

Configuration Manual

Evaluating performance of shuffling data augmentation

techniques for audio event detection.

MSc Cloud Computing

David Kelly

Student ID: 13127390

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

David Kelly

Student ID:

13127390

Programme:

MSc Cloud Computing

Year:

2022

Module:

MSc Research Project

Supervisor:

Vikas Sahni

Submission Due Date:

10/11/2022

Project Title:

Evaluating performance of mixing and shuffling data

augmentation techniques for audio scene classification.

Word Count:

1600

Page Count

12

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

……

Date:

10/11/2022……………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

David Kelly

13127390

A number of configuration steps are required to prepare a workstation to run the provided

artefacts. This configuration manual assumes a Windows PC workstation with a CUDA

capable Nvidia Graphics Card and a User Account with full UAC/Admin/Root access.

1 Workstation Specification
All development and testing activities were carried out on the following workstation.

Property Value

Manufacturer Dell

Model XPS 7590

Form Factor Laptop Workstation

CPU Intel 9980HK, 2.4Ghz-5Ghz Clock

CPU Details 8 Core / 16 Thread

RAM 64 GB, DDR4 SODIMM

DISK 2TB NVME M.2 SSD

GPU NVIDIA GTX 1650, 4GB GDDR5

OS Windows 10 Professional, V22H2

2 Workstation Configuration
The experiment required a series of dependencies to be met on the underlying workstation.

The figure below illustrates the base toolchain required for operation.

Property Value

Nvidia GPU Driver Version 516.59

Nvidia CUDA Toolkit Version 9.2

Nvidia CUDNN Libraries Version 7

Anaconda Package Manager Version 2.2

Python Version 3.6.13

Git Latest

2

2.1 Graphics Driver and CUDA Acceleration

A base GPU driver was required to leverage GPU acceleration in the training stages. For the

specific workstation GPU, the minimum compatible driver version of 396.26 was required to

work in conjunction with the CUDA acceleration package version 9.2.

Installers are available online for common platforms12.

2.2 CUDA Deep Neural Network Library (CUDNN)

In addition to the acceleration package CUDNN3, a library of machine learning tools is

required by Pytorch. In this instance, CUDNN 7 is compatible with CUDA 9.2 and driver

version 396.26. The library needed to be installed manually; this means the contents of the

/bin, /lib and /include CUDNN library folders were extracted and placed in the corresponding

CUDA /bin /lib and /includes folders.

2.3 Environment Variables

The “System Path” and “Environment Variables” were required an update also. A pointer to

the installed version of CUDA and its /bin locations. For Windows, this means the variable

for CUDA_Path_V9_2 need to be set to the value of the folder where CUDA is installed. The

system path required a reference to the CUDA /bin and /libnvp folders.

1 https://www.nvidia.com/download/index.aspx
2 https://developer.nvidia.com/cuda-downloads
3 https://developer.nvidia.com/cudnn

3

Figure 1. Visual steps to add environment variables on Windows 10

4

2.4 VS Code

The IDE VS Code was the application host for the Jupyter Notebook artefact. For this

experiment, it was essential VS Code was installed4. VS also requires the Jupyter extension to

be installed. The extension is available from the Extension Marketplace sidebar in VS Code.

Figure 2. VS Code Extension Manager - Installing Jupyter

2.5 GIT

Git is required to download the latest version of the codebase. Git installers are available

online5.

2.6 PowerBI
PowerBI is required to analyse the resulting performance data. Installers for PowerBI are available for common
platforms6.

3 Platform

3.1 Clone Latest Code from GitHub Repository

From the terminal, the following command was executed to download the latest code:

4 https://code.visualstudio.com/download
5 https://git-scm.com/downloads
6 https://powerbi.microsoft.com/en-us/downloads/

5

git clone https://github.com/davidlakelly/dcase2018_task5

3.2 Anaconda

Anaconda is a tool for streamlining package management in development settings. Download

and run the Anaconda installer. Installers are available online for common platforms7.

3.3 Anaconda Environment

The code repository contained a formatted yml file. Using the terminal, the working directory

was changed into the repository. The following terminal command automatically configured

python with the remaining necessary python packages to execute the augmentation and

learning.

● “conda env create -f environment.yml”

Data Repository Setup

Two empty folders should exist with the code repository: dev and eval. Data from the

development and evaluation SINS datasets should be extracted and placed into the respective

empty folders.

3.3.1 Data Download

The SINS database is available online from https://zenodo.org/record/1247102. Both

development and evaluation datasets were downloaded from here.

3.3.2 Data Extraction

The downloaded ZIP files should be located in the downloads folder. From this location, the

development dataset was extracted to the empty dev folder code repository. This step was

repeated for the evaluation dataset.

7 https://www.anaconda.com/products/distribution

https://zenodo.org/record/1247102

6

Figure 3. Select all relevant files and extract them to the dev and eval folders

3.3.3 Folder Structure Verification

The result of the extraction provides the following file system architecture on disk.

└───dcase2018_task5-master

 ├───.vscode

 ├───appendixes

 ├───dev

 │ └───DCASE2018-task5-dev

 │ ├───audio

 │ └───evaluation_setup

 ├───eval

 │ └───DCASE2018-task5-eval

 │ ├───audio

 │ └───evaluation_setup

 ├───features

 │ └───logmel

 ├───pytorch

 │ ├───main_pytorch

 │ │ ├───full_train

 │ │ └───holdout_fold1

 │ └───__pycache__

 └───utils

 └───__pycache__

7

To produce a similar diagram, enter the following terminal commands to change the directory

to the code repository and use the below tree command to print the directory structure on

disk.

● “cd dcase2018_task5-master”

● “tree"

4 Experiment Execution
Several python scripts and functions are provided to facilitate the generation, training, and

evaluation of datasets. This project contains a novel artefact in the form of a Jupyter notebook

to data augmentation driver. Jupyter notebooks consist of cells; the contents of which is a

combination of python or batch scripts. Opening the Jupyter Notebook in VS Code will

allows the researcher to interact with the notebook and execute the cells.

4.1 Cell 1 – File Verification

• These cells executed a script inside the repository and scanned any available metadata

files. The script also took the file names as specified in the metadata files and

attempted to find those files on disk.

4.2 Cell 2 – Extract Features for Eval Dataset

• Log Mel features were extracted from the available validation evaluation set.

4.3 Cell 3 – Evaluating Performance (10% Additional Data)

• This cell executed a loop performing the following actions: it generated augmented

data, extracted log-mel features and trained the network. The variables in the top of

the cell should be noted at this point. These variables were injected into the scripts to

be used as the augmentation parameters. In this cell, count=10 specified “every 10th

file” to be chosen for augmentation from the underlying dataset.

8

4.4 Cell 4&5 – Evaluating Performance (50% Additional Data)

• This cell contained a duplication of the initial evaluation cell but this time looking at

scenarios where 50% data is added to the base dataset.

4.5 Cell 6 – Evaluating Performance All Folds (N Additional Data)

• Throughout previous testing runs, performance would have been evaluated on one

“holdout” fold. This was roughly 30% of the original dataset that was kept from the

network training and instead used for validation scores. For reporting and comparison

purposes, the best performing combination of augmentation and percentage of

augmented data was evaluated in this cell on all 4 folds of holdout data.

4.6 Cell 7 – Evaluating Performance on Evaluation Dataset

• The final cell trained the network on the full set of data from the SINS dataset,

without holdout, along with the chosen best augmentation performer. The network

was then evaluated on a dataset containing zero files the network has seen previously.

5 Experiment Results
The network was configured to log performance metrics during training. These metrics were

stored in CSV files in the root of the project. Typical file name contain a timestamps and an

indication of the chosen augmentation parameters for that result set. The contents of the files

included a header row describing the metrics observed during training. Each subsequent row

9

will contained the performance values for each of those variables at specified training

intervals, roughly every 200 network iterations.

6 PowerBI Model
To facilitate easy comparison between the experiment results, a PowerBI model is provided

with preconfigured dashboards to analyse the experimental results. The following steps

demonstrate how to configure the model to accept additional experimental results files.

6.1 Data Loading

• For each file you wish to analyse, select “Get Data” from the Ribbon of PowerBI.

• Choose Text/CSV.

• Select the desired file.

6.2 Relationship Mapping

• The key relationship between each experiment is the iteration variable. From the

relationship tab choose “Manage Relationships” from the Ribbon. From this window

you can specify a relationship between two data tables.

• Select “New Relationship”.

• Choose the baseline dataset as the origin for the relationship.

10

• Choose a different dataset as the destination for the relationship.

• Set cardinality to “1:1” and Cross Filter to “Both”

• Repeat this step for each file you wish to analyse.

