining the chunk value, a chunk identifier is derived for every individual
chunk that consists the size of the chunk, pair divisor value and unique 3 hash
values.

The determined hash value is analysed in the fingerprint repository to detect any
similarity in the chunk. In case the hash value matches, the logical pointer points
the originating chunk datastrem and stores the logical address.

In the scenario if no match is determined, it stores the chunk of the datastream
in unique data storage container also further creating a reference in the hash table
and add its augment its hash values generated in Stage 2.

7

3.2 Proposed Chunking Algorithm

The CDC represents the most truthful chunking strategy used for data de-duplication; it
absolutely depends on the circumstance that is currently characterized in the algorithm
and, predicated on just that affliction as well as the information referenced in the data-
set, it determines the portions that are the information on which to base utilised for the
further window interpretations. CDC has assisted in overcoming a significant key con-
straints of chunking, that was a component of predefined length or deterministic chunking
technique called border tilting, which occurs when there is any addendum or withdrawal
of one bit of data in the information stream of data, resulting in a new chunk and dif-
ferent value of cubes with distinct signatures or hash values, that also ultimately has
become an innovative set of information. The below is the description and the step by
step explanation of proposed algorithm with the assumption of data string of specific
length, and calculation of hash value is derived using the hash function on the later stage
of this section.

To calculate the fingerprint data bytes are entered into a feature space. If the derived

Step 1: Data Input stream
Start from a as a is the initial byte position of the data input string

n
@ >

a

Step 2: Calculate the window size ws dynamically by identifying the pattern
Step 3: Determine the hash value for comparison

e C(Calculate the hash of the array (Ha)

e Calculate the hash value of letters follow in window ws in text format (Ht)
Step 4: To determine chunk breakpoint follow the condition

e Hash of array (Ha) is equivalent to Hash of defined window size (Ht)

e Where a-p is previous breakpoint of a chunk

P Length =ws

v

v v
a ws Ws+1

Step 5: If the hash is not same, then hash value of next section of text, one character over

Chunk 1
»
>

<«
@ \ 4 \ 4 »

a ws Ws+l

Step 6: Declaring a to ws+1 as new chunk boundary and ws+1 as new cut point.

value satisfies the specified value, the cut-off is established as the position of the shifting
window’s final byte. Otherwise, move the window size by one byte ahead and repeat the
hashing computation and fingerprint comparison. When all of the cut spots in the file
have been discovered, the algorithm ends. Here, we will be initializing various parameters
width of the window size, comparable hash value, further the defined window is divided
into segments to create chunks. The algorithm derive the chunks within the input file
and compare its hash value with the existing hashes to find the duplicate chunk. The
previous value of fingerprint is taken as a base to calculate for the new window that has
shifted by 1 byte.

(A1, Ay A = (O AP ")modC (1)
a=1
To calculate the new fingerprint using the previous value we operate on above function
where C is the size of the chunks, s is the window size for the input stream marked from
Al to As. For the next byte we will take the values with adding the next integer in that
string value.

3.3 Chunks Generation using Multi-Threads

Data-deduplication is an expensive task specially Content-defined Chunking and calculat-
ing Hashing index stage requires more processing time and are CPU intensive, that even-
tually leads to bottleneck in its performance. Mapreduce is one way to execute content
chunking in multi-threads that computes on multiprocessor approach setup on multi-core
system to work on numerous split but continuous sub-streams referred as “segments”
extracted from same input dataset usually of length 1 and 2 MB. The first stage of par-
allelization is pipelining the steps of deduplication - Content Defined chunking(Stagel),
Securing the hashing index(Stage 2), Scanning the stored hash values(Stage3), Storing
Chunks and index values(Stage4). Once the Pipelining is done processors are assigned for
the Chunking stage where it needs to divide the input-stream into fixed sized segments
following the size protocol of predefined value of maximum size of the chunks and the pro-
cess is called “Map”. Parallelly the chunking algorithm will execute in these data chunks
and the chunks will derived along with its hash value. Another step is to combine these
chunks correctly following the chunking cut-points rule this is called “Reduce” function.
The bifurcation of input streams into multiple segments and further combining those
segments after the operations is illustrated below Figure 3| The two segments are running

The inpant
Dhais Segment A ket Segmen B
idata stream

E A A A A, .
1. Parallel { Data Sepment A
Chunking
{Map)
E B | B | B | By | e |

2. The Boundary
Jointing | A B I . |
(Rieduce)

Figure 3: Illustration of MapReduce

CDC algorithm synchronously in order to generate chunks arguably the last chunk in the
segment will be considered in preliminary piece as the final break will potentially meet
the standard CDC protocol as displayed in the diagram. The valid “cut-point” for the
chunk is inside and we will re-initiate the chunking for alteration as the 2nd step for
completing parallelization.

The concurrent CDC operates simultaneously with dual processor.This process is mapre-
duce: the input file is diagrammed into 2 divisions and edges are re-chunked for correction.

3.4 Proposed Hashing Technique

Authentic Hashing technique used for deduplication process, consume more storage and
is time consuming as it needs to eradicate hashing collision separately. This issue is very
common in SHA1 and MD5 algorithms that calculates hash value of size 160 bits and
128 bits respectively. In this paper we are proposing layered hashing algorithm with our
proposed chunking method, layered hashing function that relies on a hash value for the
sequence representation is constructed using a polynomial limit total of a sequence of
non-repeatable null bytes repeated by a random integer series. Having 3 hash values for
a unique chunk clubbed with the respective fingerprint leads to have less chance of hash
value collision results in chances of unique chunks to identify redundant value. This ap-
proach is less complex and more secure in nature as compared to previous used hashing
methods.

Hash value derived through this method is very small, each hash is of 16 bits that makes
a total of 48 bits for all 3 hashes generated for a unique chunk, that will eventually gener-
ates smaller Chunk ID which requires storage space in hashing table. The overall benefit
of implementing this hashing to improve the throughput and spare some space used by
hashing table.

Below is the Proposed Hashing Method and the function it is based upon: In this we

Hashing Algorithm

To obtain three distinct hash functions one per chunk.

Input: Chunk as array of bytes (Ca)
Chunk Length (Ck)
Hashl1, Hash2, Hash3 (HV1, HV2 & HV3): 3 arrays of 255 random values

Output: Hash values

Stepl: Initialization H1 « 3, H2 « 37, H3 « 17
Li—0
Step2: Compute three hash values for the chunk
ForI=0to Ck-1 Do
Li=Li+]
IfLi>255Li=Li-255
H1=H]1 + (HVI1[Li] * Chunk[I]) IfHI > 0xFFFF H1 = H1 & 0xFFFF
H2=H2 + (HV2[Li] * Chunk[I]) If H2 > OxFFFF H2 = H2 & OxFFFF
H3 =H3 + (HV3[Li] * Chunk[I]) If H3 > 0xFFFF H3 = H3 & OxFFFF

End For

are taking chunk bytes, defining the length of a chunk, Hash Value (HV) is an random
number generated using rand() function which will be saved and used repetitively. The
usage of a distinct sequence of random integers to generate multiple short hash values
is sufficient to generate unique signatures to describe chunk plain text contents. Fur-
thermore, the computation used to calculate the hash values seem to be relaxing; just
primitive calculations are used, which makes the required cost of computing the hash is
reduced in as compared to traditional method additionally, the size of hash is in bits and
bounded independent of big sized data.

10

4 Implementation

The implementation of this research methodology is performed to achieve efficient results
in time taken to execute chunking on various datasets together with ensuring appropriate
hashing methodology that truncates probable hashing collisions. Here, the algorithm
is implemented in Python Version3 with multi-threading functionality, it is deployed on
AWS cloud infrastructure to understand the efficiency of both serial and scalable chunking
techniques on a same set of input stream.

To setup the experiment we have created Ubuntu 20.04 instance on AWS 1386 that runs
on 2.5GHz clock speed, code used to perform chunking is written in Python3.7 combined
with layered hashing algorithm. We will be performing our evaluation using different
numbers of processor and observer the average chunking time, along with the throughput,
this is further generate hash values that is later used to compare the redundant data.

4.1 Content Defined Chunking

The primary function to perform any de-duplication is to identify the patterns that are
divided into chunks, the goal is to construct a limited and predetermined data window on
the input set. Once the window is identified, the 3hash values will be calculated using our
hash function and compared with the existing hash table. Chunk patters Krishnaprasad
and Narayamparambil (2013) is calculated with below general linear model:

Value(a,a+(W,—1)) = (N~ %D, [a] +(NY*")xD,[a+1]+....4-N Dy [a+ W)+ D, [a+W,—1]
(2)

Here, array of data is D,,[] and the given window size is W, we are considering starting

point of the input data from a and calculates the value till a in addition to size of the

window-1.

Below is the flow diagram Figure of the overall execution of chunking process and

the comparison of hash values.

Input Stream / >
Computes hash for
/ Each Chunk / Build Chunk ID /
Return Pointer to Store
Chunk
Store
hash

Sequence q_- FingerPrint Repo
e [{_ena_| <—{ | FingerPrint Rep

File A

No

/Slore Chunk in Hash DB/

Figure 4: Flow of Chunking Process

11

The primary functionality of the chunking algorithm is to identify the smallest chunk
in that input string and then generate the hash value for every chunks. To retrieve the
precise hash value, we evaluate it to the predetermined fingerprint, and if they are the
identical, we may declare it as the needed chunk boundary; if they are different, we rebuild
the window by moving it from the value to right of the existing cut point. By shifting
is right we need to re-calculate the hash for this new chunk point and this procedure
continues, till we get the desired result that is when the hash value is equivalent to the
saved fingerprint. To achieve chunks using above concept for any particular dataset, we
have written below algorithm in Python.

Algorithm:

Input:
+ dataset
« present_hash_value
+ length #Window size

Output:

+ Chunking Breakpoint: cut_point
Function
CDC (dataset, present_hash_value, length)

cut_point = 1
index=0

while (byte = Read_byte(dataset)) do
array[index%.length+1] = byte

if (Size(array) == length) then

if (Hash(array, index, length) == preset_hash_value) then
return cut_point

end if

else

cut_point = cut_point+1

end while

4.2 Implementation on Cloud

The architecture is divided into two parts: client and cloud. Local data de-duplication
is performed by the client components. The fingerprint index of the data chunks is gen-
erated by the client computer. When a client uploads data to the cloud, compressed
portions of the material are transferred to cloud storage. The fingerprints of the received
index are saved in the Global index on the cloud side.

e The small files usually less than of 10KB are first identified by a filter and data de-
duplication is directly performed on them whereas large files needs to pass though
the chunking unit for further chunks division, that divides the files into chunks of
256KB each.

e These chunks are further delivered to the hashing unit that calculates individual
hash values, our proposed hashing technique will generate 3 hash values for respect-
ive chunks.

e We will first match the generated hash value with the index table present in index
generator locally to identify any redundant data, if there is any then it will not
commit in Cloud storage. It there is no match between the existing fingerprint and

12

the new value, the chunk will further pass through the compression unit based on
DEFLATE, that compressed chunk will be delivered to Cloud.

e Incoming file chunks are sent to the chunk index based on the file information.
Each item in the index comprises the fingerprint value, chunk’s length. The SQL
index is used to store data chunk information and to find comparable data chunks
based on their fingerprints. Because the SQL index can traverse the database faster,
fingerprints can be located more effectively in the index.

The below figure [5] illustrates When transmitting the chunk from the client machine,
the fingerprints of the pieces are compared locally. If the fingerprint is found in the local
index, the data chunks and fingerprints are not sent to the cloud. As a result, data
chunks with identical fingerprints are deemed duplicates and are not transferred to the
cloud. Data chunks with fingerprints that are not discovered in the global index they
are regarded new chunks, and their fingerprint is saved as a new iteration in the global
index. This approach prevents duplicate data chunks from being sent from the client to
the cloud. By avoiding delivering duplicate pieces, the bandwidth is properly used.

/ Client Side

File Size Filtering — Small

~

.

/ Cloud Side

Index Generator

/

Figure 5: Architecture of Cloud Configuration

5 Evaluation

Files Compressed|
Large Chunks
Files— . Chunk
e M ompressio
— Unit
Data Small
Chunking Large Flle Files
L Unit J Chunks
I -C_I'II.II'IKS L
Data
De-duplication
& Hashing
New Index FingerPrint
Entities

Global
Deduplicator

\-

\\

In this section we will be evaluating the various datasets on 2 given parameters to differ-
entiate the performance of our algorithm on the serial environment and in case of scalable.

We will be deploying these on Cloud architecture for better results.

The parameters on which we will be evaluating are calculated on the basis of given terms:

13

5.1 Time Complexity for Parallel Approach

The time complexity is dependent on all the 4 stages mentioned before and categorised
under pipeline, indicated by T'ime., Timey, Time;, Time, and The fraction (the ratio of
size of data prior to actually deduplication) is denoted below D, and Ty/D, signifies the
duration of producing the quantity of non redundant entities.

Without dedupe, average running time may be approximated as follows:
Throughput = 1/Time;

With classic single threaded deduplication, the write throughput may be computed as
follows:

Throughput = 1/(Time.+Times+Time;+Times/D,)

When the chunking and fingerprinting operations are further parallelized with paral-
lel threads (N), the throughput is as follows:

Throughput = 1-Value of Maximum(7ime./N, Time;/N, Time;, Time/D,)

5.2 Experimental Datasets

Chunking wastes resources and time since it must traverse the whole file byte by byte
to find the cut-points. The processing time and resource usage of the chunking step are
entirely dependent on the conditions of the chunking algorithms that split the file. For
our experiment, we used three datasets to evaluate the method in text files of varying
sizes, which will aid in establishing how effective the suggested architecture is overall
represented in below Table

Table 1: Dataset Details
H File Type ‘ File Name ‘ File Size H
txt Dataset-1 29 MB
txt Dataset-2 | 38.5 MB
txt Dataset-3 48 MB

5.2.1 Evaluating Dataset-1

In our first experiment we are taking Dataset-1 into account to perform chunking and
hashing using proposed technique.Our system will evaluate on the basis of time complex-
ity and performance when chunking is performed on a single thread, 10 processors and 20
processors at a time. To achieve better results we are conducting 10 iteration to calculate
the average time necessary to execute chunking using varying numbers of processors; as
a consequence, we will conclude the total throughput for Dataset-1 in all three scenarios.
The output of the same is given Table [2]and graphical representation Figure [f

14

Table 2: Result for Dataset-1
Chunking type | Time in Seconds | Throughput (MB/Seconds)
Serial 6.425 5.347
10 Processors 4.751 6.103
20 Processors 4.023 7.208
Dataset-1
8
7
6
5
4
3
2
1
0
Serial 10 Processors 20 Processors

mTimein Seconds m Throughput (MB/Sec)

Figure 6: Throughput for Dataset-1

5.2.2 Evaluating Dataset-2

Second experiment is conducted on Dataset-2 that is of size 38.5MB, both chunking and
hashing stages will go through the multi processing steps and the throughput for the
same will be calculated based on the actual time taken for chunking and its throughput
value. The output is represented in a Table [l and Graph Figure [7]

Table 3: Result for Dataset-2
Chunking type | Time in Seconds | Throughput (MB/Seconds)

Serial 8.119 4.741
10 Processors 7.121 5.406
20 Processors 5.578 6.902

Dataset-2

9
8
7
6
5
4
3
2
1
0
Serial 10 Processors 20 Processors

mTimein Seconds m Throughput (MB/Sec)

Figure 7: Throughput for Dataset-2

15

5.2.3 Evaluating Dataset-3

Lastly, we will be using Dataset-3 of size 48MB that is the largest amongst all, we will
the executing it under same condition of different number of processors and evaluate the
throughput accordingly. We have given it in below Table [and Graph Figure

Table 4: Result for Dataset-3
Chunking type | Time in Seconds | Throughput (MB/Seconds) ‘
Serial 9.069 5.292
10 Processors 7.861 6.106
20 Processors 5.012 7.951
Dataset-3
10
9
8
7
6
5
4
3
2
1
0
Serial 10 Processors 20 Processors

mTimein Seconds m Throughput (MB/Sec)

Figure 8: Throughput for Dataset-3

5.3 Duplicate Elimination Ratio (DER)

It is an important metric to analyse any chunking technique and it is represented by
a fraction of original size of input stream by the resulted size of the chunked file after
performing de-duplication. Its is represented like below:

Input Datas size be fore Dedulplication in MB

Deduplication Elimination Ratio (DER) = Output Data size after Deduplication in MB

5.3.1 De-duplication Ratio

In this part, we examined the size of all datasets after completing the de-duplication
technique, comparing the real size of the datastream to the size of the file acquired after
removing duplicate chunks. This computation results in the value of DER.

We examined the size of datasets in MB and evaluated the DER value associated with
these sizes in the Table [f] below; the graphical representation Figure [9] makes it more

16

evident.

Table 5: File Size comparison based on De-duplication
H Dataset | Input Datastream Size (MB) ‘ De-duplication Size(MB) ‘ DER H

Dataset-1 29 6.5 4.461
Dataset-2 38.5 7.8 4.982
Dataset-3 48 9.6 5.135

De-duplication RatioComparison
60
50

40

30

20 I

10

. - L] L]

Dataset 1 Dataset 2 Dataset 3

m Actual Size (MB) m Size After De-duplication (MB)

Duplication Elimination Ratio (DER)

Figure 9: DER Evaluation

6 Conclusion and Future Work

6.1 Conclusion

Data Deduplication is a methodology widely used for managing efficient of storage services
in a cloud environment. In this paper we would like to propose a chunking approach that
pivots on byte distribution in the datastream by considering every byte while matching the
hash value of the designated chunk. We focused on chunking performance by introducing
the notion of multi-threads. This approach expands the chunking and hashing operations
accord several processing threads, and all portions of the datastream would run parallely.
The evaluation is performed on the basis of Chunking Throughput and DER using 3
different datasets and the results notifies that present chunking approach adequately
performs on CDC technique with an appropriate outcome for Duplication ratio where
the size of the file is reduced by 70% and the throughput of the overall chunking has
improved as equivalent to the number of processors being used. While carrying out this
experiment, we took the cloud environment into account in order to better understand
network bandwidth utilization and the impact on cloud performance.

6.2 Future Work

In the future, we will improve chunking performance with regard to huge files that com-
prise media files, optimize the software based on multi-media datasets, and assess the

17

chunking process using a multi-thread system to increase throughput and network ca-
pacity. The use of GPU to boost system speed and compress data for storage is one
element to consider while working on parallel techniques for chunking and fingerprint
computation.

References

Bjorner, N., Blass, A. and Gurevich, Y. (2010a). Content-dependent chunking for dif-
ferential compression, the local maximum approach, Journal of Computer and System
Sciences 76(3-4): 154-203.

Bjorner, N., Blass, A. and Gurevich, Y. (2010b). Content-dependent chunking for dif-
ferential compression, the local maximum approach, Journal of Computer and System
Sciences 76(3-4): 154-203.

Eshghi, K. and Tang, H. K. (2005). A framework for analyzing and improving content-
based chunking algorithms, Hewlett-Packard Labs Technical Report TR 30(2005).

Gholami Taghizadeh, R., Gholami Taghizadeh, R., Khakpash, F., Binesh Marvasti, M.
and Asghari, S. A. (2020). Ca-dedupe: Content-aware deduplication in ssds, The
Journal of Supercomputing 76(11): 8901-8921.

Guo, F. and Efstathopoulos, P. (2011). Building a high-performance deduplication sys-
tem, 2011 USENIX Annual Technical Conference (USENIX ATC 11).

Kaur, R., Chana, I. and Bhattacharya, J. (2018). Data deduplication techniques for effi-
cient cloud storage management: a systematic review, The Journal of Supercomputing
74(5): 2035-2085.

Krishnaprasad, P. and Narayamparambil, B. A. (2013). A proposal for improving data
deduplication with dual side fixed size chunking algorithm, 2013 Third International
Conference on Advances in Computing and Communications, IEEE, pp. 13-16.

Kruus, E., Ungureanu, C. and Dubnicki, C. (2010). Bimodal content defined chunking
for backup streams., Fast, pp. 239-252.

Liu, C., Xue, Y., Ju, D. and Wang, D. (2009). A novel optimization method to improve
de-duplication storage system performance, 2009 15th International Conference on
Parallel and Distributed Systems, IEEE, pp. 228-235.

Ma, J., Zhao, B., Wang, G. and Liu, X. (2012). Adaptive pipeline for deduplication, 2012
IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST), IEEE,

pp. 1-6.

Muthitacharoen, A., Chen, B. and Mazieres, D. (2001). A low-bandwidth network file
system, Proceedings of the eighteenth ACM symposium on Operating systems principles,
pp. 174-187.

Ni, F. (2019). Designing Highly-Efficient Deduplication Systems with Optimized Compu-
tation and 1/0 Operations, PhD thesis, The University of Texas at Arlington.

18

Nie, J., Wu, L. and Liang, J. (2019). Optimization of de-duplication technology based
on cdc blocking algorithm, 2019 12th International Congress on Image and Signal
Processing, BioMedical Engineering and Informatics (CISP-BMEI), IEEE, pp. 1-5.

Venish, A. and Siva Sankar, K. (2016). Study of chunking algorithm in data deduplica-
tion, Proceedings of the International Conference on Soft Computing Systems, Springer,
pp- 13-20.

Wei, J., Zhu, J. and Li, Y. (2014). Multimodal content defined chunking for data dedu-
plication, Huawe: Technologies .

Xia, W., Zou, X., Jiang, H., Zhou, Y., Liu, C., Feng, D., Hua, Y., Hu, Y. and Zhang,
Y. (2020). The design of fast content-defined chunking for data deduplication based
storage systems, IEEE Transactions on Parallel and Distributed Systems 31(9): 2017—
2031.

Yu, C., Zhang, C., Mao, Y. and Li, F. (2015). Leap-based content defined
chunking—theory and implementation, 2015 31st Symposium on Mass Storage Sys-
tems and Technologies (MSST), IEEE, pp. 1-12.

Yuan, J. and Yu, S. (2013). Secure and constant cost public cloud storage auditing
with deduplication, 2013 IEEE Conference on Communications and Network Security
(CNS), IEEE, pp. 145-153.

Zhang, Y., Feng, D., Jiang, H., Xia, W., Fu, M., Huang, F. and Zhou, Y. (2016). A fast
asymmetric extremum content defined chunking algorithm for data deduplication in
backup storage systems, IEEE Transactions on Computers 66(2): 199-211.

Ziv, J. and Lempel, A. (1978). Compression of individual sequences via variable-rate
coding, IEEFE transactions on Information Theory 24(5): 530-536.

19

	Introduction
	Motivation and Research Problem
	Report Structure

	Related Work
	De-duplication Chunking Algorithm

	Methodology
	Architectural Diagram of De-duplication
	Proposed Chunking Algorithm
	Chunks Generation using Multi-Threads
	Proposed Hashing Technique

	Implementation
	Content Defined Chunking
	Implementation on Cloud

	Evaluation
	Time Complexity for Parallel Approach
	Experimental Datasets
	Evaluating Dataset-1
	Evaluating Dataset-2
	Evaluating Dataset-3

	Duplicate Elimination Ratio (DER)
	De-duplication Ratio

	Conclusion and Future Work
	Conclusion
	Future Work

