
File Transfer on Cloud using Diffie-Hellman
Key Exchange in Conjunction with AES

Encryption

MSc Research Project

Cloud Computing

Ravi Deokar
Student ID: x20207077

School of Computing

National College of Ireland

Supervisor: Sean Heeney

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ravi Deokar

Student ID: x20207077

Programme: Cloud Computing

Year: 2022

Module: MSc Research Project

Supervisor: Sean Heeney

Submission Due Date: 15/12/2022

Project Title: File Transfer on Cloud using Diffie-Hellman Key Exchange in
Conjunction with AES Encryption

Word Count: 8878

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 28th January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



File Transfer on Cloud using Diffie-Hellman Key
Exchange in Conjunction with AES Encryption

Ravi Deokar
x20207077

Abstract

The advent of internet communications has been widely adopted in recent times,
with major advancements being made in the field of technology. With such advances
in technology evolving at a faster pace, the role of online platforms to fulfill the
purpose of remote communications has been successfully established. In light of
this fact, communication ought to be established over a wireless channel involving
two different parties that wish to send a private message through this medium.
Hence, protecting this data and ensuring that the wireless channel is protected
from security breaches becomes mandatory. It is at this point that the notion of
cryptography is adopted. Cryptography is a branch of cyber security that tends to
secure private messages sent over an online platform to protect them from breaches
and attacks done by hackers. For its implementation, several encryption algorithms
and techniques are used so that a respective approach can be followed and the
informational exchange between the communicating parties can be secured. For
this purpose, I propose the implementation of encryption algorithms to secure and
monitor the online data so that a trust factor between the client and the third party
is developed. The AES encryption algorithm is used to generate the existing key to
be shared between the two end parties through a mail message sent by the recipient.
In addition to the AES algorithm, the ECDHA encryption algorithm is also put
forward. The amalgamation of the two mentioned algorithms helps to develop a
technique that would imbibe the agreement protocol and execute the encryption
and decryption phases without service delay. The generation of respective keys and
their sizes is performed by the AES algorithm so that a communication channel
can be developed between the client and the server. However, the execution of the
ECDHA algorithm is used to secure the data upload and sharing on the cloud. This
implementation of a hybrid concept that involves a combination of two algorithms
tends to ensure that the overall security of the system model is maintained and
authenticated communication is established. In the last stage, the final experiment
is carried out, wherein the encryption and decryption times of various key sizes are
compared for their evaluation.

1 Introduction

The theory of distributed computing has received widespread acceptance from numerous
academics and software developers throughout the globe. The main justification for
this is that it represents an innovation where it is anticipated that computations would
eventually represent the genuine nature of classification and prediction from a sociological

1



perspective. Despite the fact that the notion of ”distributing computing” is implemented,
the practice of concentrating computing power in remote data centers run by external
administrations is not that reliable. The concept of distributed computing tends to deliver
services from the IT sector to clients who demand cloud services with greater flexibility
and adaptability because of the registration model of the system. However, the beginning
of distributed computing has remained clear concerning the registration process of various
models, and the notion of expansion tends to intensify it. Morgado et al. (2018)

Encryption is essential for protecting sensitive data and information kept in key man-
agement storage in a world where communication occurs over a public network like the
internet. The primary goal of this information security activity is to prevent assaults from
being launched by unapproved parties. Protection of digital assets through a communic-
ation channel has become necessary due to the server system’s reliance on encryption.
This reliance limits and eliminates a server system’s overall vulnerabilities and stops new
cyberattacks from happening. Therefore, creating and establishing a safe model has never
been more crucial or difficult than it is currently.

Multiple site-related devices frequently experience communications that are formed
between two devices and then interrupted. Any system can easily become subject to a
variety of assaults that can be launched by hackers due to such disrupted connectivity
Tuor et al. (2017). As soon as the device connects to the appropriate site, the server
protocol is decided upon and a common encryption key is obtained, establishing a se-
cured conversation between two people. The common key between the two gadgets is in
the hands of the attacker. As a consequence, harmful assaults on the server system are
more likely to succeed since the attacker is more likely to be familiar with the encryption
technique being used to secure the network. Hence, it becomes vital to create authen-
tication protocols so that hackers cannot access systems by pretending to be someone
else. To prevent the attacker from discovering the encryption technique being utilized, it
is also crucial to develop a robust and complex encryption algorithm. This also leads to
a situation wherein it becomes difficult for the user to trust the source since the source
and the server are located remotely. In such a scenario, building a trust factor becomes
difficult since modifications are being made online.

Thus, a user’s main worry is data security in an environment where he may utilize
the resources and trust the service provider. This requires certain algorithms. Crypto-
graphy and encryption are used to provide encrypted data to users to prevent attacks
and safeguard cloud data. Cryptographic approaches provide user access and safe data
encryption. Cryptography is usually associated with data security and clandestine activ-
ities. Multiple study academics and software experts claim that covert communications
were conveyed utilizing numerous obscure methods to securely transfer and communicate
messages between two persons without a third party. Thus, this method enabled commu-
nication and cryptography. Cryptography was used to communicate financial transaction
information during conflicts. Thus, information on online media was utilized to execute
computer programs. Encryption begins with data access. The original data is ciphered
using a secret key and decrypted with the produced key. However, the chosen method
needs proper algorithms to produce a key that can only be shared by the parties con-
cerned. The communicating parties exchange the key once it is produced, establishing
the connection Ahmadian and Amirmazlaghani (2019).

Therefore, it can be believed that the algorithms so involved must be precisely se-
lected so that the process of encrypting and decrypting the data matches the idea of
cryptography. In the later stages, multiple encryption keys must be used and broken, re-

2



spectively, so that cryptanalysis can be performed efficiently. In contrast, cryptanalysis is
frequently associated with a study that includes secretive writing with technical analysis
involved in the process in order for respective algorithms to be carried out.The imple-
mentation of cryptographic algorithms, however, depends on the usage and execution of
the keys so generated. The diagram 1 depicts various forms of encryption systems used:

Figure 1: Types of Encryption

• Symmetric Keys: In this method, one key is used by the server and client sides
of the secret key cryptography method for both encryption and decryption. The
message is subsequently decoded by the recipient using the same key, restoring
the message’s original data. Secret key cryptography is also known as symmetric
encryption due to the fact that it requires just a single key to function. Once the
key is generated, it is shared between the communicating parties; further steps are
taken to maintain the key’s secrecy and security. The system has a number of
flaws, the most prominent being the difficulty of safely storing and disseminating
the produced key to all of the users. Block encryptions and stream ciphers are the
categories to which this technique belongs. For stream ciphers to function, work
has to be done byte by byte so that the produced key is always changing, and a
feedback mechanism must be established.

• Asymmetric Keys: Symmetric encryption is deployed in a way that is significantly
different from how public key cryptography is used. Financial institutions and Gov-
ernment organizations often use symmetric cryptography on a much larger scale.
The use of symmetric keys was shown to have several key management issues. As
a result, public-key cryptography was created. An ”interaction” is a conversation
between two people that needs to be changed from plaintext to cipher text. This
conversion process is frequently referred to as the encryption stage. In the Asym-
metric encryption one public key and one shared secret key is generated.

• One-Way Hash: Hash functions are one-way encryption mechanisms since they
employ hash values instead of keys. Plain texts used as model input yield these hash

3



values. Using a digital fingerprint, this approach usually reveals file contents. The
digital fingerprint prevents file tampering. This method protects the file against
malicious file attacks. Password-encrypted operating systems are popular with
businesses. This strategy prevents file corruption. Thus, these qualities are useful
for maximum security. Hashing functions are mathematical operations with fixed-
size blocks and unique hash codes. Hashing algorithms typically use 256–512-bit
blocks. The working implementation of a hash function 2 is shown in the example
below:

Figure 2: Visual illustration of the hash function

1.1 Motivation

There are numerous other vulnerabilities related to the cryptographic system aside from
the concerns with encryption. Attacks on the server system can exploit these weak spots.
These are typically referred to as ”cryptanalytic attacks.” Both the underlying algorithm
and the general features of the plain text have a role in the success of these assaults.
This simple text happens to be a common sort of contextual document that may include
malicious code. As a result, before attempting to attack the system, attackers usually
are aware of and study the nature of plain texts. Such cryptographic issues being taken
place on server systems might result in trust loss by the users. In such a scenario, the
application of the same in the healthcare domain becomes a significant challenge as this
might not only result in trust loss but also data loss for patients’ health records.

Therefore, protecting this information becomes a task that must be done to prevent
the loss of patient files. Information about several patients may also be saved on the
cloud in addition to the information about one patient. As a result of storage constraints,
attacks like eavesdropping and impersonation may be used to access sensitive data from
the records. Additionally, the potential of healthcare systems is sometimes restricted by
the absence of interoperability between storage infrastructures and stakeholders. Hence,
this consideration should also be taken care of. Finally, existing cryptographic methods
and encryption algorithms are still unable to guarantee the privacy and accuracy of
healthcare data while reducing its availability. Therefore, the challenges mentioned above
have served the purpose of the motivation factor and have resulted in the my contribution
to their research in the respective domain.

4



1.2 Research Question

The suggested research for the thesis is based on the idea of encrypting a system model
using the principles of AES encryption and the Diffie-Hellman algorithm. This will be
used in the research that will be carried out. Through the use of key generation and
encryption, the fundamental purpose of this thesis is to ensure the protection of client
data throughout the process of uploading and transferring such data using Microsoft
Azure as the cloud model. AES is utilized as the key generation method for this purpose,
and Diffie-Hellman is used to encrypt the whole process of implementation on an end-to-
end basis that takes place on the cloud. Both of these processes take place on the cloud.
The research question listed below will be used to validate the proposed thesis:

How data can be stored on the cloud using the secure model approach with
AES and ECDH?

1.3 Structure of the report

A detailed explanation of encryption and cryptography is mentioned in Section 1, along
with the motivation and the objectives of the thesis. Section 2 includes a summary of
the research being performed by multiple authors who have contributed their work in the
respective domain. Section 3 includes the methodologies used for the purpose of imple-
mentation along with the methodologies. Section 4provides briefs on the requirements
and specifications of the system. Section 5 provides the implementation of the application
and section 6 summarizes the results generated by the respective algorithms. The thesis
comes to an end with the conclusion in Section 7, followed by references.

2 Related Work

Cryptography’s biggest problem is securing data from attackers in a communication chan-
nel. To ensure that communications are not compromised, symmetric and asymmetric
protocols can be used. Asymmetric key encryption techniques employ RSA cryptography.
The symmetric key, on the other hand, is assumed to execute an asymmetric key without
generating two random keys on both ends of the communication channel. Thus, the
Diffie-Hellman key exchange becomes popular. These algorithms are exactly:

• Elliptic-Curve-Cryptography (ECC)

• Elliptic-Curve-Diffie-Hellman (ECDH)

AES also generates keys for communication encryption. The symmetric method is the
safest way to exchange data between two parties. The key agreement protocol involves
key exchange and key creation. When this agreement breaks, communication becomes
insecure. All such algorithms need better security to safeguard the system from attackers.
A recent study suggests RSA cryptography has integer factorization drawbacks. It also
develops low exponential computational factors with increased time and space complex-
ity. RSA may also need asymmetric padding. However, several assaults and breaches
have disrupted the functional RSA implementation, and researchers have failed to pro-
tect the environment through RSA implementation. Thus, cloud-based or internet-based
third parties are hard to trust. The third party must release the public key, slowing

5



implementation. Similar to this, brute-force attacks against symmetric key encryption
and cryptography are on the rise. The consequences are system failure and server vul-
nerability. As a result, Diffie-Hellman and execution mitigate the system’s shortcomings.
The Diffie-Hellman algorithm is considered to be the most recurring algorithm used in
Asymmetric key exchange. The most important factor, however, is to secure the process
of key generation, which must be accomplished by implementing Diffie-Hellman. Author
Rao et al. (2021) tend to find that Diffie-Hellman requires a security mechanism to be
activated so that the system can be protected from breaches and attacks. In other words,
the implementation algorithm needs security from MITM attacks. In recent times, a
survey conducted by a number of research scholars and software developers discovered
that Diffie-Hellman, when combined with the implementation of the AES algorithm, is
capable of dealing with attacks such as the MITM attack.

2.1 RSA Cryptography

One of the algorithms used in asymmetric cryptography is called RSA cryptography,
which processes data by using public and private keys. In the execution process, the
receiver generates a public key and retains its private key. Later, to fulfill the purpose of
communication, anyone can try to send a message to the other end of the communicating
channel by encrypting the generated public key. In this process, only the receiver can
decrypt the message using the key that has already been generated. Meanwhile, the
public key generated is published and labeled as the key that can be used for the long
term. However, in the process, the attacker cannot breach the established system since
the key generated is only known to the parties involved in the process of communication.

Author Aggrawal et al. (2018) contributed their work to the research study of imple-
menting RSA and verifying the security of data files stored within the storage network.
This storage network consisted of all the files that were associated with the service ad-
opted by the user. The author proposed to secure this data on the storage network by
encrypting the messages that were to be transferred through the communicating parties.
In this scenario, the RSA algorithm would encrypt and decrypt the data on both sides,
maintaining the integrity of the system. The author also proposed that the implement-
ation of the RSA algorithm be further combined with the implementation of digital
signatures that verified the process of encryption on both sides.

In a similar work by authors Kleinjung et al. (2010) proposed to generate public keys
on both ends, for the client as well as the server. The generation of keys was done using
the RSA algorithm so that the keys could give access to the respective user and prevent
the system from further attacks. However, the legitimate user’s access was gained by
using the respective file mentioned in the cloud’s data storage. The implementation was
further enhanced using an encryption algorithm such as AES. This enabled a secured
system to be followed so that the server could be protected from breaches. The overall
space complexity obtained by the system was observed to be 49 ms.

In another work wherein the authors Wahab et al. (2021) proposed the implementation
of symmetric and asymmetric algorithms so that security breaches could be avoided. His
work contributed to the research that focused on the communication that would take place
between a client and the server that is deployed in the cloud. The implementation was
further combined with the working algorithm of RSA, and the entire system model was
executed under the activities of encryption that included the time and space complexity
of the system. The proposed model leads to an increase in the security and integrity of

6



the system.
In another survey conducted by authors Gidney and Eker̊a (2021) involved cloud

deployment using distributed computing. This majorly involved securing the data before
it was uploaded so that the overall security of the system could be maintained and privacy
couldn’t be breached. The authors’ technical implementation includes an analysis of
securing the privacy of user data throughout the stages of the data life cycle. The
same work further included multiple techniques and schemes to secure user data and
further protect it from getting hacked on an unsafe medium. However, the proposed
implementation by the author had the disadvantage of not being able to store large
amounts of data. As a result, the generation of keys for respective algorithms was reduced,
allowing the overall data to be managed and communication channels to be established.

2.2 AES Cryptography

A commonly used algorithm for symmetric cryptography is implemented through the
Advanced Encryption Standard (AES). The implementation primarily includes the de-
rivation of cipher keys through round keys. The scheduled method of AES also includes
an XOR operation that is further combined with a single-byte key of the round key and is
generally referred to as the AddRoundKey. The implementation of the round key includes
replacing every byte of the round key with a look-up table that could be executed as a
substitutional step. This replacement is referred to as the ”subbytes.” This replacement
also includes cyclically shifting the rows attached in the number of states, with certain
steps involved in the transposition step. This shifting of rows is termed ”shift rows.”
On the other hand, when such shifting occurs through the columns, it is referred to as
”MixColumns.”

The authors of the studyZaw et al. (2019), used symmetric encryption techniques
that included linear geometry concepts. The entire process of communication was done
to maintain the secrecy of the server system so that covert communications could take
place over online platforms. For this purpose, both the techniques of substitution and
transposition were used, and communication was established so that the channel could
not be breached. However, the primary idea behind this was to protect the user’s data
by using a random number generator so that a matrix could be created and the number
of bytes involved in the stream could be calculated

On the other hand, the implementation of asymmetric encryption was done based
on a cyclic elliptic curve wherein the author Al-Haj and Aziz (2019) contributed their
work in order to transfer data across multiple channels of the neural network in order
to establish an authenticated and secure form of method. The model so far contributed
by the author executed a non-linear table that consisted of a 32-bit register that was
responsible for operating effectively. However, the proposed work could not be used for
the implementation of small areas.

Authors Kartit et al. (2015) suggested using an encryption scheme based on AES and
RSA to secure the data being saved on cloud services, which allowed them to evade the
issue with the model above. AES was used to secure the data encryption process, and
keys with key sizes of 128, 196, and 256 bits were used. In circumstances where a key
size of 1024 bits was required, the RSA method was also implemented in addition to the
AES algorithm. Due to the employment of two encryption methods and the provision of
an additional degree of security to store the encrypted keys, the use of HCT improved
the overall security of the system model.

7



The author’s of Standard (2001) study proposed the implementation of a similar
technique wherein they conducted experiments to control and monitor data that was
supposed to be used online. The research work included the implementation of symmetric
and asymmetric encryption to protect the data online. This was further followed by
encryption algorithms that also included a comparison of multiple research works being
conducted in the same domain. The data was further protected using AES encryption,
wherein the generated key was to be accessed only by the respective people.

2.3 Diffie-Hellman

The Diffie-Hellman method is widely considered to be one of the most secure algorithms;
however, it requires high levels of computational performance to ensure the smooth ex-
change of data between communicating parties. By transferring a common value of the
key that is generated using the principles of data encryption, two computers can com-
municate with one another. Additionally, the hashing method is used to safeguard the
traded data. Practically, keys are never exchanged between the two parties involved;
instead, the same key is created on both ends using the keying material’s 468 and 1024
bits.

In research by Kumar et al. (2017), the authors recommended the adoption of crypto-
graphic techniques that combined Diffie-Hellman with elliptical curve cryptography. The
combination of these two distinct algorithms produced a far better link for establishing
the necessary data security over a risky network. However, this approach took advantage
of all the security risks related to maintaining the data’s integrity via the cloud. The
authors’ later proposals for a new architecture were successful in achieving data security
because they implemented it in four steps, namely:

• Setting up the necessary connection for two communicating parties.

• The data from the recorded photos would subsequently be concealed via stegano-
graphy.

• Verification of legitimate users.

• Data exchange in a cloud environment.

In a different research work being proposed by authors Al-Mahmud and Morogan
(2012), they put forward the implementation of digital signatures to give legitimate au-
thentication to users so that the message sent could be validated by the respective re-
cipient. The execution of the proposed digital signature was based on ECC, wherein the
users had a specific time slot for activation to register themselves. The group identities
of the users were collected, and services were given to them based on their requested
access. Breach types such as DoS attacks were avoided by implementing DH-based ECC.
In addition to this, the computational overhead was reduced to a greater extent.

The authors Kavitha et al. (2019) observed a similar application of digital signatures,
in which a healthcare application would be authenticated using ECC concepts. Encryp-
tion algorithms such as AES and RSA had failed to provide the level of security needed
for large volumes of data; hence, the author came up with the ECC implementation,
derived from the theory of Diffie-Hellman. ECC was used to generate secret and public
keys with a bit size of 256, whereas a hybrid technique was adopted for further securing

8



the system. The hybrid technique, however, included a combination of digital signatures
and the Elgamal algorithm and resulted in an accuracy of 91.52 percent.

Real-time research was proposed by authors El Zouka and Hosni (2021), wherein
they designed a computationally lightweight security mechanism that could secure and
monitor patient record files in real time. The framework included immediate consultation
with the doctor, and an approach called machine-to-machine (M2M) was adopted that
could enable patient monitoring on the web app. The web app was remotely located,
which reduced the overall time for service by quickly verifying the keys.The real-time
application of the same was implemented using concepts of Diffie-Hellman and resulted
in enhancing the security of the overall system.

The proposed strategy by Abusukhon et al. (2019) did fall short, nonetheless, in terms
of protecting cloud data. A DNA-based method was created for this purpose to resolve
its associated problems for securely safeguarding the data in the cloud environment.
Binary coding and DNA steganography concepts were applied by the authors. The cloud
environment now has an additional degree of protection thanks to this binary coding.
However, cryptography itself served as the foundation for how steganography was carried
out.

3 Methodology

The literature survey that was undertaken revealed that one of the biggest obstacles that
has to be overcome is enhancing the system’s overall security. To improve the system’s
overall effectiveness, I propose using block cipher encryption techniques in this thesis.
This section of the thesis provides a synopsis of the methodologies used to implement the
proposed thesis.

3.1 Taxonomy of Elliptic Curve of Diffie-Hellman

The elliptic curve Diffie-Hellman algorithm, often known as ECDH, is a Diffie-Hellman
algorithm that uses the straightforward characteristics of a Diffie-Hellman to simplify
the complicated process of data security. When elliptical curves are implemented using
mathematical calculations, smooth projective curves with a defined point O are more
likely to be produced. It is proven that each curve represents a section of the field that
has a common feature and is represented by a planar algebraic curve. Following is the
equation for this curve on the algebraic plane:

Elliptic curve cryptography is gaining traction as a promising public key cryptosystem
with potential for use in a mobile environment. When compared to previous systems,
this technique offers significantly greater data security and has relatively small key sizes.
Fast computational power with minimal bandwidth usage typically follows the operation
of ECDHA. As a result, all these characteristics make it simple to install on wireless
networks. However, the Diffie-Hellman theory prioritizes using this method even over a
dangerous channel. The reason the involved parties can do this is that the generated
key is only accessible to and shared with legitimate users. This minimizes the possibility

9



of the produced key being improperly handled by limiting its distribution to the legit-
imate parties involved. Later phases involve using the secret key that was created for
communication purposes that utilize symmetrical encryption techniques.

However, there is one distinction between the two approaches: the algorithm addi-
tionally uses algebraic curves once the keys are generated and distributed to the two
communication parties. The primary distinction between the two algorithms at work is
formed by these algebraic curves. During the key generation phase of the algorithm, the
communicating parties must also agree on a desirable elliptical curve. It is important
to highlight that when compared to the standard DH, elliptical curve implementations
generally operate much more quickly. The AES method works by the sender generating
a random key and sending it via a secure channel to the receiving server. However, it
should be emphasized that the key that was generated and supplied is simply a plaintext
key and was not initially encrypted. If an attempt is made to encrypt this key using a
certain algorithm, the encrypted key would then need to be decoded. The need for a
second key would then arise in the subsequent stage of decrypting the key on the other
end, and an identical problem might occur.

As a result, it is advised to consider creating keys on both ends of the communica-
tion channel rather than exchanging them later and encrypting them further using an
algorithm. This way, the sharing of these keys can be avoided as attacks are more likely
to occur during the key-sharing process. Therefore, the program often use the elliptic
curve and Diffie-Hellman techniques to generate a 16-byte key for the AES algorithm.
The production of the key process is discussed in the thesis implementation section.

Overall, the use and application of ECDHA have speed up the implementation process
significantly. This technique is known to improve the system’s overall security and make it
operate much more effectively. Thus, this approach is thought to function more effectively
than other cryptographic ones. The security of a typical ECDHA implementation is 164
bits, while the security of a similar implementation using an RSA-based method is 1024
bits. However, both approaches typically deliver the same level of security. In later
stages, the ECDHA idea offers a wide range of cloud computing solutions, such as the
use of less computing power and less battery storage.

3.2 Taxonomy of Cloud

Due to the ideas of cloud computing, a completely new paradigm has been established
with the storage and saving of enormous amounts of user information on the cloud. Stor-
ing this data on the cloud enables the service provider to securely monitor and maintain
the sensitive data of the user by dedicating a private connection on the respective net-
work. This individual storage ensures that data can be accessed indefinitely and virtually
scaled. In addition to this, the ability for data to be stored in the cloud eliminates the
need for the user to buy a respective amount of network bandwidth to manage his own
data infrastructure and thereby allows him to access his data from anywhere in a scalable
manner.

Cloud service providers offer a variety of services, including Software as a Service
(SaaS) and Platform as a Service (PaaS). Since a cloud’s functionality has been expan-
ded to include scalability and efficiency, there are three types of cloud implementations:
public, private, and hybrid. A public cloud’s fundamental functions are carried out by
a third party, as opposed to private clouds, which are controlled by businesses and indi-
viduals. On the other hand, a hybrid cloud’s networking may be both partially private

10



and partially public. So, employing the cloud as a service has a significant economic
and manpower investment benefit. Users using cloud computing do not need to install
any special infrastructure, in contrast to traditional computing. As a result, all ongo-
ing costs are reduced by eliminating general technological maintenance. In addition to
its benefits, a cloud typically has resource sharing and on-demand self-service as its key
features. When a user needs to control his computing resources or request a service,
on-demand self-service is primarily claimed. On the other hand, resource pooling refers
to the collection of computer resources from distant locations into a single data center.

Although cloud computing as a service has become more mature over time, users
have yet to adopt the concept widely because of serious worries about data loss. The
foundations of encryption are employed to resolve and overcome this developing prob-
lem. Before the essential operation is carried out, this encryption procedure is further
integrated with the creation of public and private keys that are shared between the user
and the cloud provider. To successfully secure user data in the cloud, I recommend using
Microsoft Azure web services. Microsoft Azure is a cloud-based flexible architecture that
can provide users with the services they require. It can be considered a hosting service
that assists the data center to monitor and store large chunks of recurring data. The
proposed cloud architecture is considered secure and thereby designed to provide services
through APIs.

Figure 3: Encryption in Cloud

3.3 Proposed Methodology

I suggest how the model should operate in this area of the thesis that has been presented.
It is necessary to assess the cryptographic algorithm’s overall evaluation model in terms
of resource complexity as well. Consequently, setting its evaluation settings is a necessary
function. The assessing model in the suggested thesis is based on the ideas of the AES
and ECDHA algorithms. The model is assessed subsequently based on the execution’s
time and phase complexity. The transformation of plaintext into cipher text starts the

11



model’s execution. The assistance of a random number generator is used in conjunction
with this conversion. The assessed plaintext and its size are created randomly by keys in
the thesis as it has been implemented. The bit size of the cipher text also affects how big
the keys are. The AES method is used to parse all of the keys in the following step. It is
important to note that the more keys used, the more secure the data is when it is stored
on server sites. The process of the suggested system is shown overall in the diagram
below 4:

Figure 4: Workflow of the architecture

The figure 4 above shows the systems architecture entire workflow. Three different
data security methods are suggested for use in the implementation of the thesis.

• The creation of keys is the first one. This is the key that the two users of the
communication channel share, which is present on both sides and can be utilized
by both ends in the future. However, the elliptic curve Diffie-Hellman technique is
used to generate this key. The keys are sent to the appropriate receiver/end of the
communication channel once they have been produced.

• In the second step, which entails authenticating the shared keys on both sides of the
communication channel. User authentication credentials (username and password)
are sent to the user after verification. By connecting to his email, obtaining his
login ID and password, and then entering the site server with those credentials, the
user can access these common credentials.

• The last step of the encryption process involves the user decrypting the message
using the AES algorithm on their end.

The proposed approach is referred to as the ”hybrid-based encryption model” because
the server model’s execution entails two combined AES and ECDHA algorithms. With

12



the help of this approach, both parties to the information exchange can safely upload and
download data. This hybrid model also improves security because it now incorporates the
ideas of two algorithms to accomplish the same goal of protecting data being kept and
moved across a risky platform. The AES algorithm on the receiving end decrypts the data,
and re-encryption is then carried out in the other direction. In order to view the document
that has been uploaded or downloaded, both the user and the administrator will need
to provide their login credentials onto the server website where this implementation is
taking place. The entire procedure contributes to the network’s communicating endpoints
developing a general sense of trust. However, only one server is kept to maintain the
system’s confidentiality and integrity, as well as the trust element. However, this single
server can be accessed using both the user’s and the administrator’s login information.
The transfer and sharing of data between two parties also take place on this server, and
the databases on these servers themselves securely store the shared data. Both individuals
can access the website server using the appropriate credentials that were sent to them
via their email id.

Therefore, in this situation, the user must first utilize the ECDHA algorithm to upload
a file. Key generation for the user’s account occurs inside the ECDHA algorithm, allowing
him to access his account with ease. Added verification of the user’s identity is performed.
Since the authorized user was notified of his authentication by email, it is now very
difficult for a hacker to get access to the system and take control of the data files. As a
result, the entire procedure is thought to be secure from hacker attacks. The data files
are then encrypted on the website server using a hybrid encryption method that combines
the two ideas from before. The data files are uploaded to the server site after this hybrid
encryption algorithm has been used.

The receiver can now download the data files using the credentials that were previously
provided once they have been saved in the database. Now that he has logged in, the user
downloads all the required data files onto his computer from the server environment. In
this way, the system’s integrity and confidentiality are kept intact, and the security of the
system as a whole is well preserved. The presence of assaults in this thesis implementation
is one of the most crucial things to observe. The server model is subject to vulnerabilities
and may experience specific assaults that could be initiated by the attackers because key
sharing occurs on an insecure platform. On the other hand, unauthorized access to the
generated keys could be obtained by intruders using a man-in-the-middle attack or even
an eavesdropping assault. Therefore, it is crucial to prioritize sending the keys to the
authorized user when distributing these keys. Only after sending the legitimate user’s
login information can this assurance be made. Diagram 5 makes clear representation of
the application environment.

4 Design Specification

The design specifications of overall system will be coded on ASP.NET framework using
C# language and then the whole system will be deployed on the Azure platform with
the database also deployed in the Azure SQL server. AES algorithm begins with the
process of key generation, which occurs by generating random numbers on the sender’s
side. The generated keys are then transmitted so that communication can take place
through the channel and the receiver can receive the respective sent message. Once the
generated key for AES encryption is sent to the receiver, plain text is formed that is

13



Figure 5: Architecture of the application

in a readable format that the reader can comprehend. In the next stage, the process of
authentication takes place so that the respective message can be decrypted. However, the
communication between the two parties occurs through the transfer of keys generated by
the actions of the users involved in the communication. The recipient uses the respective
login information and credentials to access the mail sent and, therefore, receives the
generated key in the mail. Once he receives the generated key, he decrypts them to
complete the entire process of communication. The overall security of the system is
maintained in this manner, and the transfer of communication tends to take place on the
cloud. The web server is deployed in this cloud, and the security of providing respective
services is monitored in Microsoft Azure. The overall process, however, requires two
login credentials, one for the administrator and one for the user, which eventually could
be accessed through their respective dashboards. However, it can be considered that the
primary objective of the thesis is to implement the techniques of the ECDH method along
with the AES algorithm and secure the entire process of communication that keeps being
placed on the cloud.

The model must be able to handle encryption assaults and breaches. Data security
is key to successful internet communication because it should all happen online. Thus,
the thesis’s main goal is to secure cloud communication by generating keys utilizing AES
as the encryption algorithm and ECDH to secure the system model. Diffie-Hellman
and elliptic curve algorithms enable this strategy. This key was created briefly in the
thesis implementation. The thesis hybrid model is created using the ECDH method,
simplifying the complicated process. To secure encryption and decryption, both ends of
the communication chain employ Diffie-Hellman. Thus, the thesis uses AES and ECDH to
secure data files uploaded and shared on the web server. As seen in the 5, the encryption

14



will transit to the cloud, be decrypted by the user, and be downloaded.

5 Implementation

In the following paragraphs, I will talk about the implementation of a hybrid model
that uses a symmetric method. Elliptic curve Diffie-Hellman, more commonly known
as ECDH, is the complementary algorithm to AES. In order to strengthen the security
of client-server communication, AES is combined with ECC. After that, ECDH is used
to improve key generation and further strengthen security. The ECDH algorithm will
generate the AES key, which the AES algorithm will then use to encrypt and decrypt
data. In addition, there will be a key agreement for each session, which will create
a common understanding between the client and the server for the duration of that
particular session. The client was only able to decode the message after successfully
agreeing to the key.

Step 1: The experiment is conducted on several types of files. These files serve as
inputs for advanced encryption and decryption inside the system.

Step 2: Elliptic curves will be used to generate keys, Eliptic curves provide two sets
of key pairs, one for private use and one for public consumption. Let’s say ’g’ stands for
the server’s secret key and ’f’ stands for the client’s.

Step 3: The ”g” character serves as the server-secret key, which AES will use to
encrypt the input file. AES will employ the same rounds for permutation and substitution
for this hybrid approach; however, the key generation technique for the AES-ECDH
model will be different. This means that AES will use an ECDH key for encryption and
decryption.

Step 4: ECDH will start the key agreement at the same time by employing the
secret keys of both the client and the server; it will generate the shared secret for that
particular session. The following are the phases that must be completed for a successful
key agreement:

• Both parties need domain parameters (p, a, b, n, G, h). Elliptic curves are defined
over a field represented by ’p’, where ’a’ and ’b’ are constants whose changing values
generate a variable number of curves. The generator point (G) is a fixed location
recognized by both parties. The curve’s points are evenly distributed for h=1, and
’G”s prime order is ’n’.

• The server will have ’g’ and the client ’f’. Using secret keys, the server and client
will generate a public key. They both know generator point ”G” initially.

• The client’s public key is P(c) = fG. The server’s public key, P(s), is generated by
the generator point ’G’.

• To create a shared secret, they must exchange public keys. The server sends P(s)
to the client, while the client sends P(c).

• Server will compute S = gP(c) and client will calculate S’ = fP(s) using their shared
public keys. They’ll compare calculated S and S’ values.

• S’ = fgG since P(s) = Gg and S = gfG because P(c) = fG. The values of S and S
are shared secret values.

15



• AES-ECDH Encryption and Decryption Model Client-server key agreement will
succeed after the development of a shared secret.

Step 5: Client and server now share a secret value. After receiving an encrypted
file from the server, the client will decrypt the file using the combined ECC and Diffie-
Hellman keys. Sharma and Pokharana (2021)

As seen in Figure 6, after a file has been uploaded to the server, the encryption time
is shown on the site. This is the total time, in milliseconds, required by both AES and
ECDH to encrypt a file. Therefore, the initial encryption occurs in the ECDH using
a shared key produced by the elliptic curve. In comparison to other methods, elliptic
curves use less computational resources while maintaining the same degree of security.
The shared secret key created by the ECDH algorithm is 256 bits long and offers the same
degree of security as the 3027-bit shared secret key obtained by the classic Diffie-Hellman
algorithm. The AES algorithm employs a key produced using the ECDH method to
encrypt and decrypt data. Alice and Bob will produce their respective keys using the
secp256k1 algorithm for the ECDH. Using the algorithm ”secp256k1,” both sides will
produce the same shared secret key on the curves. Therefore, Alice will produce her
shared secret key using Bob’s public key as an input. Bob will produce the shared secret
key using Alice’s public key after the key has been generated. Both of the generated
keys are identical. Now, when an administrator uploads a file, the file is encrypted using
AES. The AES algorithm employs the SHA256 hashing algorithm. Secure hash algorithm
256-bit (SHA-256) is a cryptographic security algorithm. Cryptographic hash techniques
generate hashes that are irreversible and unique. This hash has a hexadecimal value of
64 bits. Each character of the hexadecimal value consists of 4 bits; therefore, 64 * 4 =
256.

Figure 6: Encryption of the file on the Admin side portal

Image 7 represents the ECC key that is sent over the mail to the client for the
encrypted file. The administrator can select the user with whom he wants to share the
file and send the secret key over email.

16



Figure 7: Sharing of the secret key via mail

In image 8 we can see in the user portal the shared file is been decrypted and the time
and the altered file size is been displayed. This whole process is running on the Azure
web services.

Figure 8: Decryption of the file on the user portal

After implementing the program successfully on localhost, I pushed it to the Azure
web services. The server which is utilized for the deployment comprises of shared infra-
structure with 1GB of RAM and 240 minutes of computation in a day. As shown in the
figure, four application insights are presented. The chart displays parameters such as
CPU utilization, data in, data out, connection count, and average memory use. As we
can see in the fig 9

Figure 9: Azure App Insights

17



6 Evaluation

As observed in the literature survey, the implementation of the RSA algorithm tends to
generate certain drawbacks in a model so developed using the same concepts. One of the
significant challenges of an RSA algorithm is that its execution involves low exponential
computational factors. Due to this drawback, the overall time and space required to store
the data become complex in nature. In addition to this RSA algorithm also undergoes
the problem of integer factorization that might in turn obscure the security of the system
model.

Hence to overcome such issues and challenges; the proposed thesis tends to imply the
conceptual theory of AES and ECDHA algorithm. A combination of the above-mentioned
encryption algorithm tends to secure the system from attacks and breaches and assist to
establish communication effectively. However, multiple parameters are used to assess this
approach’s performance. To examine the suggested approach, two parameters—namely,
encryption time and decryption time—were combined. Multiple file sizes were used as
input in the subsequent stages, and this strategy performed better overall in terms of
encryption time.

• Encryption time is the length of time it takes to encrypt data before it is submitted
by the website administrator to the server.

• On the other side, the time required to download the data from the website server
and then decrypt it using the private key is used to compute the decryption time.

Our application is deployed on the Azure web services app deployment service using
a shared hosting plan with 1GB of RAM and 1GB of storage space on a Windows server.
As this scenario is for academic purposes only, the deployment plan is set to shared to
keep costs low; nevertheless, this is not suggested for deploying this application for public
usage. In this approach, we often upload many files of various sizes to carry out the thesis
and then verify how long it takes to encrypt and decrypt those data. The time it takes to
encrypt and decrypt data using the suggested method is shown in the table below, and
the storage complexity is further expressed in KB:

6.1 Experiment / Case Study 1

In the first experiment, I will encrypt the data by utilizing image files as the input and
record the amount of time it takes to encrypt and decode the data coming from the
website server. In addition, I will record the amount of time it takes for the data to be
decrypted. I am going to capture images with a variety of file sizes so that I can record
the time as precisely as possible. The photographs will be recorded in jpg format, and
their sizes will range from very small to very large. This will ensure that a record can
be kept of the times at which encryption and decryption occurred. The amount of time
needed to encrypt data could shift based on how fast the connection is.

6.2 Experiment / Case Study 2

In the second experiment, I will encrypt the data by utilizing CSV files as input and will
record the amount of time necessary to encrypt and decode the data once it has been
received from the website server. In addition to that, I am going to keep a record of

18



Size (Kb) Encryption time(Ms) Decryption time(Ms)

137Kb 72 366
172Kb 88 616
259Kb 98 913
605Kb 227 6021
1048Kb 341 15995

Table 1: Time taken for images to the process of encryption and decryption

the amount of time necessary to decode the data. To record the time as accurately as
is practically possible, we are going to capture it using a variety of different file sizes.
Excel files saved in CSV format may range in size from very small to very large. This
will ensure that a record of the times at which the encryption and decryption processes
took place can be kept. There may be a correlation between the speed of the connection
and the amount of time needed to encrypt data.

Size (Kb) Encryption time(Ms) Decryption time(Ms)

123Kb 70 295
366Kb 95 1846
654Kb 150 8448
826Kb 156 12902
1209Kb 211 18722

Table 2: Time taken for to the CSV files process of encryption and decryption

6.3 Experiment / Case Study 3

In the third experiment, I am going to take pdf files as input data and then test how
the algorithms handle the data. In addition to that, I am going to keep a record of the
amount of time necessary to decode the data. To record the time as accurately as is
practically possible, we are going to capture it using a variety of different file sizes. PDF
files may range in size from very small to very large. This will ensure that a record of the
times at which the encryption and decryption processes took place can be kept. There
may be a correlation between the speed of the connection and the amount of time needed
to encrypt data.

Size (Kb) Encryption time(Ms) Decryption time(Ms)

79Kb 70 149
295Kb 140 1706
878Kb 326 12826
1177Kb 329 17993
1232Kb 368 28525

Table 3: Time taken for to the PDF files process of encryption and decryption

19



6.4 Application URL

https://diffie.azurewebsites.net/

6.5 Discussion

When we consider the facts, we are able to reach the conclusion that the amount of time
needed for encryption is much smaller than the amount of time needed for decryption. It
has been shown that the amount of time needed to encrypt a file increases proportionally
with the file’s size during all three of the tests that were carried out. Because the data
is first encrypted using the AES technique, and then once it reaches its destination in
an unreadable state, it is both decrypted and re-encrypted to ensure that it remains
unreadable. The Advanced Encryption Standard, often known as AES, is an example of
a symmetric algorithm. This means that it encrypts and decrypts data at the same rate.
In certain streaming modes, all that the Advanced Encryption Standard (AES) does is
output a stream of bits, which are subsequently xored along with the information that
has to be encrypted. In order to decode the information, the receiver must first run the
same version of AES that was used to produce the bitstream, which it then xors into the
information. The results are reliable due to the fact that they take into consideration the
whole amount of time that was spent on both approaches.

7 Conclusion and Future Work

A high scalability and a reduced amount of downtime are the two most important aspects
that contribute to the model’s improvement. When data is stored on and transferred via
a website server while simultaneously using a communication mechanism such as the
exchange of keys, data security concerns are certain to occur. In addition, given that
this data can be accessed over the internet, it is possible to access and store it regardless
of one’s physical location in the globe. As a result, the protection of sensitive data is
very necessary. In addition, encryption is used in order to prevent unauthorized access
to the data. In order to put into practice the model that is discussed in the thesis, the
AES algorithm and the ECDH principles have been merged. When compared to the use
of only one encryption technique, this combination often results in the data being in a
safer state. Due to the fact that it follows the symmetric key algorithm concept, AES
encrypts and decrypts using the same key. The fact that the key was used in this manner
on both ends requires that it be protected as sensitive information and concealed. When
this secret key is utilized to transit between the sender and the recipient, the exchange
is then carried out across a communication channel. This mode of communication often
lacks the necessary level of safety. The use of the approach that was described, which
creates the key using the ECDH algorithm, is thus recommended. Because it has a
low computational cost and inherits the properties of the Diffie-Hellman system, the
algorithmic model is given a more distinguishable quality. The primary objective of
the thesis that has been proposed is to find a solution to the issues that crop up with
symmetric algorithms whenever the communication path is not secure. By using AES and
ECDH-based algorithms, the necessity for a secured connection may be avoided, which
eliminates a potential barrier. It is expected that the cryptographic paradigm that has
been proposed would work in any implementation situation, including cloud computing
and the Internet of Things. When the Diffie-Hellman algorithm is combined with the

20

https://diffie.azurewebsites.net/


ECDH algorithm, the manufacturing of secret keys is simplified and made more secure.
This is due to the elliptic curve features of the ECDH method, which are the algorithm’s
best feature. However, due to the duration of this key generation and the impact bit size,
this procedure uses very little of its available resources. The completion of future tasks
related to this project may involve the addition of geographical areas for the purpose of
measuring the amount of time required to encrypt and decode files of varying sizes. In
the event that there is an emergency at the data center, the model may be constructed in
such a way that it is possible to recover the encrypted data from any place. Later rounds
of the operation may accommodate the addition of large data files, which can then be
stored inside the same location.

References

Abusukhon, A., Anwar, M. N., Mohammad, Z. and Alghannam, B. (2019). A hybrid
network security algorithm based on diffie hellman and text-to-image encryption al-
gorithm, Journal of Discrete Mathematical Sciences and Cryptography 22(1): 65–81.

Aggrawal, M., Kumar, N. and Kumar, R. (2018). Optimized cost model with optimal
disk usage for cloud, Big data analytics, Springer, pp. 481–485.

Ahmadian, A. M. and Amirmazlaghani, M. (2019). A novel secret image sharing with
steganography scheme utilizing optimal asymmetric encryption padding and informa-
tion dispersal algorithms, Signal Processing: Image Communication 74: 78–88.

Al-Haj, A. and Aziz, B. (2019). Enforcing multilevel security policies in database-defined
networks using row-level security, 2019 International Conference on Networked Systems
(NetSys), IEEE, pp. 1–6.

Al-Mahmud, A. and Morogan, M. C. (2012). Identity-based authentication and access
control in wireless sensor networks, International Journal of Computer Applications
41(13).

El Zouka, H. A. and Hosni, M. M. (2021). Secure iot communications for smart healthcare
monitoring system, Internet of Things 13: 100036.

Gidney, C. and Eker̊a, M. (2021). How to factor 2048 bit rsa integers in 8 hours using 20
million noisy qubits, Quantum 5: 433.

Kartit, Z., Azougaghe, A., Kamal Idrissi, H., Marraki, M. E., Hedabou, M., Belkasmi,
M. and Kartit, A. (2015). Applying encryption algorithm for data security in cloud
storage, International Symposium on Ubiquitous Networking, Springer, pp. 141–154.

Kavitha, S., Alphonse, P. and Reddy, Y. V. (2019). An improved authentication and
security on efficient generalized group key agreement using hyper elliptic curve based
public key cryptography for iot health care system, Journal of medical systems 43(8): 1–
6.

Kleinjung, T., Aoki, K., Franke, J., Lenstra, A. K., Thomé, E., Bos, J. W., Gaudry, P.,
Kruppa, A., Montgomery, P. L., Osvik, D. A. et al. (2010). Factorization of a 768-bit
rsa modulus, Annual Cryptology Conference, Springer, pp. 333–350.

21



Kumar, C., Vincent, P. D. R. et al. (2017). Enhanced diffie-hellman algorithm for reliable
key exchange, IOP conference series: materials science and engineering, Vol. 263, IOP
Publishing, p. 042015.

Morgado, C., Baioco, G. B., Basso, T. and Moraes, R. (2018). A security model for access
control in graph-oriented databases, 2018 IEEE International Conference on Software
Quality, Reliability and Security (QRS), IEEE, pp. 135–142.

Rao, M. S., Rao, K. V. and Prasad, M. K. (2021). Hybrid security approach for database
security using diffusion based cryptography and diffie-hellman key exchange algorithm,
2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and
Cloud)(I-SMAC), IEEE, pp. 1608–1612.

Sharma, S. and Pokharana, A. (2021). Comparative analysis of aes-ecc and aes-ecdh
hybrid models for a client-server system, 2021 2nd Global Conference for Advancement
in Technology (GCAT), IEEE, pp. 1–7.

Standard, A. E. (2001). Federal information processing standards publication 197, FIPS
PUB pp. 46–3.

Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N. and Robinson, S. (2017). Deep learning
for unsupervised insider threat detection in structured cybersecurity data streams,
arXiv preprint arXiv:1710.00811 .

Wahab, O. F. A., Khalaf, A. A., Hussein, A. I. and Hamed, H. F. (2021). Hiding data using
efficient combination of rsa cryptography, and compression steganography techniques,
IEEE Access 9: 31805–31815.

Zaw, T. M., Thant, M. and Bezzateev, S. (2019). Database security with aes encryption,
elliptic curve encryption and signature, 2019 Wave Electronics and its Application in
Information and Telecommunication Systems (WECONF), IEEE, pp. 1–6.

22


	Introduction
	Motivation
	Research Question
	Structure of the report

	Related Work
	RSA Cryptography
	AES Cryptography
	Diffie-Hellman

	Methodology
	Taxonomy of Elliptic Curve of Diffie-Hellman
	Taxonomy of Cloud
	Proposed Methodology

	Design Specification
	Implementation
	Evaluation
	Experiment / Case Study 1
	Experiment / Case Study 2
	Experiment / Case Study 3
	Application URL
	Discussion

	Conclusion and Future Work

