

Asymmetric Encryption and Blockchain based

Multi-keyword Encrypted Search

MSc Research Project

Akash Kulkarni

Student ID: x21138419

School of Computing

National College of Ireland

Supervisor: Shivani Jaiswal

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

AKASH KULKARNI

Student ID:

X21138419

Programme:

MSc Cloud Computing

Year:

2022-2023

Module:

Research Project

Supervisor:

Shivani Jaiswal

Submission Due
Date:

15th December 2022

Project Title:

Asymmetric Encryption and Blockchain based Multi-keyword

encrypted Search

Word Count: 7338

Page Count: 18

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Akash Kulkarni

Date:

15th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project

(including multiple copies)

□

Attach a Moodle submission receipt of the online
project submission, to each project (including multiple

copies).

□

You must ensure that you retain a HARD COPY of the
project, both for your own reference and in case a project

is lost or mislaid. It is not sufficient to keep a copy on
computer.

□

Assignments that are submitted to the Programme Coordinator Office
must be placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if
applicable):

Asymmetric Encryption and Blockchain based Multi-

keyword Encrypted Search

Akash Kulkarni

x21138419

Abstract

Blockchain technology has recently gained significant attention as a potential

solution for securing data in cloud computing environments. This is due to its ability

to provide a decentralized and immutable ledger of transactions, which can be used

to store and manage sensitive information in a secure and transparent manner. In

this paper, we propose the use of blockchain-based searchable encryption for

improving the security of cloud computing systems. Searchable encryption is a
cryptographic technique that allows for searching encrypted data without decrypting

it. This allows for more secure storage and retrieval of sensitive information, as the

data remains encrypted at all times, even when being searched. By combining

searchable encryption with blockchain technology, we can provide a secure and

efficient method for storing and searching sensitive data in the cloud. Our proposed

system provides several benefits for cloud security. First, it allows for secure storage

and retrieval of sensitive data in the cloud, as the data remains encrypted at all times.

Second, it allows for efficient searching of encrypted data, making it practical for

use in a variety of applications. Third, it provides a decentralized and immutable

ledger of transactions, which can be used to provide transparency and accountability

for the storage and management of sensitive data. Overall, the proposed system

offers a promising approach for improving the security of cloud computing systems

using blockchain-based searchable encryption.

Keywords: Cloud storage, security, blockchain, smart contract, asymmetric

encryption

1. Introduction

Cloud storage has become one of the most essential parts of technology world. Hardly very

few technology giants are capable of storing data in servers which are in their control. Storing

data in cloud helps organizations to reduce the costs on storage, organizing, scaling and

maintenance. So, security aspect of cloud storage becomes extremely important as remote

servers are untrusted parties. To maintain privacy levels encrypting data and then storing in

cloud is a solution. The issue pertaining to this is data utilization, as retrieving data and then

decrypting it on user end is a challenging as well as inefficient task. Using searchable

encryption technology keyword search can be performed on the encrypted data without

compromising any kind of information to the cloud. Searchable encryption was revealed by

{practical paper} which actually allowed to search over the encrypted data in database.

Particularly there are two types of Searchable encryption techniques:

• Symmetric Searchable Encryption

Symmetric searchable encryption is a cryptographic method that allows for searching

encrypted data without decrypting it. This is accomplished by using a trapdoor function, which

is a type of mathematical function that is easy to compute in one direction but difficult to

compute in the reverse direction. The trapdoor function is used to encrypt the data, and a

searchable index is generated that allows for efficient searching of the encrypted data. When a

search query is made, the query is encrypted using the same trapdoor function and matched

against the searchable index. Any matching records can then be retrieved without revealing the

underlying plaintext. The key advantage of symmetric searchable encryption is that it allows

for secure storage and retrieval of sensitive information, as the data remains encrypted at all

times. This provides a higher level of security than traditional methods of encrypting data, as

the data can be searched without the need to decrypt it first. This makes it possible to search

encrypted data without exposing it to potential attackers. Additionally, the use of a trapdoor

function allows for efficient searching of the encrypted data, making it practical for use in a

variety of applications.

• Asymmetric Searchable Encryption

Asymmetric searchable encryption, also known as public-key searchable encryption, is a

cryptographic method that allows for searching encrypted data without decrypting it. This is

accomplished by using a public-key encryption scheme, in which a pair of keys - a public key

and a private key - are used to encrypt and decrypt data. The public key is used to encrypt the

data, and a searchable index is generated that allows for efficient searching of the encrypted

data. When a search query is made, the query is encrypted using the public key and matched

against the searchable index. Any matching records can then be retrieved without revealing the

underlying plaintext. The key advantage of asymmetric searchable encryption is that it allows

for secure storage and retrieval of sensitive information, as the data remains encrypted at all

times. This provides a higher level of security than traditional methods of encrypting data, as

the data can be searched without the need to decrypt it first. This makes it possible to search

encrypted data without exposing it to potential attackers. Additionally, the use of a public-key

encryption scheme allows for efficient searching of the encrypted data, making it practical for

use in a variety of applications.

General Searchable encryption algorithms have two steps. One where Data owner (DO)

encrypts the data, creates its index along with encryption of keywords and stores that

information in cloud database. Second step is where a Data user (DU) generates a trapdoor

which consists of its credentials and keywords and submits it to the cloud. Upon creating and

searching keyword index cloud responds with particular dataset to the DU. Most of the SSE

and PEKS schemes available are based on trusting centralized server to hold the value of

encrypted file index and keywords. Most of the cloud service providers follow honest-but-

curious model, which means that a cloud server might try to read what kind of data user is

trying to access by looking into information in trapdoor such as keywords and credentials. To

avoid such issues, data such as trapdoor query and user credentials needs to be away from cloud

server but available on request. Blockchain plays a very important part in this, if the indexed

keywords and trapdoor queries are stored in blockchain and upon request delivered to cloud

server, server won’t be able to sniff and read the data. This solves the hones-but-curious part

of the problem. Blockchain works on different consensus algorithms such as proof-of-work

(bitcoin), proof-of-stake (Ethereum/polygon), hashgraph consensus(hedera) and so on. Every

mechanism has its own benefit over others. For searchable encryption throughput is very vital,

hence hashgraph consensus shall be used. Blockchain also enables fair payment mechanism to

the data owners because of its features of smart contracts, which enables to create virtual

payment systems using tokens.

Honest-but-curious servers are not the only problem with centralized systems. Its very

important to ensure the credibility of the trapdoor request from data user, whether the user who

has requested the data has the actual authorization or the trapdoor information is not getting

leaked after the search. So here layers of verification are required such as

By gathering all the sufficient information, this paper proposes a scheme which using

combination of SSE and PEKS along with blockchain to achieve secure searchable encryption

mechanism having unique properties such as multi-keyword search, forward and backward

privacy and fair payment. The scheme proposed is Asymmetric Encryption and Blockchain-

based Multi-keyword Encrypted Search (AEBMES).

The scheme is built along the following research question: How to improve security and

enhance multi-keyword search on encrypted data in cloud by using blockchain and

asymmetric key encryption mechanism ?

AEBMES scheme is summarized as follows:

• Scheme uses combination of symmetric encryption and public-key encryption in a way

where symmetric key is used to encrypt the data while public-key encryption is used to

encrypt the symmetric key, so that sharing the key will not be a issue.

• Blockchain will be used to store data related to encrypted file indexes and keywords

along with trapdoor information from data owner

• Smart contracts will be used to store above information, along with there will be a

native token for this scheme which will be used to pay as reward for data owner for

providing correct information required to data user.

• Scheme includes layers of verification process to ensure there are no data leaks, not

allowing access to unauthorized user even if trapdoor is leaked, verifying if cloud

provider has delivered the correct data required using document notarization.

• Multiple updates on files will ensure forward and backward privacy of the data. Scheme

will include multi-keyword search rather than single word to save computing time and

use of resources.

The structure of document is as follows: Section 2 consists of prior research work on similar

topic which is followed by section 3 called as preliminaries which will explain of some terms

and concepts used in building the scheme. Section 4 will include Architecture and its

description along with introduction to various algorithms used in this scheme with the security

model. Section 5 will have result and implementation phase along with comparative study

regarding complexity, gas-cost and search time, then followed by conclusion.

2. Literature Survey

AEBMES scheme focuses on two things, searchable encryption and blockchain integration in

searchable encryption. Thus, the related work completed on above topics is discussed below,

which includes their focus and some shortcomings which AEBMES will try to overcome.

Song et al, first came up search based mechanism on encrypted data in cloud based

environment. (Dawn Xiaoding Song, Wagner and Perrig, 2000). The main focus of that

research was to have a optimal fast keyword search over encrypted data. The best case scenario

is for the applications to use schemes that give the opponent no information at all. Most of the

time, these schemes can be made with oblivious RAM, homomorphic encryption, or

multiple computation. However, they usually have high bandwidth costs and a lot of extra work

to do. So, a practical SE scheme gives away more or less some information to the opponent as

a trade-off to make things work better. Unfortunately, the leakage of information has been used

in different ways to compromise the security of SE schemes.(Cash et al., no date). A deadly

adaptive attack was proposed by Zhang which can recover the term from search trapdoors by

adding as few as 10 additional files(Z. Li et al., 2021). With the advent of the adaptive leakage-

exploiting attack, forward privacy has become a focal point of security research.

The forward-privacy-preserving techniques rely on symmetric-key cryptography for the most

part. Common among them is a lack of flexibility in crucial distribution and management.

Public-key encryption with keyword search was proposed as the initial searchable public-key

encryption technique by Boneh et al., which sidesteps the need for communication between the

data owner and the data consumer. However, SPE typically has two major drawbacks: (1) it

requires a huge number of public-key operations with the ever-increasing dataset size, and (2)

it is vulnerable to the inside keyword guessing attack (IKGA) if the smaller space of keywords

than that of keys(Boneh et al., 2004). In addition, the storage server is assumed to be an honest

but inquisitive entity in most extant searchable encryption methods, which always follows the

specified protocol and never tries to depart from it. However, in practice, the storage server

might only offer partially complete or incorrect results for a given benefit, or it might even

throw execution problems. To ensure that the storage server has properly completed the search

process, Zheng et al. devised a verified attribute-based keyword search technique(Zheng, Xu

and Ateniese, 2014). Several techniques that are similar to those proposed by Jarecki et al.

presume that the server is honest but curious, meaning that it will not diverge from the present

protocol, but may act maliciously, i.e., return erroneous results, in order to save money or in

the event of technical difficulties. This necessitates keeping an eye on the server to detect any

suspicious activity and responding appropriately(Jarecki et al., 2013).

This paper talks about different parts of searchable encryption, such as searching for multiple

keywords, changing the values of keys, and using smart contracts to access and store data about

trapdoors. The plan is called BPKEMS. Bilinear Pairing, the Blockchain, and the Decisional

Diffie-Hellman algorithm are the main parts of this scheme (DDH). Bilinear Pairing has three

features: it's linear, doesn't get worse over time, and is super easy for computing purposes.

DDH will be used to make pairs of keys for each user. The consensus mechanism, the gas

system, which is basically a fee for blockchain transactions, and smart contracts, which are

pieces of code used to store data, transfer fees from user to user, etc., are all important parts of

blockchain(Chen et al., 2021). Later Li et al, suggested a public-key encryption system based

on the blockchain that can be used for keyword searches, allowing for secure, distributed, and

easily searchable encryption. The authors have set out to address a widespread problem faced

by verifiers today: how to overcome mistrust about cloud-based information. The TrueBit

protocol used in this technique is an attempt to circumvent this problem. The key-aggregate

approach, which is discussed in this paper, further minimizes the cost of storing key values.

The technique allows the data owner to change its private key and revoke access to the data at

any time. The proposed method guarantees both many owners and equitable compensation for

all parties involved. User only pays for the confirmed data they need and any excess is

returned(H. Li et al., 2021). Xu et al, proposes a scheme which provides a blockchain-based

verifiable keyword search strategy that may be used to execute quick multi-keyword searches,

guarantee fair verifications, and update files in real-time. Uses a blockchain and smart contracts

to verify the outcomes, guaranteeing accuracy and fairness, while keeping verification costs

down via a bitmap and hash function.(Xu et al., 2022). Chen et al, came up with searchable

encryption for vehicular network. This paper presents a new type of public-key encryption that

can be searched and has both forward and backward privacy that is based on the blockchain

(BSPEFB). In this method, keywords are looked up in the cloud via smart contracts, which

verifies and immutably stores the results. The technique incorporates forward and backward

secrecy to further safeguard users' personal information. It is a lightweight system that makes

use of only the most fundamental BSPEFB, hence reducing the amount of computation-

intensive processes and increasing the search efficiency. The goal of this study is to develop a

secure and efficient method of searching encrypted data stored in the cloud, which may then

be used in a cloud-assisted vehicular network. Pseudorandom permutation functions, bilinear

pairing, and the Diffie-Hellman key exchange are all utilized in the generation of key pairs in

this system(Chen et al., 2020). In next study, Yang et al. propose a blockchain-based

certificateless searchable public key authenticated encryption (CL-SPKAE). Encrypted

indexes are used to store files and guarantee that the cloud server is unaware of the search terms

used or the results returned. This protects against servers that are well-intentioned but overly

nosy, and it also enables the detection of criminal activity. Managing certificates is simplified

with the certificate-less system. The integrity of encrypted indexes may be tracked and any

tampering with them can be detected thanks to this scheme's anti-tampering and authenticity

check methods. A third-party user cannot guess keywords to employ in an attack on the stored

data since the indexes are constructed using Data users' public key and the data owners' private

key. Blockchain's built-in anti-tampering protections guarantee that users always get authentic

results from their queries. Data users and data owners can conduct lawful financial transactions

with the help of smart contracts. In terms of safety, the approach is impenetrable to both

keyword guessing attacks and random oracle attacks(Yang et al., 2020).

This study by Chakraborty et al, offers a searchable encryption method based on the blockchain

and the bloom filter, which aids in data privacy and keeps tabs on potentially dangerous cloud

server activity. Data leaking is prevented by creating a trapdoor for insert and search queries to

go through. The method can withstand assaults like search pattern leaking, access pattern

leakage, and volume pattern leakage. The effectiveness of the method is tested experimentally

on Ethereum test networks(Chakraborty et al., 2022). Wu et al, present the first study of the

public verification problem for encrypted numerical search on dynamic data. It develop a

system called Succinct Order-Revealing Encryption (SORE) that slices an order condition into

many slices, each of which can be used as a keyword search, in order to facilitate numerical

search. We also create public verification techniques for these slices, based on multiset hash

and the RSA accumulator. To conduct public verification impartially and ensure the data's

currency, we use the blockchain as the trusted third party. To ensure insertion privacy, we

additionally implement the trapdoor combination to accomplish forward security(Wu et al.,

2022).

3. Research Methodology

In this section, aspects of this research will be explained which includes system model,

preliminary information related to blockchain used, smart contracts, tokenisation,

cryptography used to include encryption algorithms which will be followed by design and

security goals of AEBMES scheme.

3.1. System Model

This scheme has following entities:

• Data Owner (DO): DO will encrypt the document with a key which is then encrypted

using asymmetric encryption and then along with keyword ciphertext, information is

stored in blockchain. Then encrypted file is send to CB which stores it in Database.

• Blockchain Platform (BP): BP is a platform where smart contracts are deployed. DO,

DU and CB generally connect with BP to store or retrieve the information. Token
contracts and AEBMES scheme contracts are deployed in BP.

• Cloud Database (CD): A database hosted on cloud platform. Only encrypted files are

stored in Database. This component won’t be connected to blockchain and hence won’t

have any data related to search query and also won’t have access to any keys to decrypt

the data stored.

• Cloud Backend (CB): This is where entire logic will take place including key

encryption, communication with blockchain. CB takes

• Data User (DU): DU will generate a trapdoor and call smart contract to get the file

information and will pass it on to CB.

• Cloud Key Manager (CKM) : It is responsible for creating keypair for different entities
such as Owner, user, Cloud Backend. CKM also stores keys in encrypted format

provided by the system.

Abbreviation Explanation

PK, SK Public key (PK), Private key(SK)

Kw Keyword array

File File Data

K”w Encrypted keyword index

Ek Symmetric key for AES encryption

fileHash Sha256 hash of file data

fileCipherText Cipher text of a file after encryption wih Ek

E’
k Encrypted key using PKDO and SKDU

Sw Search keywoed array

Ei Encrypted Index information

Th Trapdoor hash
Table 1 Abbreviation Explanation

3.2. Algorithms

• Key_Generation => (PK, SK):

This algorithm generates keypairs for different entities in the system. It outputs public key

(PK) and private-key (SK) for users

• Encrypt_File(Kw, PKdu, File) => (fileHash, K”
w, E’

k):

This algorithm takes Kw which is array of keywords associated with File, PK of Data user

(PKdu) as input. It first generates Ek (Symmetric) and encrypts the file using Ek which generates

fileCiphertext, then encrypts Ek using (SKDO, PKDU) and generates E’
k, maps keyword hashes

with cipherText and sends the information to blockchain and then uploads generated file

ciphertext in cloud database(CD).

• Generate_trapdoor(Sw, PKDO) =>(Ei, Th):

This algorithm is performed by DU, takes Sw as input for array of keywords to be search and

PK of Data-owner(DO). This will create a hash of Sw and call smart contract function to get

related encrypted index array (Ei) and unique trapdoor hash (Th)

• Search(Th, PKdu, Ei) =>(fileCipherText):

This operation is performed by CB where DU passes its PKdu, Ei and Th got from previous

algorithm. CB will first verify whether the DU has generated the given trapdoor or not and then

it will search for the recommended cipherText, if available it will forward it to DU.

• Verify_Trapdoor(Th, PKDU) => Boolean:

This algorithm is performed by CB to verify incoming search request from the DU. It takes Th

aand PKDU as input and calls smart contract function to check in trapdoor for the user exists or

not. If Yes, then CB searches for fileCipherText in CD and returns it to DU. If No, the process

is terminanted.

• Decrypt_File(PKDO, fileCipherText, E’
k) => FILEd

This is executed by DU after receiving file from CB, it will first decrypt E’
k using (SKDU, PKDO),

which will generate Ek using which fileCipherText will be decrypted by AES and will give

FILEd .

• Verify_Result(fileHash, Th)=>Boolean:

This is to verify the result given by CB, first DU will create SHA256 of FILE, then with the

use of Th will verify the result in smart contract.

• Update_document(Kw, old_cipherText, newFile):

This will be execute by DO and will be same as Encrypt_file algo, just this will replace the

old_ciphertext with new one, and update the smart contracts along with it.

3.3. Blockchain

A blockchain is a distributed database that maintains a continuously growing list of records,

called blocks, secured from tampering and revision. Each block contains a timestamp and a

link to the previous block, and is typically managed by a peer-to-peer network that follows a

specific protocol for validating new blocks. Blockchains are often used to store and transmit

data in a secure and transparent way. Because the data in a blockchain is distributed across a

network of computers, it is considered to be highly resistant to tampering and revision. This

makes blockchains well-suited for applications that require a high degree of trust and security,

such as the storage and transfer of digital currencies.

3.3.1. Hedera Consensus

Hedera Consensus is a distributed ledger technology (DLT) platform that uses a unique

consensus mechanism called "Hedera Hashgraph" to achieve high performance, security, and

fairness. The platform is designed to support a wide range of applications, including payments,

supply chain, digital identity, and more. Hedera Hashgraph is a directed acyclic graph (DAG)

data structure that allows for fast and efficient consensus among the nodes in the network.

Unlike other DLT platforms that use proof-of-work or proof-of-stake mechanisms, Hedera

Hashgraph uses a consensus algorithm called "gossip about gossip" that allows nodes to

quickly and securely reach consensus without the need for mining or staking. Hedera

Consensus also uses a unique governance model that combines elements of both centralized

and decentralized systems(Gross and Thibeau, no date).

Hashgraph is a distributed ledger technology that is based on a different underlying technology

called "hashgraph" which is claimed to be faster and more efficient than traditional blockchain

technology. This allows hashgraph to process transactions more quickly and with lower fees

than other distributed ledger systems. In contrast, PoS is a specific algorithm that is used by

some blockchain networks to achieve distributed consensus and validate transactions. In a PoS

system, the nodes that validate transactions are chosen based on the amount of stake they hold

in the network, rather than the amount of computing power they contribute, as is the case with

proof of work (PoW) systems.

3.3.2. Smart Contract and Tokenization

A smart contract is a computer program that automatically executes the terms of a contract

when certain conditions are met. It is called a "smart" contract because it can self-execute and

self-enforce the terms of the agreement without the need for third-party intervention. Smart

contracts have the following properties:

• Automation: The terms of the contract are automatically executed when certain

conditions are met, without the need for manual intervention.

• Self-execution: The contract executes on its own, without the need for a third party to

enforce the terms of the agreement.

• Self-enforcing: The contract enforces itself, without the need for a third party to

arbitrate disputes or enforce the terms of the agreement.

• Trustless: The contract does not rely on the trustworthiness of any particular party, as it

is executed automatically by the underlying blockchain technology.

• Immutable: Once a smart contract is deployed on a blockchain, it cannot be modified

or deleted. This ensures that the terms of the contract remain unchanged and cannot be

altered by any party.

• Transparent: The terms of the contract and the execution of its clauses are visible on

the blockchain, allowing for transparency and accountability.

• Secure: The use of cryptographic techniques and the decentralized nature of blockchain

technology make smart contracts highly secure and resistant to tampering.

3.4. Cryptography and Encryption Algorithms

3.4.1. AES

AES (Advanced Encryption Standard) is a symmetric-key encryption algorithm that is widely

used to secure data. It was first published in 1998 by the National Institute of Standards and

Technology (NIST) and has since been adopted by governments and organizations around the

world as a standard for secure data encryption. AES uses a fixed block size of 128 bits and

supports key sizes of 128, 192, and 256 bits(Lu, Zhang and Cao, 2022). It is considered to be

a very secure and effective algorithm, and is used in a variety of applications, including

encryption of data at rest and in transit. The steps for encrypting and decrypting data using AES

are as follows:

• The sender and receiver agree on a shared secret key. The key can be of any length, but

is typically 128, 192, or 256 bits long.

• The sender uses the shared key to encrypt the plaintext message using the AES

algorithm. The encrypted message, known as the ciphertext, is sent to the receiver.

• The receiver uses the same shared key to decrypt the ciphertext and recover the original

plaintext message.

3.4.2. RSA

RSA is a public-key cryptography algorithm that is widely used for secure data transmission.

It is named after its creators, Ron Rivest, Adi Shamir, and Leonard Adleman, who published it

in 1977. In RSA, a user generates a public key and a private key. The public key is typically

shared with others, and is used to encrypt messages. Only the user who has the corresponding

private key can decrypt the messages. RSA is based on the mathematical fact that it is

computationally infeasible to factorize a large composite number into its prime factors. This

makes RSA difficult to break, even with powerful computers(Atmaja et al., 2020).

To encrypt a message using RSA, the sender first obtains the recipient's public key. The sender

then uses this public key to encrypt the message. The encrypted message, known as the

ciphertext, can only be decrypted using the recipient's private key. To decrypt the message, the

recipient uses their private key to recover the original plaintext message. Because the private

key is not shared, only the recipient is able to decrypt the message(Patgiri and Singh, 2022). In

RSA, the security of the algorithm is based on the computational difficulty of factoring large

composite numbers. Given a composite number, it is relatively easy to find its prime factors if

you know them, but it is computationally infeasible to find the prime factors of a large

composite number without knowing them. This makes RSA difficult to break, even with

powerful computers.

3.4.3. SHA256 Hashing

SHA-256 is a cryptographic hash function that is often used in searchable encryption schemes.

In searchable encryption, a searchable index is generated from the encrypted data, and this

index is used to efficiently search the encrypted data without decrypting it. The use of a

cryptographic hash function, such as SHA-256, can help to ensure the security and integrity of

the searchable index.(Jatikusumo and Nurhaida, 2020) When a searchable index is generated,

the plaintext data is first encrypted using a searchable encryption scheme. The encrypted data

is then hashed using SHA-256, and the resulting hash values are used to construct the

searchable index. When a search query is made, the query is encrypted using the same

searchable encryption scheme and hashed using SHA-256. The resulting hash value is then

matched against the searchable index, and any matching records can be retrieved from the

encrypted data without revealing the underlying plaintext. The use of SHA-256 in searchable

encryption provides several benefits. First, it ensures the integrity of the searchable index, as

any changes to the encrypted data will result in a different hash value. This prevents an attacker

from modifying the encrypted data and potentially obtaining sensitive information. Second, it

provides additional security, as the hash values in the searchable index are difficult to reverse

and do not reveal any information about the underlying plaintext. This makes it more difficult

for an attacker to obtain sensitive information even if they are able to access the searchable

index. Overall, the use of SHA-256 in searchable encryption helps to improve the security and

effectiveness of the encryption scheme.

3.5. Security Model

3.5.1. Forward Privacy:

Forward privacy, also known as "forward secrecy," is a property of certain encryption systems

that ensures that the confidentiality of past communications is not compromised if the system's

secret keys are later revealed. This is achieved by generating a unique session key for each

individual communication, rather than using the same key for multiple communications. In the

context of searchable encryption, forward privacy refers to the ability to search encrypted data

without compromising the confidentiality of past searches or the data that was searched. This

is important in situations where the security of the encryption system may be at risk, such as

when the system's secret keys are compromised. With forward privacy, the confidentiality of

past searches and the data that was searched remains protected, even if the system's keys are

later revealed. Forward privacy is an important property of secure encryption systems, as it

helps to ensure the confidentiality of past communications and protect against potential threats

to the system's security.

3.5.2. Backward Privacy:

Backward privacy, also known as retroactive privacy, is a property of certain cryptographic

protocols that allows for the deletion of previously indexed data. This is useful in the context

of searchable encryption, where a user may want to remove certain sensitive information from

an encrypted database without requiring the decryption of the entire database. Backward

privacy ensures that the deletion of this information does not leave any trace and cannot be

detected by an attacker. This is in contrast to forward privacy, which focuses on protecting the

confidentiality of data as it is being indexed and added to the database.

3.5.3. Decentralization:

In the context of searchable encryption, decentralization refers to the use of distributed

networks, such as blockchain technology, to store and manage encrypted data. This allows

individuals and organizations to store and share sensitive information securely, without relying

on a central authority to manage the encryption keys. By distributing the keys across the

network, searchable encryption can provide greater security and privacy for users, while still

allowing for the search and retrieval of encrypted data. This can be especially useful in

applications where large amounts of sensitive data need to be shared among multiple parties,

such as in healthcare or finance.

4. Design & Implementation Specification

4.1. Architecture

The architecture followed by AEBMES scheme is represented below in figure 1. Table 2

below explains technology used to execute AEBMES.

Component Technology used

Cloud Backend System Golang, AWS EC2

Cloud Database MongoDB Atlas (cloud)

Key Manager Hashicorp Valut Cloud

Blockchain Hedera Hashgraph
Table 2 Technological Component

4.2. Primary Algorithms

In ths section, the key algorithms used in AEBMES scheme are explained in detail, while also

mentioning the structure and use of smart contract for different steps.

Figure 1 AEBMES Architecture

4.2.1. Key Generation:

• RSA Key Generation:

RSA keys are generated using a mathematical algorithm that involves the use of two large

prime numbers. The process typically involves the following steps:

i. Choose two large prime numbers, p and q. These numbers should be chosen such that

they are not easily factorizable.

ii. Compute n = p * q. n is known as the modulus and is used as part of the RSA key pair.

Choose an integer e that is relatively prime to (p-1)*(q-1). e is known as the public

exponent and is used as part of the public key.

iii. Compute d, the private exponent, such that (d * e) % ((p-1)*(q-1)) = 1. d is used as part

of the private key.

iv. The RSA key pair is now generated, and consists of the modulus n, the public exponent

e, and the private exponent d. The public key is the combination of n and e, and the

private key is the combination of n and d.

These steps are performed using mathematical algorithms that are designed to be

computationally infeasible to reverse. As a result, it is extremely difficult to determine the

private key given only the public key, which is one of the key security properties of the RSA

algorithm.

4.2.2. AES Key Generation

AES keys are generated using a mathematical algorithm that involves the use of a

pseudorandom number generator. The exact process for generating an AES key varies

depending on the specific implementation, but it typically involves the following steps:

i. Choose the desired key size, which can be 128, 192, or 256 bits.

ii. Use a pseudorandom number generator to generate a sequence of random bits of the

chosen key size.

iii. Use a cryptographic hash function to compute a hash of the generated key. This is done

to ensure the key is of high quality and has a low probability of being predictable.

iv. The resulting hash value is used as the AES key.

These steps are performed using mathematical algorithms that are designed to be

computationally infeasible to reverse. As a result, it is extremely difficult to determine the

original key given only the hashed value, which is one of the key security properties of the AES

algorithm.

4.2.3. Algorithm 1: Encrypt_File (Executed by DO)

INPUT: (Kw, PKDU, File)

OUTPUT: (fileCiphertext, K”
w, E’

k)

1. Generate Ek

2. Load file File => convert into []bytes

3. Generate keyword hashes => SHA256(Kw) => K”
w

4. Encrypt file:

aes(Ek,FILE) => fileCipherText

5. Encrypt Ek:

rsa(SKDO, PKDU, Ek)=> E’
k

6. Generate File hash: sha256(File)=> fileHash

7. SMART CONTRACT : add_data(K”
w, fileHash)

// Create file Map

i. data=map[fileCipherText] ={wordsMap(w)=>string, fileHash,cost }

// set file hash

ii. data.fileHash = fileHash

iii. for i = 0 to n > n = K”
w length

 data.wordsMap(K”
w[i]) = fileHash

 end for
 // set cost

 data.cost = (readPrice)

 .

 END

4.2.4. Algorithm 2: Generate_Trapdoor (DU)

INPUT: (Sw, PKDO)

OUTPUT: (Ei, Th):

1. Generate keyword search array => sha256(Sw)= Tw

2. Smart_contract: search_trapdoor(Tw, PkDO, endTimestamp)

i. check = endTimeStamp > block.timestamp => boolean

ii. if(!check) return err;

iii. data = map[PKDO]

iv. Ei = []. > empty array

v. for i=0 to n > n=Tw.length

 Ei.push(data.wordsMap[Tw[i]])

End for

vi. Generate Trapdoor hash: Th=keccak(block.timestamp+PKDU+endTimeStamp)

vii. Create trapdoor map: T[Th]={trapdoor_hash: Th, data_user: PKDU, fileHash:

Tw[0]}

viii. Lock readPrice : token.lockAmount(PKDU, readPrice)

END

4.2.5. Algorithm 3: Search=>(fileCipherText) DU->CB

INPUT: (Th, PKdu, Ei)

OUTPUT: (Ei, Th):

1. check = Verify_trapdoor(Th, PKdu)

2. if(!check) return err;

3. search file in cloud database = search_db(Ei.value) => fileCipherText

END

4.2.6. Algorithm 4: Verify_Trapdoor(Th, PKDU) => Boolean

INPUT: Th, PKDU

OUTPUT: Boolean

1. Smart_contract: check_trapdoor(Th, PkDU) => Boolean

// check trapdoor map

i. data=trapdoor_map[Th] > {Th, data_owner}

ii. if(data.data_owner != PKDU) >. Boolean

return false;

iii. return true;

4.2.7. Algorithm 5: Decrypt_File => DU

INPUT: (PKDO, fileCipherText, E’
k, Th)

OUTPUT: FILEd

1. Decrypt keyCipherText: rsa_decryption(PKDO, SKDU, E’
k) => Ek. > keyCipherText

2. Decrypt fileCipherText: aes_decrypt(fileCipherText, Ek) => FILEd >output File

4.2.8. Algorithm 6: Verify_Result:

INPUT: (FILEd, Th)

OUTPUT: Boolean

1. Create hash of output file: fileHashd = sha256(Filed)

2. smart_contract: verify_result(Th, fileHashd) => Boolean

i. data=trapdoor_map[Th] > {Th, data_owner, fileHash}

ii. bool check = data.fileHash == fileHashd

iii. if(check)

token.releaseAmount(PKDO). >It will release locked token amount to

DO

 End if

iv. else

token.realaseAmount(PKDU). > revert back amount to DU

v. return check

5. Evaluation

5.1. Security analysis
5.1.1. Forward Privacy:

In AEBMES, forward privacy depends on ciphertext and encrypted index updation once the

file is updated. In smart contract, keywords are mapped with fileHash, once file is updated the

mapping of the keywords changes, hence the old trapdoor wont give away the information of

changed filehash, as the trapdoor hash will also change, hence it proves the forward privacy of

AEBMES scheme.

5.1.2. Backward Privacy:

In (Bost, Minaud and Ohrimenko, 2017), a formal definition of backward privacy was

presented along with three distinct kinds of leakage. In a nutshell, backward privacy conceals

the existence of indexes that were created in the past but afterwards removed from use by

making sure that they are not exposed in search queries.

PKdu with a public key constitutes a isuue that it is shared among various users. The attacker

cannot obtain the useful information of indexes without the secret key SKDU, even if the search

results are publicly stored in a transparent blockchain. This accomplishes the desired level of

anonymity when looking backwards.

5.1.3. Soundness:
In the context of blockchain-based searchable encryption, "soundness" refers to the property

of a cryptographic scheme that ensures that encrypted data cannot be decrypted by anyone who

does not have the correct decryption key. This property is important in searchable encryption

because it ensures that only authorized users can access and read the encrypted data, even if

they are able to search for keywords within the encrypted text. Soundness is a fundamental

property of many cryptographic schemes, and it is essential for ensuring the security and

privacy of encrypted data in blockchain-based systems. In AEBMES, User private keys are not

leaked to any system or users, key-manager hashicorp ensures secure storage and distribution

of the keys

5.1.4. Confidentiality:
In this scheme, the file is encrypted using a symmetric key Ek, after that the key is encrypted

using RSA where SKDO and PKDU are used, for decryption CB cannot do it without SKDU,

which ensures the confidentiality of the Ek.

5.2. Comparative study

Schemes used for comparative analysis of AEBMES denoted as (1) are CL-SPKAE as (2)(Yang

et al., 2020) , BSPEFB(3) (Chen et al., 2020) and BSMFS as (3) (Chakraborty et al., 2022)

5.2.1. Feature based comparison

Table below represent feature available for various schemes

Scheme Blockchain Symmetric Asymmetric Multi -

keyword

search

Cloud

Verification

FP BP

CL-SPKAE Ethereum N Y Y N Y N

BSPEFB Ethereum N Y Y N Y Y

BSMFS Ethereum Y Y Y N N N

AEBMES Hedera Y Y Y Y Y Y

Table 3 Feature Comparison

5.2.2. Time Based comparision

• Encryption time

All the schemes mentioned have different names for encryption algorithm, so to generalize

here is the comparison of time taken for each scheme to encrypt and store files in cloud and

then store metadata in smart contract. In chart 1, it is clearly visible that AEBMES scheme is

faster as compared to others. The reason is, AEBMES scheme uses less number of hashing and

encryption computation and also hedera hashgraph gives faster response as compared to EVM

based blockchains used by other schemes.

Chart 1 Computational chart for Encryption algorithm

0

20

40

60

80

100

120

1 3 9 12

Ti
m

e
(m

s)

Number of keywords

Encryption Algorithm

AEBMES CL-SPKAE BSPEFB BSMFS

• Search time

All the schemes mentioned have different names for searching algorithm, so to generalize here

is the comparison of time taken for each scheme to create trapdoor and search stored files in

cloud and then store decrypt the cipher text. In chart 2, it is clearly visible that AEBMES

scheme is faster as compared to others. The reason is, AEBMES scheme uses less number of

hashing and decryption computation and also hedera hashgraph gives faster response as

compared to EVM based blockchains used by other schemes.

Chart 2 Search and Decryption Time Taken

6. Conclusion

There are a lot of traditional verified SSE methods that can only search single keyword files,

and they don't do range searches at all. In AEBMES scheme, using symmetric and asymmetric

key encryption. By utilizing an innovative SSE method, our suggested solution, Slicer, is able

to achieve a verifiable and safe range search. Additionally, AEBMES assures the fairness of

the system through public verification. In order to produce updated search results, AEBMES

make use of a technology known as blockchain. As a result of the deployment of the forward

security function, this scheme system protects users' privacy despite the presence of data

updates. Formal analysis demonstrates that AEBMES is secure, fast, cost-efficient and

extensive experiments demonstrate that it is also efficient. The scheme shows scope for future

work to be done mostly on fuzzy keyword search and also on implementation of better smart

contract storage structure.

0

10

20

30

40

50

60

70

80

90

1 3 6 9

Ti
m

e(
m

s)

No. of Keywords in search

Search Algorithm

AEBMES CL-SPKAE BSPEFB BSMFS

References

Atmaja, I.M.A.D.S. et al. (2020) ‘Document Encryption Through Asymmetric RSA

Cryptography’, in 2020 International Conference on Applied Science and Technology (iCAST).

2020 International Conference on Applied Science and Technology (iCAST), pp. 46–49.

Available at: https://doi.org/10.1109/iCAST51016.2020.9557723.

Boneh, D. et al. (2004) ‘Public Key Encryption with Keyword Search’, in C. Cachin and J.L.

Camenisch (eds) Advances in Cryptology - EUROCRYPT 2004. Berlin, Heidelberg: Springer

Berlin Heidelberg (Lecture Notes in Computer Science), pp. 506–522. Available at:

https://doi.org/10.1007/978-3-540-24676-3_30.

Bost, R., Minaud, B. and Ohrimenko, O. (2017) ‘Forward and Backward Private Searchable

Encryption from Constrained Cryptographic Primitives’, in Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security. CCS ’17: 2017 ACM

SIGSAC Conference on Computer and Communications Security, Dallas Texas USA: ACM,

pp. 1465–1482. Available at: https://doi.org/10.1145/3133956.3133980.

Cash, D. et al. (no date) ‘Leakage-Abuse Attacks Against Searchable Encryption’. Available

at: https://eprint.iacr.org/undefined/undefined (Accessed: 13 December 2022).

Chakraborty, P.S. et al. (2022) ‘BSMFS: Blockchain assisted Secure Multi-keyword Fuzzy

Search over Encrypted Data’, in 2022 IEEE International Conference on Blockchain

(Blockchain). 2022 IEEE International Conference on Blockchain (Blockchain), Espoo,

Finland: IEEE, pp. 216–221. Available at:

https://doi.org/10.1109/Blockchain55522.2022.00037.

Chen, B. et al. (2020) ‘A Blockchain-Based Searchable Public-Key Encryption With Forward

and Backward Privacy for Cloud-Assisted Vehicular Social Networks’, IEEE Transactions on

Vehicular Technology, 69(6), pp. 5813–5825. Available at:

https://doi.org/10.1109/TVT.2019.2959383.

Chen, Z. et al. (2021) ‘Blockchain-Enabled Public Key Encryption with Multi-Keyword

Search in Cloud Computing’, Security and Communication Networks. Edited by Q. Li, 2021,

pp. 1–11. Available at: https://doi.org/10.1155/2021/6619689.

Dawn Xiaoding Song, Wagner, D. and Perrig, A. (2000) ‘Practical techniques for searches on

encrypted data’, in Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000.

2000 IEEE Symposium on Security and Privacy, Berkeley, CA, USA: IEEE Comput. Soc, pp.

44–55. Available at: https://doi.org/10.1109/SECPRI.2000.848445.

Gross, B. and Thibeau, D. (no date) ‘Co-Founder & Chief Scientist Hedera Hashgraph’.

Jarecki, S. et al. (2013) ‘Outsourced symmetric private information retrieval’, in Proceedings

of the 2013 ACM SIGSAC conference on Computer & communications security - CCS ’13. the

2013 ACM SIGSAC conference, Berlin, Germany: ACM Press, pp. 875–888. Available at:

https://doi.org/10.1145/2508859.2516730.

Jatikusumo, D. and Nurhaida, I. (2020) ‘Data Securing of Patients in Cloud Computing Using

A Combination of SHA256 and MD5’, in Proceedings of the 2020 2nd Asia Pacific Information

Technology Conference. APIT 2020: 2020 2nd Asia Pacific Information Technology

Conference, Bali Island Indonesia: ACM, pp. 16–22. Available at:

https://doi.org/10.1145/3379310.3381043.

Li, H. et al. (2021) ‘Blockchain-based searchable encryption with efficient result verification

and fair payment’, Journal of Information Security and Applications, 58, p. 102791. Available

at: https://doi.org/10.1016/j.jisa.2021.102791.

Li, Z. et al. (2021) ‘Forward and backward secure keyword search with flexible keyword

shielding’, Information Sciences: an International Journal, 576(C), pp. 507–521. Available at:

https://doi.org/10.1016/j.ins.2021.06.048.

Lu, Y., Zhang, W. and Cao, L. (2022) ‘Data Security Encryption Method Based on Improved

AES Algorithm’, in 2022 Global Reliability and Prognostics and Health Management (PHM-

Yantai). 2022 Global Reliability and Prognostics and Health Management (PHM-Yantai), pp.

1–6. Available at: https://doi.org/10.1109/PHM-Yantai55411.2022.9942058.

Patgiri, R. and Singh, L.D. (2022) ‘An Analysis on the Variants of the RSA Cryptography’, in

2022 International Conference on Information Networking (ICOIN). 2022 International

Conference on Information Networking (ICOIN), pp. 40–45. Available at:

https://doi.org/10.1109/ICOIN53446.2022.9687262.

Wu, H. et al. (2022) ‘Slicer: Verifiable, Secure and Fair Search over Encrypted Numerical Data

Using Blockchain’, in 2022 IEEE 42nd International Conference on Distributed Computing

Systems (ICDCS). 2022 IEEE 42nd International Conference on Distributed Computing

Systems (ICDCS), Bologna, Italy: IEEE, pp. 1201–1211. Available at:

https://doi.org/10.1109/ICDCS54860.2022.00118.

Xu, W. et al. (2022) ‘Towards efficient verifiable multi-keyword search over encrypted data

based on blockchain’, PeerJ Computer Science, 8, p. e930. Available at:

https://doi.org/10.7717/peerj-cs.930.

Yang, X. et al. (2020) ‘Multi-Keyword Certificateless Searchable Public Key Authenticated

Encryption Scheme Based on Blockchain’, IEEE Access, 8, pp. 158765–158777. Available at:

https://doi.org/10.1109/ACCESS.2020.3020841.

Zheng, Q., Xu, S. and Ateniese, G. (2014) ‘VABKS: Verifiable attribute-based keyword search

over outsourced encrypted data’, in IEEE INFOCOM 2014 - IEEE Conference on Computer

Communications. IEEE INFOCOM 2014 - IEEE Conference on Computer Communications,

pp. 522–530. Available at: https://doi.org/10.1109/INFOCOM.2014.6847976.

