
Lambda Authorizer Benchmarking Tool
Configuration Manual

MSc Research Project
Cloud Computing

Cornelius
Student ID: 21126747

School of Computing
National College of Ireland

Supervisor: Dr. Shivani Jaswal

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Cornelius
Student ID: 21126747
Programme: Cloud Computing
Year: 2022
Module: MSc Research Project
Supervisor: Dr. Shivani Jaswal
Submission Due Date: 01/02/2023
Project Title: Lambda Authorizer Benchmarking Tool Configuration Manual
Word Count: 1334
Page Count: 17

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 26th January 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Lambda Authorizer Benchmarking Tool Configuration
Manual

Cornelius
21126747

Table of Content
1 Prerequisites 2

2 Development Environment 3

3 Installation 3
3.1 Dependencies . 3
3.2 AWS SAM Configurations . 4

4 Usage 5
4.1 Option Help . 5
4.2 Option Version . 6
4.3 Option Clean . 6
4.4 Option Deploy . 6
4.5 Option Test . 7
4.6 Option Report . 9
4.7 Option Logs Insight . 9
4.8 Combination of Options . 10

5 Configurations 10
5.1 Artillery . 10

5.1.1 Templates . 10
5.2 Logs Insight . 11

6 Reports 11
6.1 Artillery . 12
6.2 Logs Insight . 12

7 Advanced Topics 14
7.1 Add/Modify New Runtime Scenarios . 14
7.2 Modify Artillery Performance Test Tests 17
7.3 Add/Modify Logs Insight Queries . 17

1

1 Prerequisites
The purpose of this application is to calculate the performance of Lambda Authorizer-
enabled serverless functions. It was created as part of the MSc in Cloud Computing
Research Project at the National College of Ireland. First of all, NodeJS and NPM are
required for this project, and their installation of them is straightforward. The next
step is to install the AWS CLI and AWS SAM CLI. Make sure the AWS CLI profile is
configured with an active AWS account. Furthermore, in order to perform benchmarking
process, the user must install programming language runtimes: Python 3.9, Go 1.x and
Java 11. In addition to Java, the user needs to install Maven as well. Ensure that all the
prerequisites are correctly installed by running the commands as shown in Figure 1.
$ npm -v && node -v
8.19.2
v18.11.0

$ aws --version && sam --version
aws-cli/2.8.5
SAM CLI, version 1.60.0

$ python --version && go version
Python 3.9.14
go1.19.2

$ java -version && mvn -version
openjdk64-11.0.11
Apache Maven 3.8.6

Figure 1: Results of the Version Checkup

2

http://nodejs.org
https://npmjs.org
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html
https://realpython.com/installing-python/
https://go.dev/doc/install
https://docs.oracle.com/en/java/javase/11/install/overview-jdk-installation.html
https://maven.apache.org/install.html

2 Development Environment
The author’s machine and system to develop and run the Lambda Authorizer Bench-
marking Tool are described in Figure 2.
$ system_profiler SPSoftwareDataType

Figure 2: Author’s Machine and Operating System

3 Installation
Please read the prerequisites before installation.

The first step is to clone the repository locally and enter the downloaded folder as per
the screenshot in Figure 3.
$ git clone https://github.com/cornelius-tyranade/lambda-authorizer-

↪→ benchmarking-tool.git
$ cd lambda-authorizer-benchmarking-tool

Figure 3: Lambda Authorizer Benchmarking Tool Repository Cloning Result

3.1 Dependencies
The package.json file contains a list of dependencies that need to be installed by running
the command below:
$ npm install

3

Below are a short explanation of used dependencies and the source of each dependency:

1. Artillery. Perform multiple serverless performance tests quickly.

2. Command-exists-promise. Verify if a specific command exists in the system.

3. Commander. Quick solution for NodeJs command-line interfaces development.

4. Config. Simple key-values file configuration manager.

5. Replace-in-file. Replace marked text synchronously in one or more files.

6. ShellJS. Call shell commands in NodeJs application.

Figure 4 illustrates how NodeJS application dependencies are installed and set up:

Figure 4: NPM Dependencies Installation Result

3.2 AWS SAM Configurations
This application uses AWS SAM as serverless application builder, so the user need to run
command below to configure samconfig.toml. However, DO NOT type ”Y” when the
terminal asks to start deployment. Leave the input blank, and the capital letter value
will be used by default as illustrate in Figure 5.
$ sam deploy --guided

Figure 5: AWS SAM Quick Setup

4

https://www.npmjs.com/package/artillery
https://www.npmjs.com/package/command-exists-promise
https://www.npmjs.com/package/commander
https://www.npmjs.com/package/config
https://www.npmjs.com/package/replace-in-file
https://www.npmjs.com/package/shelljs

Alternatively, the user can directly modify existing samconfig.toml as per Figure 6.

Figure 6: Existing AWS SAM Configurations

4 Usage
In this part, the author explains every single option that can be used in the Lambda
Authorizer Benchmarking Tools application. A total of six main options are available
in this application, including Option Help, Option Clean, Option Deploy, Option Test,
Option Report, and Option Logs Insight. In addition, the user can combine more than
one option when running the application.

4.1 Option Help
This option explains what feature options are available in the Lambda Authorizer Bench-
marking Tool. As seen in Figure 7, this option has the following effect.
$ node labt -h
$ node labt --help

Figure 7: Option Help Result

5

4.2 Option Version
Lambda Authorizer Benchmarking Tool version can be found by selecting this option.
$ node labt -v
$ node labt --version

4.3 Option Clean
This option removes the currently installed AWS CloudFormation Lambda application
stack. It also logs the removing process into serverless-apps-builder/logs folder as stage delete.txt.
$ node labt -c
$ node labt --clean

4.4 Option Deploy
This option deploys all scenarios according to what is written in the template.yaml after
building the scenarios code.
$ node labt -d
$ node labt --deploy

Upon completion, each scenario’s URLs and identifiers are extracted into urls.json and
identifiers.json, respectively.
// urls.json
[

"https://<url>/v1/req-auth-go?QueryString1=queryValue1",
"https://<url>/v1/tkn-auth-go -H \"AuthorizationToken: <bearer>\"",
"https://<url>/v1/req-auth-python?QueryString1=queryValue1",
"https://<url>/v1/req-auth-node?QueryString1=queryValue1",
"https://<url>/v1/tkn-auth-node -H \"AuthorizationToken: <bearer>\"",
"https://<url>/v1/req-auth-java?QueryString1=queryValue1",
"https://<url>/v1/tkn-auth-python -H \"AuthorizationToken: <bearer>\"",
"https://<url>/v1/tkn-auth-java -H \"AuthorizationToken: <bearer>\""

]

// identifiers.json
[

"requestAuthorizerGo",
"tokenAuthorizerGo",
"requestAuthorizerPython",
"requestAuthorizerNode",
"tokenAuthorizerNode",
"requestAuthorizerJava",
"tokenAuthorizerPython",
"tokenAuthorizerJava"

]

6

Also, stage build.txt and stage deploy.txt log files are generated during this process. It
shown in Figure 8.

Figure 8: Option Deploy Result

4.5 Option Test
This option instructs the system to run performance testing repeatedly for a certain
duration. The duration and rate of performance testing can be set from within the
default.json file in the config folder. As an example, the duration and rate values are ten.
The system will call the function ten times a second for ten seconds.
$ node labt -t
$ node labt --test
$ node labt -t "tokenAuthorizerPython"
$ node labt -t "requestAuthorizerPython" "tokenAuthorizerPython"

7

It also generated Artillery configuration in config/artillery folder. One of the examples
of test results is requestAuthorizerGo.yml
config:

target: https://xxxxx.execute−api.eu−west−1.amazonaws.com/v1/
phases:

- duration: 10
arrivalRate: 10
name: benchmarking

scenarios:
- name: requestAuthorizerGo

flow:
- get:

url: /req−auth−go?QueryString1=queryValue1
expect:

- statusCode: 200

The output of this process is placed in the outputs/artillery folder in JSON form. For
instance, requestAuthorizerGo.json contents below.
{

"aggregate": {
...
"firstCounterAt": 1669747575150,
"firstHistogramAt": 1669747575742,
"lastCounterAt": 1669747585079,
"lastHistogramAt": 1669747585079,
"firstMetricAt": 1669747575150,
"lastMetricAt": 1669747585079,
"period": 1669747580000,
"summaries": {

"http.response_time": {
"min": 55,
"max": 539,
"count": 100,
"p50": 68.7,
"median": 68.7,
"p75": 85.6,
"p90": 94.6,
"p95": 108.9,
"p99": 497.8,
"p999": 497.8

},
},

},
...

}

8

4.6 Option Report
Using this option, it will generate an HTML report using the JSON file in outputs/artil-
lery. Report HTML generation result can be found in section Artillery reports.
$ node labt -r
$ node labt --report
$ node labt -r "tokenAuthorizerNode"
$ node labt -r "requestAuthorizerNode" "tokenAuthorizerNode"

4.7 Option Logs Insight
The AWS CloudWatch logs record each function’ activities when the user run performance
tests. This option queries several important output parameters from logs. The results of
this output are placed in the outputs/logs insight folder.
$ node labt -li
$ node labt --logs-insight
$ node labt -li "tokenAuthorizerGo"
$ node labt -li "tokenAuthorizerGo" "tokenAuthorizerJava"

Two files are generated as a result. Below is a sample of the Logs Insight query result:
// query_id_overview.json
{

"queryId": "ad83de51-9e1a-4dbd-8baa-742527399491"
}

// query_result_overview.json
{

"results": [
[
{

"field": "functionName",
"value": "requestAuthorizerGo"

},
{

"field": "memorySize",
"value": "128"

},
{

"field": "coldStarts",
"value": "3"

},
...

],
...

],
...

}

9

4.8 Combination of Options
This application can accept flag combinations of more than one input. With the following
command, the user can perform a clean deployment, then run the test and create an
HTML report, as well as generate the results of a Logs Insight query at once.
$ node labt -c -d -t -r -li

5 Configurations
To simplify setting application variables, the author separated the configuration settings
into a file called default.json within the config directory.

5.1 Artillery
Below is the configuration used in the application when running the Test options:

1. Variable artillery.duration determines how long the performance test runs for each
scenario.

2. Variable artillery.rate specifies how many API calls are in one second.

{
"artillery": {

"duration": 10,
"rate": 10

}
}

5.1.1 Templates

When the user runs the option test, the application will generate Artillery configurations
in the folder/artillery based on the two templates provided, artillery request.yml and
artillery token.yml.
#artillery_request.yml
config:

target: ${endpoint}
phases:

- duration: ${duration}
arrivalRate: ${rate}
name: benchmarking

scenarios:
- name: ${identifier}

flow:
- get:

url: ${postfix−url}?QueryString1=queryValue1
expect:

- statusCode: 200

10

#artillery_token.yml
config:

target: ${endpoint}
phases:

- duration: ${duration}
arrivalRate: ${rate}
name: benchmarking

scenarios:
- name: ${identifier}

flow:
- get:

url: ${postfix−url}
headers:

AuthorizationToken: "Bearer allow"
expect:

- statusCode: 200

5.2 Logs Insight
Meanwhile, this is the configuration used in the application when running the Logs Insight
option:

1. Variable logsInsight.timeRange decides how many minutes before the current time
are in order to fetch the logs.

2. Variable logsInsight.waitTimeQuery sets the waiting time (in seconds) before get-
ting actual Logs Insight query results.

{
"logsInsight": {

"timeRange": 1440,
"waitTimeQuery": 15

}
}

6 Reports
The Lambda Authorization Benchmarking Tool has two different output group reports.
The mechanism for generating them is also different. Artillery JSON and HTML reports
use the Artillery framework to calculate them. Meanwhile, the Logs Insight JSON report
is obtained by querying directly into the AWS CloudWatch logging system. This section
displays the report output from the options Test and Logs Insight after 100 calls to each
scenario function.

11

6.1 Artillery
Artillery HTML generation result sample can be found in outputs/artillery. One of the
most important outputs in this HTML is response time. This result is basically the sum of
the performance calculation of calling a Lambda Authorizer-enabled serverless function.
Figure 9 illustrates the result from requestAuthorizerGo.json.html.

Figure 9: Artillery HTML Report Result

6.2 Logs Insight
There are seven query results generated by Logs Insight queries in JSON format. The
output results can be seen in the outputs/logs insight folder. The author converts the
JSON results into tables as a more friendly way to view them.

1. Request-Token Access Control Overview Query (Figure 10).

Figure 10: Overview Request-Token Query Result

12

2. Request Access Controlled Max Init Duration Query (Figure 11).

Figure 11: Request Max Init Duration Query Result

3. Request Access Controlled Max Duration Query (Figure 12).

Figure 12: Request Max Duration Query Result

4. Request Access Controlled Max Used Memory Query (Figure 13).

Figure 13: Request Max Used Memory Query Result

5. Token Access Controlled Max Init Duration Query (Figure 14).

Figure 14: Token Max Init Duration Query Result

13

6. Token Access Controlled Max Duration Query (Figure 15).

Figure 15: Token Max Duration Query Result

7. Token Access Controlled Max Used Memory Query (Figure 16).

Figure 16: Token Max Used Memory Query Result

7 Advanced Topics
This section is added to explain how to make advanced customization to applications
that involve changing templates, configurations, and codes.

7.1 Add/Modify New Runtime Scenarios
If the user wants to add new language runtimes as a scenario, the user needs to modify
the script inside serverless-apps-builder/template.yaml. As mentioned in the Installation
section, this application uses AWS SAM as a serverless application builder. The AWS
SAM full developer guide can be found here.

Below is the example template to add a new language runtime:

Lambda <Request|Token> Authorizer <Runtime>
<Request|Token>Authorizer<Runtime>Resource:

Type: AWS::ApiGateway::Resource
Properties:

ParentId: !GetAtt AppApi.RootResourceId
PathPart: "<req|tkn>-auth-<runtime>"
RestApiId: !Ref AppApi

14

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-is-sam.html

GET Method with Lambda authorizer <request|token> enabled
<Request|Token>Authorizer<Runtime>Get:

Type: AWS::ApiGateway::Method
Properties:

RestApiId: !Ref AppApi
ResourceId: !Ref <Request|Token>Authorizer<Runtime>Resource
HttpMethod: GET
AuthorizationType: CUSTOM
AuthorizerId: !Ref AuthorizersLambda<Request|Token><Runtime>
Integration:

Type: AWS PROXY
IntegrationHttpMethod: POST
Uri:

!Join [
"",
[

"arn:aws:apigateway:",
!Ref AWS::Region,
":lambda:path/2015-03-31/functions/",
!GetAtt App<Request|Token>Authorizer<Runtime>Function.

↪→ Arn,
"/invocations",

],
]

Lambda <Request|Token> Authorizer
AuthorizersLambda<Request|Token><Runtime>:

Type: AWS::ApiGateway::Authorizer
Properties:

Name: AuthorizersLambda<Request|Token><Runtime>
Type: REQUEST
RestApiId: !Ref AppApi
IdentitySource: <method.request.querystring.QueryString1|method.request.

↪→ header.AuthorizationToken>
AuthorizerResultTtlInSeconds: 0
AuthorizerUri:

!Join [
"",
[

"arn:aws:apigateway:",
!Ref AWS::Region,
":lambda:path/2015-03-31/functions/",
!GetAtt <Request|Token>Authorizer<Runtime>Function.Arn,
"/invocations",

],
]

15

App<Request|Token>Authorizer<Runtime> function
App<Request|Token>Authorizer<Runtime>Function:

Type: AWS::Serverless::Function
Properties:

FunctionName: app<Request|Token>Authorizer<Runtime>
Description: <Request|Token> Authorizer <Runtime> Application
Runtime: <runtimeVersion>
CodeUri: scenarios/<runtime>
Handler: app<Request|Token>Authorizer.lambda handler
MemorySize: 128
Timeout: 3

<request|token>Authorizer<Runtime> function
<Request|Token>Authorizer<Runtime>Function:

Type: AWS::Serverless::Function
Properties:

FunctionName: <request|token>Authorizer<Runtime>
Description: <Request|Token> Authorizer <Runtime>
Runtime: <runtimeVersion>
CodeUri: scenarios/<runtime>
Handler: <request|token>Authorizer.lambda handler
MemorySize: 128
Timeout: 3

Permission to allow App<Request|Token>Authorizer<Runtime>Function
↪→ invocation from API Gateway

App<Request|Token>Authorizer<Runtime>Permission:
Type: AWS::Lambda::Permission
Properties:

FunctionName: !Ref App<Request|Token>Authorizer<Runtime>Function
Action: lambda:InvokeFunction
Principal: apigateway.amazonaws.com
SourceArn: !Sub arn:aws:execute−api:${AWS::Region}:${AWS::AccountId}:${

↪→ AppApi}/*/GET/<req|tkn>-auth-<runtime>

Permission to allow <Request|Token>Authorizer<Runtime>Function
↪→ invocation from API Gateway

<Request|Token>Authorizer<Runtime>FunctionPermission:
Type: AWS::Lambda::Permission
Properties:

FunctionName: !Ref <Request|Token>Authorizer<Runtime>Function
Action: lambda:InvokeFunction
Principal: apigateway.amazonaws.com
SourceArn: !Sub arn:aws:execute−api:${AWS::Region}:${AWS::AccountId}:${

↪→ AppApi}/authorizers/${AuthorizersLambda<Request|Token><Runtime>
↪→ }

16

Deployment and Output Setup
Deployment:

Type: AWS::ApiGateway::Deployment
DependsOn:

- <Request|Token>Authorizer<Runtime>Get
Properties:

RestApiId: !Ref AppApi

Outputs:
API Gateway endpoint to be used during performance tests
<Request|Token>Authorizer<Runtime>:

Description: <Request|Token> Authorizer <Runtime> Get Endpoint
Value: !Sub "https://${AppApi}.execute-api.${AWS::Region}.amazonaws.com/

↪→ v1/<req|tkn>-auth-<runtime> <\?QueryString1=queryValue1| -H \"
↪→ AuthorizationToken: Bearer allow\">"

7.2 Modify Artillery Performance Test Tests
As explained in section Artillery reports, the artillery performance test uses templates
from folder config/templates to generate actual Artillery performance configuration files
in folder config/artillery. Users can change the contents of the template as the user wants.
Detailed information about artillery templates is available here.

7.3 Add/Modify Logs Insight Queries
It is necessary to change the code in labt.js if the user wants to modify or add to the Log
Insight query. Users can read the document here to learn the AWS CloudWatch Logs
Insight query language. Below is the code section that the user needs to modify:
// runAwsCloudWatchLogsInsight method
let commandQuery<queryTitle> = ’aws logs start-query ’ +

’--log-group-names ’ + <identifierParams|identifierRequestParams|
↪→ identifierTokenParams> +

’ --start-time ’ + startTime +
’ --end-time ’ + endTime +
’ --query-string \’<your_query>\’’ +
’ > outputs/logs_insight/query_id_<queryTitle>.json’;

// Add the code afterward
executeLogsInsight(<identifierParams|identifierRequestParams|

↪→ identifierTokenParams> !== ’’ ? <queryTitle> : ’’, <errorMessage>,
↪→ <delayMessage>, "<queryTitle>.json");

17

https://www.artillery.io/docs/guides/getting-started/core-concepts
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_QuerySyntax.html

	Prerequisites
	Development Environment
	Installation
	Dependencies
	AWS SAM Configurations

	Usage
	Option Help
	Option Version
	Option Clean
	Option Deploy
	Option Test
	Option Report
	Option Logs Insight
	Combination of Options

	Configurations
	Artillery
	Templates

	Logs Insight

	Reports
	Artillery
	Logs Insight

	Advanced Topics
	Add/Modify New Runtime Scenarios
	Modify Artillery Performance Test Tests
	Add/Modify Logs Insight Queries

