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Abstract

Leading cloud provider Amazon Web Services (AWS) provides a security feature
called Lambda Authorizer in their serverless service, AWS Lambda. This security
feature processes the security token in the request header according to the custom
code set by the developers. This security technology development has led to more
developers leveraging serverless technology to develop serverless APIs with public
access, which previously tended to be used for private scope. This study determines
the performance and cost of a serverless function that implements the Lambda Au-
thorizer. By knowing the benchmarking results, developers can maximize the per-
formance parameters in realizing a secure and cost-effective serverless public API.
The author developed a benchmarking tool based on the AWS Serverless Applica-
tion Model (SAM) and Artillery framework to measure the performance of Lambda
Authorizer-implemented serverless functions with three primary performance para-
meters: start-up conditions, programming language runtimes, and authorization
types. Using this combination of parameters, the Lambda Authorizer Benchmark-
ing Tool shows that Python is still more performant and cost-efficient than other
runtimes. It also becomes the best choice to achieve the lowest response time when
combined with the request authorizer during warm conditions. The exciting result
is that Go performs better if the function code requires much memory since it starts
faster and has better memory management than Python.

Keywords— AWS Lambda, AWS Serverless Application Model, Artillery framework, Bench-
marking tool, Lambda Authorizer
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1 Introduction
AWS EC2 is one of the company’s first Infrastructure-as-a-Service (IaaS) products. IaaS enables
computer resources as a service, allowing customers to lease computer resources, easily set up
server environments, and access them through the internet. In detail, IaaS offers many benefits,
including a reduction in workers because the infrastructure configuration process is automated.
In this way, servers and resources are operated efficiently, development and production costs
are reduced, and companies are able to compete quickly in the global market.

Platform-as-a-service (PaaS) is the next step in cloud computing. AWS Elastic Beanstalk is
a well-known example. PaaS is a service abstraction layer built on top of IaaS to ease complex
server installations by including the Operating System (OS) into the outsourced infrastructure
and enables developers to deploy software, patch software, and monitor systems. Another com-
parable service is Containers-as-a-Service (CaaS). CaaS is a cloud-based service architecture
that hosts and orchestrates containerized workloads within the cluster. A well-known applica-
tion example for CaaS is Docker, a container-based virtual machine that promoted the notion
of containerization among developers all over the world (Mohammed et al.; 2021).

Serverless computing is the most advanced breakthrough in the field of cloud computing.
Serverless services divide into Backend-as-a-Service (BaaS) and Function-as-a-Service (FaaS).
BaaS, such as AWS Amplify, aims to replace the back-end server developers that generally set
up and manage themselves. In contrast, FaaS is more analogous to a computing service that
allows developers to run code granularity at the function level. One of the most outstanding
examples of FaaS is AWS Lambda, the most widely used FaaS nowadays. Furthermore, the term
”serverless” does not indicate the lack of a server. In essence, serverless technology frees users
from the burden of server administration (Shafiei et al.; 2022). Figure 1 depicts the distinction
between traditional server and serverless applications.

Figure 1: Traditional Server vs. FaaS Software Application (Roberts and Chapin; 2017)

The technology sector as a whole is embracing and developing serverless technologies. Server-
less technology introduces a novel approach to creating and delivering applications, as well as
the varying complexity of using the serverless ecosystem’s components. As a result, each soft-
ware company has come up with its own serverless application architectural design. Each
architecture design, however, has one thing in common: the authorization and authentication
procedure, which is carried out using either BaaS, Amazon Cognito, or a custom logic using
Lambda Authorizer. On that premise, the author developed a benchmarking tool for serverless
functions based on start-up circumstances, programming language runtimes, and authorization
logic in order to improve the performance of the access-controlled AWS serverless API.
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1.1 Research Question
The following research question must be answered to accomplish the thesis purpose.

How much influence do start-up conditions, programming language runtimes, and
authorization types have on the cost and performance of executing the Lambda
Authorizer-enabled AWS serverless API?

The above question seeks to ascertain which combination of primary performance paramet-
ers provides the optimum cost and performance for access-controlled AWS serverless API.

1.2 Motivation
In the world of cloud computing, the author believes his benchmarking tools can bring benefits
in the following ways:

1. Researchers and developers can specify which performance parameters yield the most
favorable cost-performance ratio when calling the Lambda Authorizer access-controlled
AWS Serverless API.

2. Researchers and developers can use the Serverless Benchmarking Tool to evaluate different
programming languages or access control mechanisms.

1.3 Ethics Consideration
This study does not include human subjects or private/public datasets, as per Table 1.

Table 1: Declaration of Ethics Consideration Table
This project involves human participants Yes / No
The project makes use of secondary dataset(s) created by the researcher Yes / No
The project makes use of public secondary dataset(s) Yes / No
The project makes use of non-public secondary dataset(s) Yes / No
Approval letter from non-public secondary dataset(s) owner received Yes / No

1.4 Structure of Work
Following is an overview of the work’s content. In Section 2, the author displays a literature
overview of serverless computing, serverless security, and serverless benchmarking, as well as
a table of comparative studies of key articles. Moreover, flowcharts and technical graphics are
used in Section 3 to describe the research strategy and technology used to construct the Lambda
Authorizer Benchmarking Tool. As shown in Section 4, the AWS SAM and Artillery Framework
are used to build a high-level architectural Serverless Benchmarking Tool. Also, benchmarking
of serverless function output is explained in Section 5, including configuring scenarios and how
to evaluate the benchmark results. An in-depth analysis of the outcomes of each serverless
function scenario is presented in Section 6. Eventually, as section 7 summarizes the study’s
findings and offers recommendations for future work, it discusses the study’s contribution to
the cloud computing community.
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2 Related Work
An understanding of serverless itself is necessary for researching and evaluating their perform-
ance. The following section overviews a brief description of existing research projects. A signific-
ant part of this section explains what is needed to conduct this project and helpful information
from trustworthy sources to support the author’s research.

2.1 Serverless Computing
In software architecture, serverless computing is a dream come true. By using serverless techno-
logy, developers can accelerate and simplify the development process while ensuring scalability,
security, and performance are handled. The concept of serverless is widely misunderstood by
most people, who believe it does not require a server. It is essential to understand that server-
less still uses servers. It is only that the internal infrastructure is mainly concealed from the
consumer. A serverless approach saves developers time by focusing on function development
rather than configuring infrastructure (Sbarski and Kroonenburg; 2017, Chapter 1).

2.1.1 Serverless Services

Functional components can be separated granularly with the help of serverless technology. They
use as few resources and costs as possible, owing to their advantages. For instance, when
deploying functions as serverless services, developers do not need to pay for the creation and
setup of the functions. The pricing system differs in serverless services, where developers have to
pay based on the memory usage and the runtime duration of used functions. A single-purpose
APIs and web services can be leveraged to easily create serverless APIs, which allow developers
to construct loosely-linked, scalable, and efficient structures. Ultimately, developers should
concentrate on creating code rather than worrying about how the server infrastructure works
when using serverless (Sbarski and Kroonenburg; 2017, Chapter 3). Serverless services apply
to a wide range of business applications, including enterprise applications, mobile applications,
data processing, scheduling, and embedded applications. This technology fuses the processes
of containerization and virtualization into a unified architecture. Even though serverless is still
considered new to developers, they can choose the best strategy to implement the system into
a serverless by understanding the various technologies that work around it (Rajan; 2018).

2.1.2 Serverless Cloud Platforms

Three of the most popular serverless cloud providers are AWS, Microsoft Azure, and Google
Cloud Programming (GCP). According to their findings, AWS is the platform with the best
performance across all testing situations, whereas Microsoft Azure has the most significant
variance in working behavior and GCP has unpredictable performance (Copik et al.; 2021, Sec-
tion 8). To objectively evaluate the performance of reference applications on cloud platforms,
the workloads generated from the benchmark experiments must be realistic and use the same
workload model and data volume as the input data (Deng; 2022, Section 3). However, the
author does not have to create a fair workload because the focus of the research in this work
is benchmarking serverless function that implemented Lambda Authorizer. This feature is only
available in the AWS environment. In addition, a fully secured serverless application can be
created with the help of AWS Lambda, which makes sense for enterprises already committed
to using AWS as their public cloud provider. In order to allow fast access to internal resources,
AWS integration is necessary, which includes storage, databases, and streaming. It automatic-
ally scales the bandwidth and processing power needed for each function based on the amount
of memory specified by the developers (Patterson; 2019, Chapter 4).
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2.1.3 Serverless Application Builder

AWS provides a unique AWS SAM framework to manage serverless resources programmatically
or through Command-Line Interface (CLI). This framework can provision and perform serverless
operations with multiple programming runtimes in AWS Lambda. AWS SAM is built on top
of AWS CloudFormation as an extension, primarily used to develop structural components of
AWS services because of their outstanding performance when used in the AWS environment.
AWS CloudFormation, on the other hand, has a level of difficulty in learning and understanding
it. Thus AWS SAM is built with a script syntax that is more human-readable and simpler to
understand. The configuration files adopt popular formats such as JSON and YAML, which
have various vital properties in serverless management, ranging from global, security, and event
sources. Since the implementation of AWS SAM is open-source, the community may contribute
to improving its functionality, and the degree of popularity of AWS SAM has continued to rise
to compete with competing for serverless frameworks (Grumuldis; 2019).

2.1.4 Serverless Performance Tester

The Artillery and JMeter framework is one of the most versatile and famous testing frameworks.
They both can generate the function performance result test offline. However, JMeter is not
specifically designed to calculate the performance in serverless environments (Abbas et al.; 2017).
On the other hand, the Artillery framework is built purposely for testing serverless functions.
A similarity can be seen between the Artillery and JMeter framework in terms of what it
aims to achieve. Libraries in this module measure serverless test data scenario performance.
The maximum number of concurrent tests the Artillery framework can run depends on its cloud
environment computing capabilities and network. The Lambda functions are executed using the
Artillery package, which can increase throughput for developers. Due to this, the application
can handle a more significant number of tests simultaneously. Additionally, Artillery allows
developers to deploy custom methods for delivering header data and query string parameters
in cases where the serverless API requires them (Andell; 2020).

2.2 Serverless Security
Consider what would happen if unauthorized users gained access to the AWS environment.
Inadvertently publishing AWS credentials to the public GitHub project is one of the most
prevalent examples. Hackers can quickly access the developer’s AWS resources by searching the
public repository. Events such as these may interrupt the serverless function working process
since service constraints apply at the region level. All available throughput in the area can be
exhausted by one team or service, and this causes all other processes to slow down. Every change
made in a non-production environment may affect users in production since all environments
share the same AWS account. This subsection explains a few examples of how developers can
restrict access to AWS Lambda serverless APIs (Sbarski and Kroonenburg; 2017, Chapter 11).

2.2.1 Serverless Authorization Types

AWS Lambda has many security features, from IAM Permissions and Amazon Cognito to
Custom Authorizer. The below part explains more about the custom authorizer because it
is directly related to the main scenario of this research project. Moreover, AWS Lambda has
changed the name of the Custom Authorizer feature to Lambda Authorizer. As of the most
recent update, Lamba Authorizer allows the developers to create custom access controls for
serverless APIs. API caller identity is determined using bearer token schemes like OAuth or
SAML or request parameters from Lambda Authorizer. Following is an explanation of the two
types of Lambda Authorizer and how they work:
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1. A TOKEN authorizer identifies callers using bearer tokens, such as JSON Web Tokens
(JWT) and OAuth tokens. Bearer Tokens are not meant to have any meaning for users.
A typical implementation of token authorizer is GitHub’s authorization process.

2. A REQUEST authorizer analyzes headers, query string arguments, state variables,
and context variables to determine the caller’s identity. Additionally, WebSocket APIs
use request parameters and do not support other types of authorization.

Figure 2: Lambda Authorizer Workflow (Use API Gateway Lambda authorizers; 2022)

Lambda Authorizer performs the authentication process between the client and serverless
resource, as illustrated in Figure 2. First, clients request API Gateway APIs using bearer tokens
or request parameters. In order to determine whether a Lambda Authorizer is used, the API
Gateway checks the method configuration and determines whether the Lambda function can be
called or not. It authenticates the caller by obtaining an access token from an OAuth provider
or a SAML assertion from a SAML provider. Based on the value in the request parameter, the
system creates an IAM policy to obtain login information. If the checking process is successful,
the Lambda function sends an object containing the IAM policy and principal identity. If
access is denied, the API gateway evaluates the policy and sends HTTP status codes such as
403 ACCESS DENIED. As soon as access is accepted, the API Gateway executes the method.
Additionally, the API Gateway caches policy data, so Lambda Authorizer does not have to be
called multiple times when the caching system is enabled (Calles; 2020, Chapter 4).

2.3 Serverless Benchmarking
By extracting research on serverless benchmarking tools, the author found a number of ex-
isting projects on serverless benchmarking tools, such as the Serverless Benchmarking Suite
that used HyperFlow engine to support many clouds (Malawski et al.; 2017), the Serverless
Performance Framework, which was built from the Serverless Framework (Jackson and Clynch;
2018), the Serverless Application Analytics Framework, which was used to measure the per-
formance of serverless data processing pipelines (Cordingly et al.; 2020), and the PanOpticon
benchmarking tool to support custom serverless functions with Python runtimes in AWS and
GCP environment (Somu et al.; 2020). This includes the most comprehensive benchmarking
tool, Serverless Benchmark Suite, which was used to assess the performance of serverless data
processing pipelines. It also supports several serverless cloud platforms (Copik et al.; 2021), as
well as the latest research titled Serverless Benchmarkers that uses fair workloads to test the
performance of different serverless cloud platforms (Deng; 2022). This subsection will explain
the factors that influence a serverless function’s performance.
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2.3.1 Start-up Conditions

When an initialization start occurs, the latency of the requests is also called cold latency, and
the actual latency of the serverless function execution process is called warm latency. There are
only two situations in which the cold start penalty occurs precisely. The first situation occurs
when AWS Lambda must create new environments to handle the influx of incoming requests.
The second is calling a serverless function that has not been called for a long time. Generally,
cold starts make up fewer than 0.5 percent of incoming requests for serverless functions, but
infrequently functions’ traffic spikes are not affected as much by cold starts. Moreover, AWS
Lambda’s timeout setting applies to the entire request delay, so requests with cold start-ups
may also experience timeouts (Sbarski and Kroonenburg; 2017, Chapter 10).

2.3.2 Programming Language Runtimes

Given the cost transparency provided by serverless pricing models, understanding the cost
impact of a function’s language is critical. For example, C# programming language has a
modest advantage in minimizing the number of cold starts because of the maturity of support
for distributed tracing in Microsoft Azure Functions. From what can be seen in Figure 3,
calling a serverless function is not straightforward. It must go through several layers, such as
the internal compute substrate, execution environment, and language runtime. The execution
environment and the function code are instantiated on demand for each request. When the first
request arrives, AWS Lambda runs the code within the function handler after the environment
is formed. As soon as the handler logic is complete, AWS Lambda considers the function
complete. AWS Lambda does not destroy the execution environment; instead, it saves it.
When a subsequent request happens, and a cached execution environment is available, AWS
Lambda handles the request using that execution environment. AWS Lambda will construct
the new execution environment if a cached execution environment is unavailable.

Figure 3: Serverless Function Layers Execution (Sbarski and Kroonenburg; 2017)

2.3.3 Serverless Underlyings

Many limitations must be overcome for serverless technology to be effective, including one
arising from the dark side of the cloud platform. When developing non-serverless applications,
the developer has total control over the software and hardware stack. However, in serverless
application development, almost all hardware and software aspects become opaque and invisible
from the developer’s point of view. Because of this, serverless environments are less flexible than
traditional ones. The following are some of the missing aspects in a serverless environment, the
absence of total power and hardware underlying management, including the least control for
complex security features. These limitations can sometimes cause benchmark testing results to
be inconclusive and different from time to time due to many unexpected and mysterious things
from the developer’s perspective (Shahrad et al.; 2019) (Kelly et al.; 2020).
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2.4 Comparative Analysis of Related Works
In Table 2, related works have been compared based on their framework, scenario, advantages,
and limitations.

Table 2: Comparison of Related Works Table
Reference Framework Scenario Advantages Limitation
This
Research

Lambda Authorizer
Benchmarking Tool
(LABT) constructed
using AWS SAM and
Artillery Framework.

A serverless
function that
implements
Custom Lambda
Authorizer.

Analyse the
performance
of a serverless
function with
access control.

(Deng; 2022) Serverless
Benchmarker (SB).

Thumbnail
generator, model
training, and
video processing.

Fair benchmark
comparison
to broad cloud
serverless
provider.

Mitigating
construct validity
depends on cloud
platform features.

(Copik et al.;
2021)

Serverless Benchmark
Suite (SeBS).

General serverless
application.

Support multiple
cloud platforms.

Support only
specific serverless
scenarios.

(Cordingly
et al.; 2020)

Serverless Application
Analytics Framework
(SAAF).

Transform-Load-
Query serverless
application.

Support Data
Processing
Pipeline
Scenario.

Data Storage is
limited to S3.

(Somu et al.;
2020)

PanOpticon (PO) uses
Serverless Framework
and JMeter.

Custom simple
function.

Easy
configuration
using a dedicated
configuration file.

Python runtimes
are the only ones
supported.

(Jackson and
Clynch; 2018)

Serverless
Performance
Framework (SPF)
made using Serverless
Framework.

Empty function. As benchmarking
runs without
third parties
involved, they
produce accurate
results.

The empty
function
scenario is plain
compared to the
actual serverless
application.

(Back and
Andriko-
poulos; 2018)

Microbenchmark
(MB) built on top
Serverless Framework.

Basic function. Wide range of
cloud provider
support.

Limited input
and output
performance
parameters.

(Malawski
et al.; 2017)

Serverless
Benchmarking Suite
(SBS) produced
using Serverless and
HyperFlow Engine.

Custom simple
function.

Multi-cloud
provider support.

Output
parameters are
only CPU and
RAM usage.
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3 Research Methodology
The use of appropriate methodologies is required when benchmarking serverless functions. With
the correct approach, the configuration process will be easier to manage, and the outputs will
be more accurate. This section presents a general overview of the benchmarking process for an
access-controlled serverless function, from input until it generates the expected outcomes.

3.1 Process Overflow
Figure 4 shows the flow of benchmarking tool process in calculating performance for multiple
secured serverless functions. Users must input a specific command to trigger the benchmarking
process. In short, the benchmarking process undergoes several stages and validation to produce
the desired output. Below is a more detailed description of each flowchart component:

Figure 4: Process flowchart for General Serverless Benchmarking Tool

Using the benchmarking tool command line, users can start the serverless application builder
and calculate serverless functions’ performance simultaneously. Afterward, the system receives
the user’s input and processes the existing application builder properties. Keep in mind that the
application builder properties must have a value. Otherwise, the system will stop. A Lambda
Authorizer function is built and deployed based on the properties and linked with the desired
function by the serverless application builder framework. Before moving on to the performance
testing stage, a final check will be performed if any application building properties are still
unexecuted. The following property will be run if one is found.

Subsequently, the system will perform serverless performance testing based on configuration
files that the user already sets up. This process then determines which scenarios users wish to
run and how many testing iterations are needed based on input in the beginning. As a result of
benchmarking, the serverless monitoring dashboard displays each tested function’s performance
metrics. Also, users can retrieve benchmarking results in JSON format in the local output
folder. Additionally, the users can repeat the testing process by providing different command
parameters and settings for the serverless application builder to analyze different scenarios.
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4 Design Specification
Cutting-edge technologies and techniques must be employed to develop a reliable and robust
benchmarking tool for serverless computing. Accordingly, the author will briefly describe the
high-level process for the Lambda Authorizer Benchmarking Tool using a sequence diagram.
This section explains the performance metrics that the serverless benchmarking tool can gather.

4.1 Diagram
Sequence diagrams are used in this section to demonstrate the interaction between objects
sequentially. The diagram is intended exclusively for developers. It has also been found that
these diagrams can also be used to facilitate communication between technical and business
department employees in some companies.

4.1.1 Sequence Diagram

Figure 5 illustrates the workflow of the Lambda Authorizer benchmarking process. This diagram
was added by the author as a quick way to explain how the application’s internal system works.

Figure 5: Lambda Authorizer Benchmarking Tool Sequence Diagram

The user instructs the Lambda Authorizer Benchmarking Tool to run an automated server-
less benchmarking test. All serverless functions specified in the template.yaml are prepared
to be pushed to the AWS Lambda service using the AWS SAM framework. AWS SAM reads
the authorizer and application function code within the source folder and continues building
the code using the configured runtime. If there is no compilation error, the system will deploy
it. The system runs the performance test scenario by checking artillery.yml as a based config-
uration. It will generate multiple virtual users to call the request URL simultaneously for a
particular duration. Through AWS Lambda, the Artillery framework converts the performance
outputs into human-readable content in JSON format, which will be stored in the local folder.
The AWS CloudWatch service monitors and writes logs of serverless function activities at the
same time. Using the AWS CloudWatch dashboard, the users can visit a graphical repres-
entation of the performance activity by default. In addition, this service also provides users
with remarkable capabilities to analyze logs interactively directly from within written logs using
AWS CloudWatch Logs Insights (Analyzing log data with CloudWatch Logs Insights; 2022).
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Furthermore, there are three main components in the Lambda Authorizer Benchmarking
Tool, namely AWS SAM and Artillery Framework, also AWS CloudWatch as monitoring ser-
vices. The author chooses AWS SAM for the serverless application builder framework rather
than popular frameworks like Serverless Framework because the benchmark scenario in this
research work is to measure the performance of serverless functions that implements Lambda
Authorizer. Since Amazon SAM is a native framework, it performs much better than rival
frameworks. Meanwhile, the Artillery framework is used as a serverless performance tester
framework because it is purposely engineered to measure the performance of scalable cloud
functions (Ritzal; 2020). In contrast, popular performance testing frameworks like JMeter exist
for functions in general. As a serverless monitoring system, AWS CloudWatch is chosen since it
is suitable for this application. This service directly supports logging and monitoring activities
natively within AWS as the cloud provider being tested. Another thing that needs to be added
is that the author chooses the output results in JSON format because it has high flexibility and
can support various processes regardless of programming language.

4.2 Performance Metrics
The results of different scenarios in benchmarking will be presented in a Table 3 structure. Based
on four programming runtimes and two authorizer types, the performance output parameters
recorded are the maximum duration for cold and warm starts, maximum memory use, response
time, and performance cost. Using this table, the author will determine which programming
runtime has won the most categories as the overall winner.

Table 3: Serverless Benchmarking Tool Performance Metrics Template
Runtime Authorizer Type Max Init Duration Max Duration Max Memory Used Avg Response Time Max Cost
Python 3.9 Request ? ? ? ? ?
Python 3.9 Token ? ? ? ? ?
Node 16.x Request ? ? ? ? ?
Node 16.x Token ? ? ? ? ?

Go 1.x Request ? ? ? ? ?
Go 1.x Token ? ? ? ? ?
Java 11 Request ? ? ? ? ?
Java 11 Token ? ? ? ? ?

In order to determine the performance cost, the author has to manually calculate it. With
AWS Lambda, the service price is calculated based on the number of CPU cycles rather than
the number of bytes (Farley; 2021, Chapter 2). The service counts all types of requests and
their duration, whether they come from event managers, Amazon API Gateway, or AWS console
directly (Ibrahimi; 2017). During the calculation, the time from the start of the function code
to its end is considered. Minor duration rounding begins at 1 ms. Moreover, serverless functions
are also priced based on the memory resources allocated to them. Due to memory allocation,
function durations will be influenced, which affects cost as well. Memory can be allocated to
functions between 128 MB and 10,240 MB in 1 MB increments. By default, each function has
a timeout of 3 seconds, 128 MB of memory and 512 MB ephemeral storage. Table 4 gives a
picture of the cost calculation of a serverless function using 1024 MB of memory.

Table 4: AWS Lambda Pricing Table (AWS Lambda Pricing; 2022)

Architecture Duration Requests
x86 $0.0000166667 for every GB-second $0.20 per 1M requests
Arm $0.0000133334 for every GB-second $0.20 per 1M requests
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5 Implementation
The implementation of the proposed design is presented in this section. Besides explaining
the high-level architecture of the application and the type of scenarios are run, the author also
describes how the performance cost calculations are made. Interested readers can find the source
code for Lambda Authorizer Benchmarking Tool on GitHub.

5.1 Architecture Overview
Figure 6 displays the high-level architecture of the Lambda Authorizer Benchmarking Tool.
This application is developed based on the sequence diagram in Figure 5. AWS SAM is used for
removing existing function stack, building, and deploying function code according to template
scripts. Furthermore, the application also utilizes the Artillery framework to run performance
test scenarios with query string parameters for request authorization types and authorization
headers for token authorization types. In addition, using the basic configuration provided by
this benchmarking tool, the user can adjust the duration and rate of function calls. Performance
testing results are split into two parts, those obtained from the Artillery framework and those
queried directly from AWS CloudWatch Logs Insights. Performance results generated by Artil-
lery have important outputs such as request rate and response time. This output has a JSON
format that can be converted into HTML with a more human-friendly visual. Meanwhile, the
output provided by AWS CloudWatch Log Insight only has a JSON format but has a complete
output, such as cold and warm duration, as well as memory usage.

Figure 6: High-Level Architecture of Lambda Authorizer Benchmarking Tool

5.2 Performance Test Scenarios
The author runs and evaluates a total of eight benchmarking scenarios, a combination of four
programming language runtimes and two authorization types. The programming language
runtimes used are Python 3.9, NodeJS 16.x, Go 1.x and Java 11. According to AWS Lambda’s
documentation, Python and NodeJS have superior overall performance, while Go has a quick
start, while Java has a long start but fast after initialization (AWS Lambda Runtimes and per-
formance; 2022). Based on these documents, the authors chose the four programming runtimes
as the subject tests in this research. The default specification for all tested serverless functions
is x86 architecture, 128 MB memory, 512 MB ephemeral storage, and no cache. Further, each
function is tested for ten seconds, which is comprised of 10 different virtual users invoking each
function once every second, resulting in a total of 100 invocations.

13

https://github.com/cornelius-tyranade/lambda-authorizer-benchmarking-tool


5.3 Logs Insights Custom Queries
The Lambda Authorizer Benchmarking Tool’s Logs Insights feature allows this application to
generate seven pre-defined query results consisting of an overview query with a combination
of two authorizer types and three main parameters (maximum initialization time, maximum
duration, and maximum memory used). All these results are displayed in JSON format. As
additional information, if the user wants to get other custom query output, the user can get the
results of the query results manually, as shown in Figure 7.

Figure 7: Logs Insight Manual Query for Overview Output

5.4 Performance Cost Calculation
The author calculates the function cost manually with the help of the AWS Calculator tool. This
tool can estimate the price to be paid each month based on the service used and the resource
parameters entered. For example, a function with three times cold starts of 1 million calls. The
maximum cold start duration is 131.03 ms, which happened three times, while the maximum
warm start duration is 1.85 ms. Then with balance calculation, the average maximum duration
of a function is 5.7254 ms. It is necessary to round up the result to 6 milliseconds because AWS
Lambda does not record duration in decimal form. Next, the result must be input into the
AWS Calculator so that the below results will be displayed:
# Function duration 6 ms and 1,000,000 requests/month
Memory allocated: 128 MB x 0.0009765625 GB in a MB = 0.125 GB
Ephemeral storage allocated: 512 MB x 0.0009765625 GB in a MB = 0.5 GB

# Pricing calculations
1,000,000 requests x 6 ms x 0.001 ms to sec = 6,000.00 total compute (seconds)
0.125 GB x 6,000.00 seconds = 750.00 total compute (GB/s)
Tiered price for: 750.00 GB/s
750 GB/s x $0.0000166667 = $0.01
Total tier cost = $0.0125 (monthly compute charges)
1,000,000 requests x $0.0000002 = $0.20 (monthly request charges)
Billable ephemeral storage = 0.50 GB - 0.5 GB = 0.00 GB (no charge)
Lambda costs - Without Free Tier (monthly): $0.0125 + $0.20 = $0.21
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6 Evaluation
This section is filled with five summary bar charts for each category of main output parameters
in the section Performance Metrics. Subsequently, the author discusses the advantages and
disadvantages of each programming language runtime based on benchmarking results.

6.1 Maximum Initialization Duration Query Result
Figure 8, the first bar chart in this section, shows the benchmarking results in the form of the
maximum duration of initialization of a function at each runtime. This duration is known as
cold latency. Cold latency usually occurs when a new function is created or one that has not
been used for a long time starts to be activated. Typically, with the default settings including
cache-enabled, cold starts only occur in less than 0.25 percent of the total requests.

Figure 8: Authorizer Maximum Initialization Duration Bar Chart

6.2 Maximum Duration Query Result
The maximum duration bar chart illustrated in Figure 9 shows the speed in processing the
Lambda Authorizer function with the Request and Token types. This maximum duration
is also called warm duration, which means that the function is active and ready to wait for
incoming requests. The author observes and analyzes a discrepancy between Java and other
runtimes regarding the maximum time required. This lengthy process duration was observed
only in 1 to 5 percent of total requests, according to other output results the author obtained.

Figure 9: Authorizer Maximum Duration Bar Chart
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6.3 Maximum Memory Used Query Result
The results of querying the efficiency of runtime in memory management are shown in the
bar chart in Figure 10. Despite implementing Lambda Authorizer with the lowest memory
specification (128 MB), there is still a lot of memory left over. So there should be no more
excuses if the function that implements the access control feature brokes the amount of memory
limit used. Interestingly, when comparing the memory efficiency of the Go runtime with that
of the Java runtime, the gap is quite large, more than two times as large.

Figure 10: Authorizer Maximum Memory Used Bar Chart

6.4 Response Time Calculation Result
There is a difference between response time and duration. Duration means the period of time
required to initiate and execute Lambda Authorizer functions. Meanwhile, this output para-
meter is an overall time calculation starting from when the user requests the function, enters the
Lambda Authorizer function, steps further to the actual function, and returns it as a response
to the user. The Artillery framework generates the data displayed in Figure 11. The bar chart
shows here by average response time after 100 invocations. It is interesting to note that the
Java runtime actually has relatively good performance. Because after the averaging process, in
token authorizer scenarios, the results are the same as the performance of the NodeJS runtime.

Figure 11: Authorizer Average Response Time Bar Chart
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6.5 Performance Cost Calculation Result
Finding the best performance cost without reducing the security of a function is one of the
objectives of this research work. The performance cost of a scenario is generally affected by the
speed at which functions are executed and by the amount of memory they consume. The value
in Figure 12 is calculated manually based on the maximum init and function duration according
to the proportion of cold and warm conditions. The results of these calculations are fed into
forecasting calculations for AWS Lambda in AWS Calculator. This chart shows that Python is
the runtime with the best cost performance. However, according to Figure 10, Go runs more
efficiently in terms of memory usage. When running scenarios that drain memory capacity, Go
will have the upper hand in the battle for best performance cost.

Figure 12: Authorizer Performance Cost Bar Chart

6.6 Discussion
Table 5 is a copy of the performance matrix of Table 3, filled with the benchmarking results from
previous subsections. The author gives a blue highlight to the columns with the best results
from each category and a red highlight which means the worst result in each category. The
programming language runtime will be sorted based on how many highlights it gets. Highlights
in blue score plus 1, highlights in red score minus 1, and columns without highlights score 0
points. After calculation, here is the order of the best programming language runtimes: Python
3.9, Go 1.x, NodeJS 16.x, and Java 11. Moreover, rows with the most blues represent the best
scenario. There are two scenarios. First is a combination of Python runtime with a request
authorizer in warm conditions. The other one combines Go runtime with a token authorizer in
cold conditions. However, the cold duration is only a tiny part of the total request, and the
Go’s warm duration in the second scenario is ten times slower than in the first scenario. So the
author decides that the first result is taken as the best scenario.

Table 5: Serverless Benchmarking Tool Performance Metrics Result
Runtime Authorizer Type Max Init Duration Max Duration Max Memory Used Avg Response Time Max Cost
Python 3.9 Request 131.03 ms 1.85 ms 34.33 MB 62.2 ms $0.21
Python 3.9 Token 116.82 ms 1.82 ms 34.33 MB 73 ms $0.22
Node 16.x Request 223.68 ms 14.14 ms 55.31 MB 64.7 ms $0.24
Node 16.x Token 165.6 ms 17.31 ms 54.36 MB 74.4 ms $0.25

Go 1.x Request 255.78 ms 8.27 ms 28.61 MB 68.7 ms $0.24
Go 1.x Token 85.51 ms 19.99 ms 27.66 MB 64.7 ms $0.24
Java 11 Request 739.91 ms 358.61 ms 83.92 MB 83.9 ms $1.61
Java 11 Token 584.48 ms 577.48 ms 78.20 MB 74.4 ms $1.41
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Python is the overall winner of this research’s benchmarking tests. This runtime gets
ranked one for function duration, response time, and performance cost. Based on the author’s
observation, the Python runtime is swift because cold conditions only occur three times out
of 100 invocations, apart from a fast start-up time. Apart from that, what is impressive is
that the duration of running the function in warm conditions is at least four times faster than
other runtimes. Then with everything fast, performance costs can be reduced, so this runtime
combined with a request authorizer is the best choice if developers aim to create serverless
applications with a limited budget but strong performance.

Go ranks second in this benchmarking test research. This runtime attracts the writer’s
attention because, according to the benchmark output, this runtime can beat Python in terms
of cold start and memory efficiency. The difference is quite plenty. The cold start speed on the
token authorizer scenario is approximately 30 milliseconds or 27 percent faster than Python.
Meanwhile, one of the most fantastic things about this runtime is its memory management,
which only requires 20 percent less memory than its closest competitor, Python again. For this
reason, the authors suggest that if developers want to develop responsive or real-time serverless
applications with the best memory usage, then use Go.

NodeJS is firmly in third place. The performance of the runtime individual component
variables is entirely satisfactory. It is just that the average response time in the token authorizer
scenario has the same results as the Java runtime, which is 74 ms, which is weird. Because the
scope of this research is limited, this anomaly needs to be investigated further in other research.
Developers can still use this runtime if they are familiar with it. According to the author,
this runtime is the most developer-friendly, easy to develop, has no constraints, and has many
communities that provide open-source libraries.

Java is located at the bottom of the benchmarking test in this research. All red highlights
are located in this runtime, especially in the request authorizer scenario. This runtime has
the most prolonged start-up duration, lengthy function execution, highest memory usage, high
response time, and a more expensive function per request cost. However, if the readers look more
closely at the response time section, the results obtained in the token authorizer scenario are
only 13 percent slower than rank 1, Go. That means the maximum function duration hit at the
Java runtime is rare and mainly has a much lower duration. Java is the programming language
of millions of people and has proven reliable and secure on various production systems. For this
reason, the authors understand that there are developers who want to use Java in developing
serverless applications. The author recommends enabling caches to minimize dire performance
activities and high costs for a serverless API created with Java runtime.

7 Conclusion and Future Work
In conclusion, as seen from the evaluation results, Python runtime is the best option for the
lowest response time scenario in combination with the request authorizer type and warm condi-
tion. The Python runtime is very powerful also economical, especially when running functions
during warm condition. Compared to its closest competitor, Go, this runtime is four times
faster. However, this achievement could have been flawless. Go, which ranks second, is very
close to Python. It also has advantages over Python, such as a 27 percent quicker cold start-up
time and 20 percent more efficient memory usage. Go may have the upper hand if the scenario
has higher memory usage. In third place is the NodeJS runtime, which performs well and is
stable in individual component testing. However, when viewed from the authorizer token scen-
ario average response time, the results obtained are the same as Java results. The last position
is the Java runtime, which has the most unsatisfactory results in almost every benchmarking
scenario. Despite this, Java’s overall average response time on token authorizer is still on par
with NodeJS in some scenarios and only 13 percent slower than the first-place Go.

18



With the creation of the Lambda Authorizer Benchmarking Tool, understanding the influ-
ence between start-up conditions, programming language runtimes, and authorization types in
Lambda Authorizer-enabled serverless function or API becomes more accessible and accurate.
However, this application still needs improvement, and many parts can be improved. One of
them is the addition of command options so that users can easily set up a new language runtime
or other access control features in the AWS SAM builder properties. Then a higher level of
complexity can also be added to benchmarking scenarios, such as scenarios accessed via data-
bases, message queues, and event managers, along with a greater variety of output formats and
parameters. This application can be commercialized with more diverse features, such as CI/CD
integration, multiple accounts access, a friendly user interface, web accessibility, and a proper
support system. It is also possible to develop this benchmarking tool for other cloud platforms.
The only requirement is to choose a framework that supports both automated serverless ap-
plication building and cross-cloud platforms, such as the Serverless, Spring Cloud Function, or
Terraform. Alternatively, there is also an option of developing natively for each cloud provider.
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