
Configuration Manual

MSc Research Project

Cloud Computing

Manisha Chandra
Student ID: x21117284

School of Computing

National College of Ireland

Supervisor: Dr. Aqeel Kazmi

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Manisha Chandra

Student ID: x21117284

Programme: Cloud Computing

Year: 2022

Module: MSc Research Project

Supervisor: Dr. Aqeel Kazmi

Submission Due Date: 15/12/2022

Project Title: Configuration Manual

Word Count: 2000

Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: C Manisha

Date: 14th December 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Manisha Chandra
x21117284

1 Introduction

This tutorial offers a straightforward explanation of how to construct a Kubernetes cluster
on an Ubuntu server. In part 2, we will discuss the instructions and technologies that
are necessary in order to construct the cluster. By using the idea that several schedulers
are simultaneously operating, which will be covered in the next section, we will have the
ability to determine how to check both the custom scheduler and the default scheduler.
We are going to walk over the code to have a better understanding of how it operates
in accordance with the suggested scheduler. At long last, we will look at the process of
configuring the monitoring tools prometheus and node exporter.

2 Tools and Technologies Required

The table that follows provides us with the prerequisite criteria that must be met before
we can go on with the implementation of the proposed scheduler.

Design-Specification
Tools & Technologies Specification
Clustering Platform AWS EC2
Application-Container Ngnix
Operating System (OS) Ubuntu Server 20.04 LTS
Container software Docker version 20.10.12
Container orchestrator Platform Kubernetes 1.20.0
tools for Monitoring Prometheus and node exporter
Number of CPUs for Slave & Master 1 and 2 respectively
Coding language used GoLang 1.18
Storage minimum 4GiB memory
communication between pods and nodes YAML

3 Clustering using Kubernetes

For this research , I am using AWS EC2 services in order to take the advantages provided
by the cloud services.
I have decided to utilize Ubuntu Server 20.02 LTS since it will facilitate the formation of
kubernetes clusters. I would ask that you refrain from using version 22.02 because it is
not compatible with this endeavor.

1



3.1 Nodes Creation

We will require one master node in addition to two slave nodes in order to carry out this
investigation. Since there is a significant amount of processing work involved, the master
node will be constructed using a T2.Medium (which has 2 CPUs), while the slave nodes
will be formed using a T2.micro, which has just one CPU. In the below figure we can
the commands to install Docker and kubernetes and also kubeadm in order to form the
cluster. this commands can be written in a single shell script to make things easy. This

Figure 1: Shell script code for installing prerequisites

file needs to be run in all the nodes including master in order to form the cluster. first
we need to run the below command.
sudo -i
the we need to run the shell script.After we need to run the commad provided in the
figure 2.
Step-2 which will generate kubead token which needs to be used in the slave nodes.The
token will be generated as shown in the figure 3

Figure 2: Steps for creating cluster that needs to be executed in master node

After this, we are required to copy the token, and we must ensure that this process is
completed as rapidly as possible since the token has a time limit.
Step-3
The token is then executed on the slave nodes, after which we will be presented with
the command that we have to execute on the master node in order to validate that the
cluster has been created.This can be shown in the figure 4.

2



Figure 3: kubeadm token in order to form cluster

Figure 4: The nodes have joined the cluster

Step-4:
Before running the command
Kubectl get nodes
we need to fallow the steps 3 and 4 provided in the master node so that we give permission
for these nodes to communicate and form the cluster. After these steps are executed when
we provide the get nodes command we will the nodes have been joined the cluster this is
shown in the below figure 5.

Figure 5: kubeadm command to get the nodes from the master node

3.2 Kubernetes UI Dashboard

The Kubernetes portal is where the clusters node bindings, deployments binding, and
applications binding are located.
kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/
v2.6.1/aio/deploy/recommended.yaml
Utilizing the kubectl command line interface and executing the command line, you will
be able to authorize access to a Dashboard. kubectl proxy
The dashboard will be available at the below link.
http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/ services/https:kubernetes-
dashboard:/proxy/
If facing any issues kindly check the fallowing website:1

1https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

3

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/


4 Scheduler Code Explanation

Once we clone the scheduler folder present in the code artifacts we can see the fallowing
folders of files which are implemented to perform scheduling according to the proposed
way.
The execution of the scheduler will start with main.go file first as it does the monitoring
part. monitorUnscheduledpods() is a method that can be found inside the main.go
file (Kindly check the code artifacts) transfer the file to . After constantly monitoring
for every requests which have been generated by the user, it will set up a pod as well as
assign a nodes to it. After all this, the pods will be ready for usage. The code can be
shown in the figure 6.

Figure 6: main.go file present in the
scheduler folder

Figure 7: Code for getUnscheduled-
Pods() method

Figure 8: code for getBestNode()
method

Figure 9: code for bind() method

4



Next comes the step of getting all the unscheduled list pods, here annotations are
used to match the pods to the response. check the figure 7 for the implementation.
The process from here goes to the SchedulePods method which in turn calls the Sched-
ulePod where the input is given as each of the pods which needs to be scheduled. This
method will in turn call the getBestNode and Bind methods in the figures 9 and 9
The fit() method is composed of two different functional components: first, it will accept
the input, which is a pod that has been given by the schedulePod() method, conduct the
proper filtering, and determine the set of nodes that is most suited.
This list of nodes is then sent along as an input to the getBestNode() method, which
is the implementation of how to get the metric data of the nodes from the prometheus
server API. Based on the collected metric data, this strategy chooses the node that is
deemed to confer the most benefit onto the network as a whole.
Bind() This function takes as arguments both the pod that has been chosen by the sched-
ulerPod() method and the best node that has been chosen by the getBestNode() method.
The method then binds the pod to the best node that has been chosen. This concludes
the procedure that was previously followed.

In order to run the scheduler we need to download the go language in the server of
AWS EC2.
sudo apt install golang-go

5 Deployment of the pods

We install five pods in order to compare the performance of the custom scheduler to that
of the default scheduler in Kubernetes. These pods are named as follows: Sleep (two
replicas), Nginx (one replica) on both the default scheduler and the custom scheduler,
including sys (1 replica).
In order to create a Pod, we need to declare the API type as V1, and the pod’s type ought
to be as depicted in the image below. The ’name’ field in metadata is what’s utilized for
identifying purposes, regardless of the specification. The customScheduler scheduler has
to be specified as the schedulerName.
As we see the figure 10 and 11, these two yaml files are used to test the working of the
schedulers. The resting time. yaml is indeed a pod which demands 1800Mi of storage
and has an unlimited capacity for sleeping. In all, we need to deploy two of sleep pods
and make a request of 3,600 megabytes of RAM. The default for the test. yaml triggers
the execution of the Nginx app using the standard scheduler as well as by using testcus-
toms.yaml. The Nginx app is executed by yaml just on user-defined scheduler.

5.1 Steps to be fallowed in order to create pods

Following the formation of pod, we can generate pods by using kubectl create -f
file/podname.yaml command.
If we run the command kubectl get pods the current condition of a pods is displayed

5



Figure 10: sleep.yaml

Figure 11: sys.yaml

6 Executing multiple schedulers

The default schedule that comes with Kubernetes is outlined in this article. You are
free to create your custom scheduler in the event that the one that comes as standard
does not meet your requirements. In addition, you are able to run numerous schedulers
concurrently in addition to a default scheduler, and you may direct Kubernetes to utilize
a specific scheduler for each the pods. This feature is available with the default scheduler.

6.1 Put the scheduler into a package.

We need to execute the fallowing commands:
git clone
https://github.com/kubernetes/kubernetes.git
cd kubernetes
make
Make that the kube scheduler binary is included in the docker container that you create.
The Dockerfile that will be used to construct the image:
FROM busybox
ADD ./ output/local/bin/linux/amd64/kube-scheduler /usr/local/bin/kube-
scheduler
Now that the configuration has been created, we will need to launch it on the Kubernetes
cluster.

6.2 Start the cluster’s secondary scheduling service

Create a deployment described inside the config above for a Kubernetes cluster in order
to execute your scheduler there:
kubectl create -f my-scheduler.yaml

6



Make sure the scheduler pod is active by doing the following:
kubectl get pods –namespace=kube-system
Check the fallowing kubernetes official document for further assistance 2

7 Configuration of Monitoring Tools

EC2 Instance Launch
In this step while creating the EC2 instance we need to add port number 9090 in order
to allow the traffic of prometheus.
Prometheus Install When it comes to running certain services, it is advised that a user
other than root be created. This will assist in isolating Prometheus as well as adding
an additional layer of defense to the system. In addition to this, we have to create
two directories: one to store the setup for Prometheus, but another to store the data it
generates.

Figure 12: Prometheus command for making directories

Installing the Prometheus is the next step now.

Figure 13: Prometheus Installing command

In the beginning, as an evidence of concept, we are able to enable Prometheus con-
stantly monitor itself; but, in order to do so, we need to build or alter the data of
/etc/prometheus/prometheus.yml

2https://kubernetes.io/docs/tasks/extend-kubernetes/configure-multiple-schedulers/

7

https://kubernetes.io/docs/tasks/extend-kubernetes/configure-multiple-schedulers/


Figure 14: prometheus.yml

In this case, it would be helpful if Prometheus could be made accessible like a service.
In order for Prometheus to launch the operating system each time the system is restar-
ted. First, write the prometheus.service file in /etc/systemd/system. Now that we’ve

Figure 15: prometheus.service

introduced new directories, documents, and binary to our system, we need to make a few
modifications to the permissions associated with those components.

Figure 16: Modification to the permissions

Currently, the only thing left to do is setup the systemd.
In order to run the prometheus we need to restart it

8



Figure 17: Setting up the systemd

sudo service prometheus restart
sudo service prometheus status

Figure 18: After we start the prometheus Server

Node Exporter installing and running The Node Exporter is indeed a single binary
file that is static and can be installed using a tarball. After you have obtained it via
the Prometheus download website and saved it to your computer, unzip this, and then
execute it:

Figure 19: Node exporter installing command

This has to be done in the two slave nodes in order to get the nodes value in the
master prometheus tool. After this is done we will be able to see the that nodes have
been connected to the prometheus.

Figure 20: Prometheus dashboard

9


	Introduction
	Tools and Technologies Required
	Clustering using Kubernetes
	Nodes Creation
	Kubernetes UI Dashboard

	Scheduler Code Explanation
	Deployment of the pods
	Steps to be fallowed in order to create pods

	Executing multiple schedulers
	Put the scheduler into a package.
	Start the cluster's secondary scheduling service

	 Configuration of Monitoring Tools

