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Abstract.  

Audio Event Detection is an emergent field of machine learning. The goal of is to the world around us 

through sound. Animal habitat preservation, ambient assisted living and preventative machine 

maintenance are all fields exploring the commercial use of AED to augment human decision machine. 

A key challenge stalling the development of AED systems is the lack of high-quality audio data 

labelled audio data. Producing such data is an expensive and time-consuming task. Techniques which 

offer a classification performance uplift in data constrained domains are of particular interest to AED 

research. This technical report describes the design and replication of the best performant submission 

from DCASE 2018 Task 5. The research critically evaluates the technique proposed by Inoue. 

Through experimentation, a set of alternatives of experimental parameters were discovered which 

exceed the performance of the reference implementation on the same challenge dataset. This research 

shows promise for the field of audio event detection where the use of mitigation to deal with a lack of 

high-quality labelled data for a given classification scenario is common. This work also shows an 

improvement in performance over the baseline work when comparing GPU compute effort required to 

reach equivalent performance classification performance. 

 

1 Introduction 

1.1 Audio Event Detection and Audio Scene Classification 

Audio event detection (AED) and audio scene classification (ACS) are emerging fields within 

the machine learning domain. Systems within these fields aim to understand the world through 

ambient sound. Commercial applications of this technology are available via ambient assisted 

living, ecological animal habitat evaluation, preventative machine maintenance, and smart 

home automation. For an ageing population in a digital world, ambient assisted living systems 

promote independence and augment the support provided by caregivers. AED systems may 

have applications in ambient fall detection. An ACS such as [1] may provide care givers tools 

to quantify a client’s independence and daily routines to tailor specific lifestyle interventions. 

Predictive maintenance is an embryonic area of machine learning which has already seen 

commercialisation. RDI Technologies use machine vision and motion amplification to 

visualise machine health to a human reviewer. In 2019, Henze et al [2] proposed a novel system 

for predictive maintenance in industrial settings using audio classifiers for anomaly detection. 

IBM in 2020 pursued a similar goal [3] of detecting anomalous sounds in order to infer machine 

health. AED and ACS borrow techniques from the voice recognition and image recognition 

machine learning space. In image recognition, image pixel grids become reduced to arrays for 

evaluation through loss functions. Through successive training attempts and providing further 



input data, a model can learn overtime to detect certain elements from an image and link these 

features with known data labels[4] This has been highlighted with voice recognition as when 

audio is represented as a spectrogram, similar machine learning techniques from image 

recognition can be used. These techniques typically require domain specific tailoring to 

accommodate the time-dimension nature of audio as it is conveyed within a spectrogram. 

1.2 Aim and Objective 

The research question investigated by this work is the critical evaluation of the performance 

of novel data augmentation techniques from Inoue proposed in DCASE 2018. 

The aim is to implement a proposed data augmentation technique which is tailored to audio 

event detection. Through implementation, this research will critically evaluate performance 

of the technique and discover how accuracy responds to alternative experimental parameters 

similar to what was initially specified. This research used a neural network architecture as a 

testbed to collect learning metrics throughout the training process. The network was 

repeatedly reset and retrained with augmented data generated by a parameterised 

implementation of IBM’s algorithm. 

The objective of this research is to understand if the original augmentation parameters as 

specified from IBM were the best possible set of parameters or if their performance can be 

exceeded through the discovery of alternative parameters. The architecture of this project was 

inspired by the original experiment from 2018 alongside the baseline system as provided by 

the challenge organisers. The algorithm for the chosen augmentation technique was 

engineered based on the functional description as provided in the original work. 

1.3 Motivation 

Data augmentation techniques provide a novel way of improving classifier accuracy. A key 

challenge in audio recognition is gathering a large and diverse corpus of labelled data. 

Dataset curation for audio scenes may create distinct challenges. Collecting audio requires 

specific environmental conditions and human intervention to ensure its capture and labelling. 

Dekkers [5] described the collection of the DCASE dataset as requiring a human volunteer to 

live in a lab setting for a period of 1 week. The significant investment in human effort was 

only able to generate around 70,000 training samples. Data Augmentation and techniques that 

can provide more useful training samples from a labelled corpus therefore are of key 

importance to audio scene classification. The 2018 submission stood out among the challenge 

entrants as it aimed to achieve accuracy driven primarily through augmentation. Therefore, 

this research mitigated against one of the key challenges in audio classification. For this 

research, the original authors of the 2018 paper were contacted to seek clarification questions 

around performance. One question queried a parameter setting which the authors stated their 

choice was driven by a length that appeared to be contextually meaningful, however they also 

commented they did not explore the relationship between performance and the variable in 

question further. This paper continues to explore this pathway and attempts to indicate areas 

for further enhancements. 

 

 

 



2 Related Work 

2.1 Audio Representation 

Digital audio is a representation of sound in a digital domain. Sound waves and the variance 

in sound pressure is captured through microphones. It is then converted into samples and 

encoded for future playback. The quality of frequency information in the sample conversion 

is determined by the “sample rate” or Shannon-Nyquist frequency of the encoder[6], with 

pulse code modulation and bit depth determining the quality of amplitude information. For 

example, audio from a normal CD contains audio represented in samples captured at a rate of 

44.1 Khz at 16 bits of depth per channel, typically a left and right channel. A single second of 

CD quality audio can therefore be represented in 1.4Kb of information. 

 

2.2 Raw Audio Feature Classification 

The raw data rate for audio is seen as a challenge for machine learning tasks. Model architects 

are typically forced to produce shallow networks which are unable to detect high level features 

in each sample. Dai et al proposed a very deep network technique in 2016 which processed raw 

audio from the Urban8K dataset [7]. Their results were state-of-art in relation to raw audio 

classification as their accuracy scores were in the range of 62% to 67% which was unseen at 

that point in time. Work from Google in 2015 also supported the idea of using raw audio [8]. 

Their work looked at word detection and found an equivalent performance between raw audio 

representation and lower dimension audio representation. 

2.3 Spectrum Feature Classification  

Though classification through raw audio is possible, the best performing systems typically 

feature a lower-level representation of audio in the form of a spectrogram. A spectrogram is an 

image-like representation of audio with time information preserved on the X axis, frequency 

information encoded on the Y axis and intensity being indicated through pixel intensity. In 

2019, In 2019, Su et al developed a multi-level network trained on lower dimension 

representations of audio but despite this achieved accuracies on the Urban8K dataset in the 

range of 97%[9]. In 2017, Wyse proposed training the network using an image-like 

representation of sound in the form of a spectrogram[10]. This work further builds on the 

approaches from 2015[11]. 

2.4 Data Augmentation 

Data augmentation is an approach which aims to improve the generalisation capabilities of a 

neural network by providing a series of generated or distorted samples during the training 

phase. The survey work of Shorten and Khoshgoftaar in 2019 enumerated the myriad of ways 

of performing augmentations for image classification tasks[12] which included approaches 

such as rotating, scaling, zooming, shearing, and cropping. They stated that data augmentation 

for images as a series of filters or transformations on a source image to produce a new, humanly 

recognisable sample belonging to the same original class but with modified characteristics. 

These characteristics included brightness, noise level, orientation, or colour adjustments. Bello 



and Salamon [13] in 2016 suggested a collection of audio specific augmentations for audio and 

reported that on average, there was a 5% increase over baseline performance when all 

techniques were combined. Their techniques originated from audio signals processing and 

include time-stretching (while maintaining pitch), pitch shifting (while maintaining sample 

duration), dynamic range compression and adding background noise to samples. 

 

Wang and Perez ultimately summarised the role of data augmentation[14] as: 

“It is common knowledge that the more data an ML algorithm has access to, the more effective 

it can be. Even when the data is of lower quality, algorithms can perform better, as long as 

useful data can be extracted by the model from the original data set” 

2.5 Data Augmentation through Shuffling  

A team of researchers from IBM led by Tadanobu Inoue [15] placed first in DCASE 2018 Task 

5 through the implementation of two novel data augmentation techniques. These augmentation 

techniques were combined and achieved an 88.4% and 90% F1 score on evaluation and 

development datasets [5] respectively. 

2.5.1 Shuffling 

Inoue used shuffling techniques to take a file and slice it into n-many segments along its time 

axis. The segments were then shuffled, recombined, and added to the training corpus.  

 

Figure 1 – Descripting of Shuffling and Mixing from original IBM work [15] 

 

2.5.2 Background to approach 

Inoue cited two key works as the origin to the team’s novel technique. Takahashi et al proposed 

a technique to increase data variance and posits that by mixing two sounds from the same class, 

for example bird song or ocean surf, then the result must be of the same class [16]. In 

Takahashi’s EMDA, two samples were mixed equally. They were presented as being played 

one on top of another, or could be “heard at the same time” to a listener. In 2017, Zhang and 

Facebook researched a data agnostic way of generating new training sample data from vectors. 

At the forefront of Zhang’s Mixup [17] techniques was the generation of new samples where 

the training data and labels were manipulated through a random linear interpolation. Zhang’s 

work was not specific to images or audio and they proposed that the data technique is data 

agnostic. 

 



Finally, the work of Tokozume proposed a data augmentation technique specifically for audio 

convolutional neural networks[18]. Their technique mixed files from between classes to 

generate a new mixed sample for addition to the original training dataset. Inoue’s technique 

aimed to mitigate a fundamental issue with the foundational works. Each of the mentioned 

techniques increased sound density within a generated sample. This may result in an audio 

sample that is not understandable by humans and results in overfitting the network. Therefore 

the network is encouraged to make predictions on samples with simply a higher event density. 

2.6 Improvements on DCASE 2018 Task 5 

The Detection and Classification of Acoustic Scenes and Events is an open challenge 

originally established within Queen Mary University in 2013. It is now affiliated with signal 

processing conventions such as ICASSP and EUSIPCO. The 2018 Task 5 challenge created 

an objective to quantify human activity in a domestic setting . Labelled audio data was 

captured over one week and contained the activities of a person on vacation via a series of 

microphone arrays. Since DCASE 2018, several independent researchers have continued to 

tackle the Task 5 challenge. Zhang in 2020 [19] compared their work in transformer-based 

encoders against the top 3 classifiers from the DCASE 2018 Task 5. Zhang’s work achieved 

an accuracy in training at 91 and 87.5 in evaluation; remarkably close to the peak 

performance of Inoue’s 90 and 88.4 scores respectively. Also in 2020, Amiriparian et al 

evaluated [20] what performance can be established by applying a pre-trained network from 

outside the world of Audio Scene Classification to audio domain problems. They used 

popular models such as ImageNet and ResNet. Their analysis yielded interesting results. 

When analysing the DCASE 2018 Task 5 data set, Inoue’s system dominated with the highest 

performance. A DenseNet121 + ImageNet system scored 81.1% on the evaluation dataset. 

Finally, the current state-of-the-art is an implementation that comes from 2019 [19] where 

researchers used a mixture of pretrained models and known architectures (E.G AlexNet [4]) 

as inputs to support vector machines. This approach was applied to the Task 5 corpus and 

achieved an accuracy of F1 Score of 97.46 and did not use any data augmentation. 

2.7 Implementations of Shuffling and Mixing  

 

Technology Company Xiaomi in 2020 proposed a neural searching architecture [21]. For its 

implementation, they used the data augmentation techniques from Inoue’s work and 

evaluated their accuracy on the DCASE 2018 Task 5 dataset. They deviated from Inoue with 

their network architecture and used MobileNetV2’s network architecture instead. Their work 

also performed the data augmentation “offline”, which suggested they are preprocessing the 

data and wrote the results to disk. Xiaomi’s work achieved similar results to Inoue, with a 

classification accuracy of 90.3%. Xiaomi also highlighted that their work required 25% less 

FLOPS, suggesting that their approach may have suitability in CPU restrained mobile 

systems. 

 

3 Research Methodology 
 



 

The research approached improving classification performance on the SINS[5] dataset 

through architecture of an experiment to replicate and implement the shuffling technique 

from Inoue. 

 

The research methodology uses a given neural network architecture from Qiuqiang[21] as a 

testbed to evaluate performance of augmentation parameters and the effect of the 

augmentation parameters on event detection accuracy.  

 

 

 

The neural network operated on the SINS Audio Event dataset of 72,000 file samples as was 

utilised in Inoue’s work. An augmentation generator was created to create new audio samples 

based on existing samples from the dataset. The generator also made the appropriate 

amendments to the metadata files that are relied upon for feature extraction, training, and 

testing of the neural network. The experiment was then repeated for a given set of 

augmentation parameters and desired percentage of generated samples to be added to the 

dataset. 

 

In Feature Extraction, audio files were read from disk and converted from an audio format 

into a serialised stereo log-mel format. The feature extraction steps took the metadata files as 

Figure 2: Flow of interaction and data between phases 



inputs and retrieved both filepath and event classes for each file. The feature extraction then 

programmatically extracted the log-mel features of the audio into a single HDF5 file. 

 

In Data Augmentation, a subset of the SINS dataset was selected based on a given 

percentage. Each file from the subset is used to produce an augmented copy based on chosen 

the augmentation parameters. The class of the newly generated sample was then considered 

the same as the input sample. The class and the filename for the newly generated sample 

were appended to the relevant metadata files. 

 

In Modelling, the neural network received the features and event classes from the HDF5 file 

as an input. The input data was typically divided into a train and holdout dataset at a ratio of 

4:1. The model architecture that was defined by Qiuqiang was an implementation of the 

baseline DCASE 2018 proposed by Dekkers[22]. Compared to the baseline, Qiuqiang’s 

model deviated by reducing the log-mel input size along with compressing the 4 channels of 

audio to 2 channels of audio. 

 

The modelling and learning architecture was developed using the Pytorch machine learning 

framework. The performance of the network during training and testing was logged at key 

iteration milestones using SciKitLearn. This allowed for the observation of accuracy and loss 

function behaviour over time in response to the augmented data. 

 

In Repetition, the steps from Data Augmentation to Modelling were repeated. First, metadata 

files were reset to a base state with no pointers to augmenting data. Next, the data 

augmentation step was provided with new input parameters. Finally, training continued as 

normal thus allowing the rest of the architecture to remain unchanged. This provided a fair 

and stable comparison between runs. 

 

In Comparison, the performance metrics from previous runs were reviewed. Where a trend 

emerged from the results, subsequent experiment runs were carried out to monitor 

performance considering any new insights. 

 

 

4 Design Specification 
 
 

A key aspect of the experimental design is in the implementation of augmentation. The 

chosen augmentation algorithm was inspired by Inoue’s “shuffling” approach. The 

implementation can be described as follows:  



 

Figure 3 – Details of inputs, outputs and processes within system. 

For a given audio sample, subdivide the file into n-many audio segments and store these 

segments. If the order of the stored segments can be considered the same order as the 

originating file, repeat the shuffling again. If the two files do not match, a new file is now 

considered to have been created. The new sample is written to disk. The meta data for the 

new sample is written to relevant metadata files for future use. 

 



 

Figure 4: Illustration of audio file segmentation and shuffling 

 

The next key aspect of the design is a mechanism to automate and parameterise the 

augmentation, feature extraction and training steps. A routine is defined through code to 

isolate augmentation from the feature extraction and training. Dividing the tasks in this way 

allows for each to be experimented with in isolation if required but also scripted to run a 

series of procedural tasks such as changing one or two parameters. 

 

The final part of the design required to critically evaluate training performance in the system 

was the learning metric capture and analysis. The system will record F1 performance scores 

throughout all training activities. The metrics are stored in labelled CSV files for further 

analysis outside of the code programming environment. 

 

F1 scores are one of the key performance metrics used to understand how well a machine 

learning system is performing. It is a statistical test of accuracy and can be defined as 2 x 

[(Precision x Recall) / (Precision + Recall)] where recall is defined as 

capturing of positive cases and precision is defined as ability to capture the correct positive  

item.  

 

5 Implementation 
The experiment was implemented as a Juptyer notebook containing python and pytorch 

artefacts. The key artefact for augmentation is contained with the python modules 

experiment.py. The shuffle method provides the implementation of Inoue’s algorithm. 

 

def shuffle(path): 

    audio = AudioSegment.from_file(path) 

    seg_len = len(audio) // cuts 

    audio_container = [] 



    for i in range(0, cuts): 

        if i == 0: 

            audio_container.append(audio[0:seg_len]) 

        else: 

            start = seg_len * i 

            end = seg_len * (i+1) 

            audio_container.append(audio[start:end]) 

    res = random.sample(audio_container,cuts) 

    while(res == audio_container): 

        res = random.sample(audio_container,cuts) 

    return sum(res) 

 

 

One tool of note in this implementation is the use of the library PyDub. This allows audio to 

be treated much like an array and there provides suitable tools to manipulate the audio along 

its time domain by manipulating the order of the audio array. 

The remaining code from experiment.py provide clean up functions to reset and augment 

metadata files along providing timing estimates through the TQDM library. 

Experiments were conducted through VS Code and Jupyter. Jupyter allowed for a scripting 

and automation-like approach to be taken in development. Hooks were placed in the codebase 

allowing for Jupyter cells to inject code or variables into the running routines. Jupyter 

allowed whole routines to be looped and procedurally run. Architecting for procedural and 

idempotent operation was a critical requirement of the experiment. 

Though the development workstation is a PC for development tasks, the typically workstation 

run time to produce a single result was over 60 minutes for a 10% augmentation dataset and 

125 minutes for a 50% augmented dataset. Generating the full set of experimental results 

takes 16 hours. As such, being about to loop, interrupt and trigger routines became a vital 

functional requirement of the experiment. The data from each experiment was captured 

during each run and during key milestones during training. Each network was trained up to a 

maximum of 10,000 iterations at a batch size of 70. That is to say, 700,000 files passed 

through the network by the end of a training run. This parameter was chosen based on GPU 

memory capacity and wall clock time. For comparison, Inoue trained their network 500 times 

on the full corpus of data, coming to a total maximum of 36,000,000 file operations[15]. 

The following augmentation parameters were chosen to explore performance beyond the 

ranges of Inoue’s five slices implementation. 

 

Slices Percentage of Augmented 

Data 

Dataset 

2 10 Development Fold 1 

3 10 Development Fold 1 

5 10 Development Fold 1 

10 10 Development Fold 1 

20 10 Development Fold 1 



100 10 Development Fold 1 

2 50 Development Fold 1 

3 50 Development Fold 1 

5 50 Development Fold 1 

10 50 Development Fold 1 

3 50 Development Fold 1-4 

Figure 5: Experiment Plan 

To facilitate easy comparison between the experiment results, a PowerBI model is provided 

with preconfigured dashboards to analyse the experimental results. 

 

6 Findings 

6.1 10 Percent Augmentation 

Slices F1 Average Score after 2000 Training 

Iterations 

Baseline (No Augmentation) .86 

2 .89 

3 .90 

5 .90 

10 .89 

20 .89 

100 .88 

 

The initial set of experiments which added 10% of augmented data demonstrated approached 

using 3 and 5 cuts were the best performers. Another insight of from the data is the 2 to 5% 

improvement over baseline with only 10% additional data. Finally, this data indicates 

performance tapering off with slice amounts of 10 and greater. 

 



 

Figure 6: Training Performance over Iterations – 10% Augmented Data 

6.2 50 Percent Augmentation 

Slices F1 Average Score after 2000 Training 

Iterations 

2 .91 

3 .95 

5 .94 

10 .93 

In 50% augmentation scenarios we the previous trend continue with three slices becoming the 

standout leader at all points during training. The trend continues to be followed with ten 

slices seeing a similar drop in performance compared to five slice scenarios. A curious 



observation from this data is noted in two slice scenarios, as it improved the least in response 

to additional data. 

 

 

Figure 7: Training Performance over Iterations – 50% Augmented Data 

 

6.3 50 Percent Augmented Data – 4 Folds Macro Averaged 

Slices Fold F1 Average Score after 2000 

Training Iterations 

3 1 .95 

3 2 .95 

3 3 .94 

3 4 .95 

3 - .95 Macro Average Total 

 

In this experiment, the network was trained on all four folds of holdout data with each 

training run delivering a F1 Score. The F1 scores from all folds are then averaged to produce 

a macro average F1 score of 0.956. 



 

Figure 8: Training Performance over Iterations – 50% Augmented Data – All Four Folds 

 

 

 

7 Conclusion 
The aim of this research was to critically evaluate the proposed data augmentation techniques 

from Inoue. The evaluation took the form of a replication experiment and implementation of 

Inoue’s algorithm with tunable parameters. Performance metrics were captured through the 

training of a neural network architecture driven by an automated augmentation generator.  

The metrics indicate the proposed algorithm from Inoue can be further optimized for the 

SINS dataset by reducing the amount of audio segment division to three rather than five. The 

metrics also show performance degrades at slice values higher than five. In evaluating the 

performance of all four folds, the research observed a macro average score of 0.94. This 

result exceeds Inoue’s performance on the development dataset along with other task entrants 

from the 2018 Task 5 challenge. This result was achieved using 80% less training epochs 

when compared to Inoue’s work. The boost in classification performance clearly 

demonstrates the benefit of observing learning metrics of a neural network using this 

information to influence your data augmentation approach. This work shows the promise and 

the applicability of Inoue’s work even in the face of different neural network architectures 

and software implementations.  

 

8 Further Work 
For further work, this research can be extended by taking this slicing approach this and 

applying it to other labelled audio event datasets and any future DCASE challenges with a 

focus on low-quality or limit data training scenarios. This research could further be extended 



by adapting the algorithm to introduce variance into the slicing, such as producing unequal 

slices or subdividing files through a range of values. This future work would be able to make 

deeper inferences into how a neural network learns from audio by adapting the length of 

audio segments based on the underlying sound class.  

 

 

9 References 
 
 
[1] A. Copiaco, C. Ritz, N. Abdulaziz, and S. Fasciani, “Identifying Optimal Features for Multi-channel 

Acoustic Scene Classification,” in 2019 2nd International Conference on Signal Processing and 
Information Security (ICSPIS), Oct. 2019, pp. 1–4. doi: 10.1109/ICSPIS48135.2019.9045907. 

[2] D. Henze, K. Gorishti, B. Bruegge, and J.-P. Simen, “AudioForesight: A Process Model for Audio 
Predictive Maintenance in Industrial Environments,” in 2019 18th IEEE International Conference On 
Machine Learning And Applications (ICMLA), Dec. 2019, pp. 352–357. doi: 10.1109/ICMLA.2019.00066. 

[3] T. Inoue et al., “DETECTION OF ANOMALOUS SOUNDS FOR MACHINE CONDITION MONITORING USING 
CLASSIFICATION CONFIDENCE,” 2020. 

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural 
networks,” Commun ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi: 10.1145/3065386. 

[5] G. Dekkers et al., “The SINS database for detection of daily activities in a home environment using an 
Acoustic Sensor Network,” in Detection and Classification of Acoustic Scenes and Events 2017, 2017, 
pp. 1–5. [Online]. Available: Uhttps://lirias.kuleuven.be/retrieve/525662D18-151.pdf 

[6] C. E. Shannon, “Communication in the Presence of Noise,” Proceedings of the IRE, vol. 37, no. 1, pp. 
10–21, Jan. 1949, doi: 10.1109/JRPROC.1949.232969. 

[7] W. Dai, C. Dai, S. Qu, J. Li, and S. Das, “Very Deep Convolutional Neural Networks for Raw Waveforms,” 
Oct. 2016. 

[8] T. N. Sainath, R. J. Weiss, A. Senior, K. W. Wilson, and O. Vinyals, “Learning the speech front-end with 
raw waveform CLDNNs,” in Interspeech 2015, Sep. 2015, pp. 1–5. doi: 10.21437/Interspeech.2015-1. 

[9] Y. Su, K. Zhang, J. Wang, and K. Madani, “Environment Sound Classification Using a Two-Stream CNN 
Based on Decision-Level Fusion,” Sensors, vol. 19, no. 7, p. 1733, Apr. 2019, doi: 10.3390/s19071733. 

[10] L. Wyse, “Audio Spectrogram Representations for Processing with Convolutional Neural Networks,” 
Jun. 2017. 

[11] K. J. Piczak, “Environmental sound classification with convolutional neural networks,” in 2015 IEEE 25th 
International Workshop on Machine Learning for Signal Processing (MLSP), Sep. 2015, pp. 1–6. doi: 
10.1109/MLSP.2015.7324337. 

[12] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J Big 
Data, vol. 6, no. 1, p. 60, Dec. 2019, doi: 10.1186/s40537-019-0197-0. 

[13] J. Salamon and J. P. Bello, “Deep Convolutional Neural Networks and Data Augmentation for 
Environmental Sound Classification,” Aug. 2016, doi: 10.1109/LSP.2017.2657381. 

[14] L. Perez and J. Wang, “The Effectiveness of Data Augmentation in Image Classification using Deep 
Learning,” Dec. 2017. 

[15] T. Inoue, P. Vinayavekhin, S. Wang, D. Wood, N. Greco, and R. Tachibana, “Domestic Activities 
Classification Based on CNN Using Shuffling and Mixing Data Augmentation,” Sep. 2018. 

[16] N. Takahashi, M. Gygli, B. Pfister, and L. van Gool, “Deep Convolutional Neural Networks and Data 
Augmentation for Acoustic Event Detection,” Apr. 2016. 

[17] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond Empirical Risk Minimization,” Oct. 
2017. 

[18] Y. Tokozume, Y. Ushiku, and T. Harada, “Learning from Between-class Examples for Deep Sound 
Recognition,” Nov. 2017. 

[19] R. Zhang, H. Wu, W. Li, D. Jiang, W. Zou, and X. Li, “Transformer based unsupervised pre-training for 
acoustic representation learning,” Jul. 2020. 

[20] S. Amiriparian et al., “Towards cross-modal pre-training and learning tempo-spatial characteristics for 
audio recognition with convolutional and recurrent neural networks,” EURASIP J Audio Speech Music 
Process, vol. 2020, no. 1, p. 19, Dec. 2020, doi: 10.1186/s13636-020-00186-0. 



[21] Q. Kong, T. Iqbal, Y. Xu, W. Wang, and M. D. Plumbley, “DCASE 2018 Challenge Surrey Cross-Task 
convolutional neural network baseline,” Aug. 2018. 

[22] G. Dekkers, L. Vuegen, T. van Waterschoot, B. Vanrumste, and P. Karsmakers, “DCASE 2018 Challenge - 
Task 5: Monitoring of domestic activities based on multi-channel acoustics,” 2018. [Online]. Available: 
https://arxiv.org/abs/1807.11246 

  

 

 

 


