
Effective Memory Utilization using Custom
Scheduler in Kubernetes.

MSc Research Project

MSc in Cloud Computing

Manisha Chandra
Student ID: X21117284

School of Computing

National College of Ireland

Supervisor: Dr. Aqeel Kazmi

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Manisha Chandra

Student ID: X21117284

Programme: MSc in Cloud Computing

Year: 2023

Module: MSc Research Project

Supervisor: Dr. Aqeel Kazmi

Submission Due Date: 01/02/2023

Project Title: Effective Memory Utilization using Custom Scheduler in
Kubernetes.

Word Count: 8000

Page Count: 25

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: C Manisha

Date: 1st February 2023

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Effective Memory Utilization using Custom Scheduler
in Kubernetes.

Manisha Chandra
X21117284

Abstract

Kubernetes had quickly emerged as a popular option for containerized orches-
trating workloads on a massive scale. Kubernetes takes advantage of the scheduler
which takes into consideration constraints that are defined by the work-load owners
as well as the cluster managers in order to identify which node will be the most
suitable to host a certain task. In spite of the fact that it may be configured in a
wide variety of ways, the default scheduler that comes with Kubernetes is not able
to fully fulfill the specifications of revolutionary new applications. Because of this, a
number of distinct proposals for custom Kubernetes schedulers have emerged, each
of which focuses on meeting the expectations of the applications. As a result of
this research, a new custom scheduler has been proposed that satisfies the require-
ments of the application with regard to effective resource scheduling while taking
storage metrics derived from the prometheus tool into consideration, thus taking
into account the requirements of both the user and the application. The findings
are compared with the default scheduler, which takes into account only the CPU
and RAM needs that are supplied by the user, in order to determine the quality of
the proposed scheduler.

Keywords: Kubernetes, Custom Scheduler, Storage, Containerization, Cloud.

1

Contents

1 Introduction 3
1.1 Research Question . 4
1.2 Objective . 4
1.3 Paper Structure . 4

2 Literature Review 5
2.1 Kubernetes Survey . 5
2.2 Scheduling in Kubernetes . 6
2.3 Custom Based Scheduling . 7
2.4 Need for the proposed Custom Scheduler 8
2.5 Summary . 9

3 Methodology 10
3.1 Components for the proposed design . 11
3.2 Purpose of the custom scheduler . 12
3.3 Functioning of the proposed custom scheduler 12

4 Design Specification 13
4.1 Proposed Kubernetes Scheduler-Architecture 14

5 Implementation 15
5.1 Kubernetes Cluster Formation . 15
5.2 Proposed scheduling algorithm working 16
5.3 Node Exporter and Monitoring tool . 17

5.3.1 Monitoring tool-Prometheus tool 17

6 Evaluation 19
6.1 Setting up multi-node cluster . 19
6.2 Configuring Prometheus to Work with Node Exporter on a Kubernetes

Cluster . 20
6.3 Establishing a Connection With Prometheus 20
6.4 Conducting tests with the Custom Scheduler 20
6.5 Results & Discussion . 22

7 Conclusion and Future Work 23

2

1 Introduction

Many businesses have embraced virtualization technology to make their Information Tech-
nology infrastructure more efficient and less expensive. Infrastructural resources can
therefore be rationally allocated and distributed among many applications. As in past,
virtual machines were used to do this (VMs). An application can run on a VM. In which
an application must be bundled into a single file with all of its dependencies and the
operating system that it uses.
However, because the operating system was included in the VMs, this resulted in larger
Virtual machine sizes and slower startup times. An alternate lightweight virtualization
method utilizing Linux containers can indeed be utilized to overcome these problems.
Applications and their dependencies may indeed be packaged together into single de-
ployable units using containers, while the OS kernel can always be accessed by several
containers. Containers may be substantially smaller as well as deployed more rapidly as a
result Bernstein (2014). An open-sourced project called Docker 1 offers a Linux container
implementation.
Organizations are relying on the usage of docker container frameworks to enable the con-
tinuous deployment and administration of these containers at a large scale. Prominent
and well-known across the IT industry orchestration frameworks include Apache Mesos
2, Docker Swarm , and Kubernetes.
The University of California of Berkeley’s Apache Mesos program aims to manage to
compute clusters by decoupling their capabilities from the hardware that hosts them.
Multiple scheduling systems are used by Mesos, wherein the scheduling algorithm is left
to the underlying client’s framework (including such Hadoop) while Mesos is still in charge
of allocating resources among such client frameworks Rodriguez and Buyya (2019). A job
is the fundamental scheduling unit in the context of Mesos, and it can either relate to a
unified command or even a container that will be carried out by a Mesos agent. Multiple
servers running Docker applications may be combined together into clusters using Docker
Swarm Environment.

The term ”containerization” refers to a current type of virtualization that makes use
of a single operating system kernel to power numerous distributed applications, each of
which is built and executed inside its own container. The evolution of containerization is
shown in Figure 1

Figure 1: Evolution of Containerization

1Docker https://docs.docker.com/get-started/02_our_app/
2Mesos https://mesos.apache.org/

3

https://docs.docker.com/get-started/02_our_app/
 https://mesos.apache.org/

It’s easy for people who already use Docker to manage because it’s built into the
Docker Engine Command-Line Interface (CLI). Scaling, load-balancing, as well as rolling
updates, are also supported. Google first released Kubernetes available in 2014, and the
Cloud Services Foundation (CNCF) oversaw all of its following improvements. In addition
to featuring an extensible design, it is delivered with a robust feature set that includes self-
healing, horizontal scalability, automatic roll-outs, and roll-backs. A system classification
for task scheduling in the above-mentioned frameworks is provided in Rodriguez and
Buyya (2019).

1.1 Research Question

Container orchestrators rely heavily on a feature called scheduling. Container allocation
to computing nodes inside a cluster at a given time is controlled by a process called
scheduling. Effective resource scheduling is driven by storage optimization.

• ”How well does the proposed resource scheduler deal with pod allocation to re-
spective nodes with effective storage allocation in light of user and application
requirements?”

1.2 Objective

The main goal of this research is to build a custom scheduler in Kubernetes that will use
the actual storage metrics of the nodes in the cluster to schedule a pod’s resources in the
best way possible.

• The suggested scheduler bases its decisions on the amount of memory that is ac-
cessible on nodes in order to address the issue of resource scheduling in situations
in which the actual consumption is significantly different from the usage that was
requested.

• To take advantage of the scalability and faster deployment offered by the cloud
services, the Kubernetes cluster is formed using AWS EC2.

• Using the idea of running various schedulers in the same cluster, the study demon-
strates the performance of the custom and the proposed scheduler.

1.3 Paper Structure

The paper is organized as follows: in the 1 segment, we’ll learn about containerization
and virtual machines, and in the second, we’ll discuss Kubernetes custom schedule. The
research’s key objectives are listed. Section 2 describes the default scheduler, the many
custom schedulers offered, and the origin of the proposed scheduling system. In section
3, we’ll discuss the study’s methods and equipment. section 4 details the custom sched-
uler’s design and development. Please see section 6 for evaluation metrics comparing
the proposed method to the default scheduler. we will see how the optimized memory
consumption will improve resource scheduling in the long run. Here, in section 7, we
wrap up the results and comparisons and offer suggestions for future improvements to
the Kubernetes scheduler community.

4

2 Literature Review

In the process of studying various research papers, I came to the conclusion that Apache
Mesos cant is not the best option to be considered because of its unique design, which
means that some criteria don’t apply to it. Despite some commonalities between the
scheduling algorithms in Kubernetes as well as Docker SwarmMode, In this paperRodriguez
and Buyya (2019)shows that Kubernetes offers more flexibility in the scheduler’s config-
uration choices.
In specifically, Kubernetes is the subject of this paper’s attention among some of the ma-
jor orchestration frameworks. According to the Clouds Native Survey, 2020 Rejiba and
Chamanara (2022), Kubernetes adoption rates really continue to rise. More precisely, the
poll reveals that, compared to 2019, 83% of production settings now use Kubernetes, up
from 78% in 2019. According to the Sysdig 2022 Cloud Native Security as well as Usage
Report 3, 96% of Sysdig’s clients (representing a range of organization sizes and sec-
tors) utilize Kubernetes for orchestration. Additional management Kubernetes services
are presently offered by major cloud providers, including Amazon Elastic Kubernetes
Service, Google Container Kubernetes Engine, Azure Kubernetes Service, and Alibaba
Cloud containerization Service for Kubernetes. Last but not least, a performance analysis
carried out in Al Jawarneh et al. (2019)shows that Kubernetes beats Mesos as well as
Docker Swarm in complicated application situations.

2.1 Kubernetes Survey

Kubernetes is an open source platform service that is adaptable and portable. Its primary
function is service & workload management, for which it provides declarative configura-
tion and automatization support. Due to the wide availability of Kubernetes’s supporting
tools and services, its ecosystem is large and growing rapidly Burns and Beda (2019).
Historically, most businesses have run their app infrastructure on real hardware servers.

Figure 2: Kubernetes cluster overview

As there was no way to restrict the number of resources that individual apps may use

3Sysdig 2022 https://library.cyentia.com/report/report_010905.html

5

 https://library.cyentia.com/report/report_010905.html

inside a given server, this caused allocation issues. The risk always exists, for example,
that one program will use the bulk of a server’s resources if many applications are ex-
ecuted on the same physical server.
Due to this, the functionality of such programs will degrade. To solve this problem, you
may use separate servers for each application. But expansion was impossible because the
underutilization of assets made it too expensive for businesses to install the necessary
infrastructure. That’s when the concept of a ”virtual machine” came into play. The suc-
cess of virtualized hardware has led to the development of smaller, more portable systems
known as containers.Cai et al. (2021). Light coupling, efficient resource utilization, and
other benefits have contributed to their rise in popularity.

2.2 Scheduling in Kubernetes

Kubernetes (also known as K8s) is ”an open-source platform for automating deployment,
scaling, and administration of containerized applications.”kubernetes. As the unit of
deployment, Kubernetes uses pods to encapsulate applications. Pods are the smallest
and most fundamental workload objects in Kubernetes. In a pod, one or more containers
may run an application, depending on how closely they are connected.
In most cases, the pod requirements as well as the metadata are stated in a YAML2 file.
These criteria may include the container image that is going to be used for the creation of
the pod, and the needed amount of resources (CPU or RAM) that each container in the
pod requires, in addition to the destination port, whereas the metadata might include
labels that characterize the pod. After that, the owner of the workload sends the pod
(YAML file) to a Kubernetes cluster, where many components collaborate to bring the
workload online on one of the cluster nodes.
There are two different kinds of nodes in Kubernetes:

Figure 3: Scheduling in KubernetesScheduling Framework

• nodes that are responsible for the operation of the control plane components, also
known as master nodes before.

• worker nodes are machines that are tasked with the operation of pods that hold
the workloads of users. They are made up of the kubelet, the kube-proxy, and the
container’s runtime all rolled into one.

6

https://kubernetes.io/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

The working of the scheduler will be explained in this section. The scheduler will
first filter the available nodes and then score them in order to determine which one will
be the most suitable for hosting a pod.

• The procedures that are employed in the filtering stage, which were formerly known
as predicates, make up a set of stringent restrictions that a node must satisfy in
order to be permitted to execute the pod.

• To be more specific, for a particular pod, an evaluation is performed on each node
within the cluster by comparing it to a collection of filters. In the event that a filter
is not satisfied, the node in question is removed from the possible node selection for
that pod, and the execution of any further filters is skipped.

• Following the completion of the filtering process, the set of viable nodes is sent on to
the scoring phase. When scoring, several factors might be taken into consideration.
When image proximity scoring is enabled, for example, nodes that already contain
the required container images locally get a higher score than nodes that do not have
the images locally. After that, the value of each node is assigned a score by using
a rank combination of the various score criteria.

After this round of competition, the node that has accumulated the greatest score would
be chosen to host a pod. When there are other nodes of this kind, links are severed in
a random fashion. In its last step, the binding procedure communicates with the API
server about the node that was chosen for the pod. The dashed region provides a visual
representation of the whole procedure.

2.3 Custom Based Scheduling

Kubernetes was initially launched in 2014, however, it wasn’t until 2017 that the first
contributions with custom scheduling methods were suggested. Work tasks that compete
for the exact same sort of resource get a high danger of conflicting risk with one another,
and this is a problem that is addressed in a variety of ways in the study devoted to this
area. As an example, in Medel et al. (2017), The authors advocate for programmers to
provide labels to apps based on their predicted resource use. High CPU, Down CPU,
Large Disk I/O, and Slow Disk I/O are only a few examples of program labels. The
scheduler may account for all these labels by assigning a penalty to each node based on
the tags of the apps currently executing on it. The assessment findings derived from
a real cluster demonstrate that the suggested scheduler effectively separates apps with
heavy use of a particular resource.
The issue of intervention between concurrent ML processes is addressed in detail within
work Bao et al. (2019). In particular, they think about worker parameter server (PS)-
based distributed ML workloads. In opposition to preexisting systems that depend on
specific workload profiles as well as interference models, the authors proposed Harmony
as a generalist scheduling approach that relies on deep relevance feedback. The required
number of employees and PSs, together with their respective resource needs, the num-
ber of resources available, and the positioning matrix for concurrent tasks all go into
scheduling choices. To gauge the efficacy of the suggested method, a GPU-based testbed
was established. According to the findings, Harmony is faster at finishing jobs than the
evaluated baselines.

7

Several initiatives have surfaced to do is provide assistance for guaranteed bandwidth in
the Kubernetes scheduler, which is particularly useful for workloads that entail the trans-
mission of huge volumes of data across the network. For instance, a ”network bandwidth
management system” (NBWguard) is proposed in Xu et al. (2018). The authors argue
that Kubernetes would benefit by recognizing networking as a resource, much like CPUs
and memory. In this way, users may set QoS restrictions and demands based on the
amount of network bandwidth they have access to. Through the use of Linux os based
network administration tools, NBWguard is able to limit traffic.
The majority of the articles discussed herein focus on fog/edge computing setups in which
nodes of a cluster are dispersed over many physical locations. Therefore, it is important
to consider the architecture of nodes in order to reduce unnecessary transmission costs.
A multi-container pod might not always run effectively on a fog node with insufficient
resources, as discussed in Kayal (2020). Because of this, they suggest decomposing such
pods onto their component containers and distributing them over numerous fog nodes
thus accounting for the expenses associated with cross-communication. The authors offer
a method to achieve this by ranking pod queue items based on how much interaction
there is between containers. In the event that no suitable node is located, the pods
will indeed be partitioned such that certain nodes may host other containers inside it.
Next, the proximity between the various fog nodes is taken into consideration as part of
a topology-aware network scoring. The authors suggest adding these various procedures
as scheduling plugins. On the other hand, no details about the actual implementation
were given.

2.4 Need for the proposed Custom Scheduler

At the heart of this section are proposals for custom schedulers which account for the
real load of the nodes in the cluster (i.e. their actual utilization level) while allocat-
ing resources. Example contributions include [Chima Ogbuachi et al. (2020), Ogbuachi
et al. (2019)], where The authors take into account an edge and fog computing environ-
ment and stress the need for scheduling based on real node resource use. Node values
are determined using data gathered from real-time observation of devices, including load,
temperatures, and safeness. Scheduling times were reduced when compared to the default
scheduler, and nodes ran at comparable temperatures, demonstrating that the suggested
scheduler doesn’t really jeopardize node health.
In Medel et al. (2017), The authors suggest that app makers mark their software with
labels indicating how much space and CPU time it will need. Utilizing the tags of the
apps currently executing on a node, the scheduling is able to determine a penalty for
employing that node. The assessment findings based on a real cluster demonstrate that
the suggested scheduler effectively separates apps that use a lot of a particular resource.
The authors in Li et al. (2019) propose a tweaked version of the particle swarm optim-
ization method to make the scheduling calls. The method considers the memory and
CPU utilization of nodes, the peculiarities of the payloads’ consumption, and any quant-
ities that could be refusing to allow towards particular nodes. The suggested technique
improved the nodes’ resource use by 20% when compared to the standard Kubernetes
scheduler.
authors of Li et al. (2020) pay particular attention to the need of knowing the actual I/O
load at any given time. In particular, Prometheus Rejiba and Chamanara (2022) is used
to gather information on the system’s I/O and CPU utilization. A scheduler expander

8

technique makes use of these measurements to allow for individualized behavior based on
a given score. In fact, we offer two new scoring functions—BalancedDiskIOPriority(BDI)
and BalancedCpuDiskIOPriority(BCDP) (BCDI). The findings of the assessment show
that the cluster’s disk I/O is better balanced when BCDI is used, while CPU use is also
more evenly distributed.
We also highlight the IBM huge pile scheduler plugins, which are known as Trimaran
2021-08-0 (2021), in addition to the above-mentioned scholarly achievements. The in-
tention behind these plugins was to raise the cluster’s resource consumption by alerting
the scheduler to any gaps between the allocated and used resources. Specifically, Tar-
getLoadPacking as well as LoadVariationRiskBalancing are the two rating plugins that
makeup Trimaran. TargetLoadPacking assigns points to nodes depending on their ac-
tual resource consumption, with the goal of keeping all nodes at a constant resource
utilization level. LoadVariationRiskBalancing assigns points to nodes depending on how
consistently they use resources relative to the mean. Trimaran’s default metric source
4 is Kubernetes Metric- server, however, alternative options like Prometheus as well as
SignalFx are available. Intel further suggests a telemetry aware scheduling (TAS) 5to
facilitate scheduling in light of timely telemetry data. The scheduler makes use of the
extension mechanism, considering factors like the node’s energy consumption, free RAM,
as well as CPU temperature. In the project proposal, we will take into account not only
the CPU and real memory utilization but also the other ancillary metrics, by scraping
the necessary data with the Prometheus tool6, to ensure that nodes are scheduled to pods
in the most effective way possible. .

2.5 Summary

In this analysis, I identified the key improvements which have been done in the schedul-
ing area, by also emphasizing how the major drivers towards Kubernetes custom schedul-
ing have evolved over time. This was done alongside Kubernetes driver changes. A
method for categorizing the examined works based on their top objectives, target sur-
roundings, and workloads, a customized scheduling operation, and assessment and imple-
mentation methods was discussed. We described their distinctive scheduling contribution
according to their goals and analyzed the trends for each target.

Our poll suggests that customizing a scheduler may not be enough depending on
the goal’s difficulty. Actually, specialized resources may be needed to support anticip-
ated scheduling behavior. Predictive scheduling may demand a finer-grained and smaller
dataset. Kubernetes is constantly improving the system, notably the scheduler. This
indicates that issues that are now being solved by custom schedules may, in future sched-
ulers, by default available to be used in scheduling operations. It also implies that it is
essential to keep a close eye on the most recent developments that have been done to a
scheduler in to ensure that any adaptations are made in accordance with the most up-
to-date standards of practice. In Table 2.5 gives us a brief summary of various proposed
custom scheduler the environment they were targeted to and the limitations.

4Metric-server https://github.com/kubernetes-sigs/metrics-server
5Trimaran https://github.com/kubernetes-sigs/scheduler-plugins/blob/master/kep/

61-Trimaran-real-load-aware-scheduling/
6Prometheus https://prometheus.io/docs/introduction/design-doc/

9

https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/scheduler-plugins/blob/master/kep/61-Trimaran-real-load-aware-scheduling/
https://github.com/kubernetes-sigs/scheduler-plugins/blob/master/kep/61-Trimaran-real-load-aware-scheduling/
https://prometheus.io/docs/introduction/design-doc/

Overview of Kubernetes Custom-Schedulers
References workloads target Main-Idea Limitations
Ghag et al. (n.d.) Heterogeneous The volume of traffic

that is created by con-
tainers

network latency.

Ungureanu et al.
(2019)

cloud scheduling Resource manage-
ment Job objectives
Runtime predicted
task

with different al-
gorithms are being
involved, it varies the
result.

Santos et al. (2019) Fog Time required to go
full circle to a specific
location Bandwidth

Limited to the cer-
tain network related
applications

Kaur et al. (2019) edge An Interference from
Human-Caused Car-
bon Emissions Use of
resources

Problems with many
dimensions and com-
plicated structures
are the only ones for
which this method is
appropriate.

Townend et al. (2019) cloud An exact simulation of
the hardware’s intern-
als Processor speed
Behavior-modeling
workload metrics

not much effective for
resource scheduling

Li et al. (2020) Cloud Node’s disk I/O stress
Utilization of the
Node’s Central Pro-
cessing Unit

Similar to the default
scheduler in kuber-
netes.

Beltre et al. (2019) Cloud possession of the
greater part of the
resources Time spent
waitingProject re-
source requirements

a lot of downtime and
a focus on CPU rather
than I/O operations..

3 Methodology

Three primary duties must be completed by the Kubernetes scheduler: In the beginning,
keep an eye out for any unplanned pods. Second, identify the ”best” node for every
unscheduled pod. The term ”best” refers to a suitable node with one of the most RAM
available in the scope of our unique scheduler. Bind that pod to the chosen nodes third.
The second objective, node selection, is everything we’ve tailored for our needs in order
to prefer the node with the most RAM available. These include the subsequent actions:

• Locate all nodes that ’fit’ a pod, such that, which meet the memory and CPU
demands of the pod.

• For each suitable node, extract the pertinent metric data (memory).

• Choose the nodes only with the best (highest) metric value.

10

The pod life cycle is shown in the Figure 4

Figure 4: Kubernetes Pod creation-state diagram

3.1 Components for the proposed design

API server, Controller, and the Kubernetes standard scheduler are the components that
makeup the master. In order to install Kubernetes-master and slave, we need to allot
specialized vms that has the capacity to access IP addressesChang et al. (2017).

• etcd: a storage component that is utilized to record the current status of the
system, which enables its other master elements to sync them to the intended state
by observing etc;

• Scheduler: The scheduler is in charge of allocating time slots for every pod that
resides on a certain node of the system;

• API Server: is in charge of accepting instructions and altering the information
for Kubernetes components (like pods) within the system in a manner that is ap-
propriate for user commands.

• Kubelet Kubelet is indeed the node interface that is deployed on each worker
node. It is responsible for communication between the nodes. It is responsible

11

for monitoring the POD requirement via all the slaves and masters in the system.
Kubelet provides visibility into resource use, the state of pods, and events occurring
on nodes. It makes the data on specific port 10255 available to the public.

• namespaces Process seclusion is a crucial consideration during the deployment of
a service using Kubernetes namespaces. Within a Kubernetes cluster, it’s the role
of the namespaces to compartmentalize the pods/containers. Pods that share the
same namespace are able to interact with one another.

• Monitoring Module: we are using Prometheus and Kubenetes dashboard
for scraping in the data and knowing the status of the nodes and pods respectively.
More information will be provided in the subsequent sections.

3.2 Purpose of the custom scheduler

The purpose of the proposed custom scheduler that was developed is to maximize the
use of Memory across all of the nodes. Although the normal scheduler takes into account
CPU as well as memory requests—which are not required to be provided in the yaml files
that describe pods and deployments of pods—the proposed scheduler is more concerned
with the amount of memory that is being used by the nodes.
It is conceivable for pods to utilize significantly more storage than what is asked, signi-
ficantly less storage than what is requested, or otherwise not provide a storage request
at all. Because it’s possible that the pods won’t utilize the predicted amount of storage
after they’ve been scheduled, concentrating on storage requests could not be the best way
to get an accurate picture of what storage will be utilized.
Scenario being considered by comparing default and custom scheduler beha-
vior
In order to account for the possibility that the real consumption would be substantially
different from the utilization that was requested, the custom scheduler takes choices de-
pending on the amount of memory that is present in the nodes. For the purpose of
determining which nodes provides the most memory accessible, we make use of a statistic
known as node memory memAvailable.
If a node has been operating a pod that requested an amount of storage but was in-
stead actually using some of the memory, and then another node has been operating a
pod that didn’t get a memory proposal but was certainly using just a large amount of
memory, then Kubernetes will most probably schedule the latest pod just on a node that
is absolutely using a large amount of memory. This is because the default Kubernetes
scheduling method prioritizes the pod that’s already using the most memory. According
to the queries, it seems to be the node that is the least loaded. Rather than having
memory-intensive apps all run on a single node, our custom scheduler has the ability to
distribute memory utilization among all of the nodes.

3.3 Functioning of the proposed custom scheduler

The scheduler begins by continuously monitoring the newly formed pods, which is the
first and most crucial step in the process. On pods, we may utilize the Watch method
provided by the Kubernetes client-go SDK. This method provides us with a stream of
events over which we can search over.

12

A Field Selector is required in order for the Watch function to operate properly.
That choice now has two components thanks to our additions. If spec.nodeName is
present, it indicates that we’re exclusively interested in a pod in which there is no node-
Name parameter set. If they already have a nodeName assigned to them, this indicates
that they’re on the schedule.
It becomes more intriguing when we get to the spec.schedulerName=random-scheduler
portion. Kubernetes is capable of running many schedulers inside a cluster at the same
time, and a scheduler name may be included in a pod specification.
When going through all the events that are supplied by the watch function, it is also ne-
cessary to filter again for ADDED events. This is because we just want to be concerned
with pods that have been recently added.
The following step is to locate a node that is suitable. In this really basic demonstration,
we are going to choose a node at random first from the list of nodes. Notice that for each
and every scheduled event, we are accessing the API server in order to get the list of the
nodes.
After we have located a node of the pod, the single most significant thing that is still left
to do is to inform the API server of the discovery.
Even if this is sufficient for scheduling the pod, we are going to add one further item. The
scheduler produces a Kubernetes Schedule event. Because the standard scheduler already
accomplishes this, we will be able to follow the occurrences even when we’re testing out
the custom scheduler.

4 Design Specification

The following resources were utilized to create and test the custom scheduler: I have
decided to employ AWS cloud services in order to set up a Kubernetes cluster formation
so that I may reap the benefits of cloud services like EC2.

For the purpose of this research experiment, I formed a cluster of Kubernetes by utiliz-
ing the Kubeadm-dind-cluster command (KDC) shell script. This included downloading
both Kubernetes and Docker in order to construct the cluster. For the development of the
master node, which will have 2 CPUs and the minimum storage need, we will be utilizing
t2.medium, while the slave nodes will be produced using t2.micro, each of which will have
only one CPU. GoLanguage was chosen to develop the scheduler because it has a short
startup time, minimal runtime overhead, and the ability to function without the need for
a virtual machine. It is by far the most common language used for putting microservices
into action. We are using a node exporter, which has to be installed in the slave nodes,
in order to collect the node metrics while installing the pod. After that, we will get the
promotheseus in the master node and attempt to connect with the slave nodes. This will
offer the necessary visual help so that the live values that are being created in the nodes
can be checked. The application programming interface (API) of this tool is coupled to
the filtering mechanism of the scheduler so that the compatible node may be deployed to
the appropriate pod.

13

The table6.5 lists the many tools and technologies, along with the versions of each
tool and technology.

Design Specification
Tools and Technologies Description/Version
Cluster Creation Platform AWS EC2
Operating System Ubuntu Server 20.04 LTS
Application Container Ngnix
Containerization orchestrator Software Kubernetes 1.20.0
Software for Containerization Docker version 20.10.12
Monitoring tools Prometheus and node exporter
Number of CPUs for Slave and Master 1 and 2 respectively
Storage minimum 4GiB memory
Coding language used GoLang 1.18
files used for communication between pods
and nodes

YAML

The following technologies will each have their explanations and working descriptions
provided in the subsequent section.

4.1 Proposed Kubernetes Scheduler-Architecture

The proposed custom Kubernetes scheduler is developed to place containerized apps to
nodes in accordance with their real memory use rather than the amount of memory that
was requested by the user. It is necessary to pick a suitable node that satisfies the pod’s
RAM and CPU requirements that has the greatest amount of free memory for each and
every unscheduled-pod .

Figure 5: Internal architecture of custom scheduler working

Figure 5 shows the detailed architecture diagram of the custom scheduler and thereby
explaining the steps which are involved in this process.
Step-1: During this stage of the procedure, the Kubernetes cluster will be created. In
order to accomplish this goal, I made use of an EC2 instance. One worker node and two
slave nodes make up the whole network. In addition to this, we require unique Yaml files

14

for each and every subsequent assessment.
Step-2: At this stage, it is necessary for us to download Docker, Kubernetes, and Ku-
beadm by employing a shell script that contains all of the necessary steps to successfully
download the technologies. This action needs to be taken on each of the worker nodes as
well as the master nodes.
Step-3: At the stage of getBestNode, we will need to make a prometheus server con-
nection and call the respective node exposer in order to scrape the metric details and feed
them to it in order to get the nodes so that we can schedule the pods to run on them.
Step-4 Now, when the custom scheduler is being executed. We will be able to get the
best node by going through the process of filtering and binding methods that have been
written in the scheduling process using GO language. This will allow us to acquire the
best node. In order to compare the results of the suggested scheduler with those of the
default scheduler, we need to first run the default scheduler.

5 Implementation

The concept Kelsey Hightower provided for creating a Kubernetes custom scheduler
served as the basis for the solution. In his demonstration, Hightower shows how to create
a prototype custom scheduler that creates schedules depending on some manually inser-
ted randomized annotations in which every node is annotated along with cost randomly;
in which the scheduler picks the one which has a low-cost- node. The modules for mon-
itoring and identifying unscheduled pods, performing the default predicate verifications
to discover nodes that meet the requested memory and CPU requirements of pods, and
governing the pods to the chosen nodes are all based on parts of his code base that we
used as the foundation for the scheduler.
On top of this foundation, we developed components that allow the rescheduling decision
to take the nodes metric data from Prometheus into account. The HTTP API in Pro-
metheus is used to make a PromQL query to obtain the node memory mem Available
model parameters for the suitable nodes after the default predicate tests are completed
to identify the list of suitable nodes that meet the pod’s desired Memory and cpu re-
quirements:
The node with the highest value would then be found and given to the pod. The main
elements of a custom scheduler are shown in the following figure6.

5.1 Kubernetes Cluster Formation

This section will talk about how the kubernetes cluster has been implemented on AWS
by using EC2.
Creating Nodes: The initial step is to create the master and slave nodes, for our process
we have created one master and two slave nodes. As the master nodes do more com-
putation work as it contains the API, Control Panel with the default, and the custom
scheduler. I have chosen T2.MEDIUM as we require 2 CPUs and the operating system
we have chosen Ubuntu.
For creating the slave nodes, two have been created with T2.MICRO which has only
one CPU. We need to first create a shell script file in all the nodes which contains the
commands to run. The shell script contains the commands to install Docker as we need
a container solution to run the kubernetes. The next step will be to download kubernetes,
and the last this is to get the kubeadm which is used to generate tokens in the master

15

Figure 6: high-level architecture of the components present in the kubernetes cluster

node. This shell script is run by using the Root Privileges.
Then we need to run the following command which initializes kubeadm and generated
a token in the master node which is then copied and run in the slave nodes in order to
form the cluster. By installing Kubernetes nodes via Docker containers instead of virtual
machines (VMs) or distinct bare-metal computers, you may quickly build a multi-node
Virtual machine cluster on a single system with the help of the customizable script known
as Kubeadm-dind-cluster, or KDC. It even makes it simple to construct many clusters
within the same system as compared to other solutions.
deploying nodes via Docker containers to set up a multi-node cluster on such a single
system.
sudo./dind-cluster-v1.13.sh up
chmod +x dind-cluster

5.2 Proposed scheduling algorithm working

In figure 8 we can see the overview of the working of the custom scheduler.
1.monitorUnscheduledpods(): This procedure is located in the main.go file on our
scheduler code artifacts. This will establish a pod and designate a node for it after
continuously monitoring for any requests that were made by the user.
2.SchedulePods(): The list of unscheduled pods will be obtained from the get method
using this method, and then an attempt will be made to transmit each pod for the
scheduling of the node process.
3.SchedulePod() The code portions for the fit() and bind() methods are included inside
this method. The fit() method is composed of two functional components: first, it will
take the input, which is a pod sent by the schedulePod() method, do the necessary
filtering and choose the optimal set of nodes.
This list of nodes is then provided to the method known as getBestNode(), which is the
implementation of how to get the metric data of the nodes from the prometheus server
API. Based on the metric data, this method chooses the node that is considered to be

16

the best.
4.Bind() At long last, the pod that has been chosen by the schedulerPod() method and
the best node that has been chosen by the getBestNode() method are chosen as inputs
to this method, and the method then binds the pod to the best node.

Figure 7: Working flow chart of the proposed custom scheduler

5.3 Node Exporter and Monitoring tool

A very scalable open-source monitoring platform is known as Prometheus. It gives the
Kubernetes orchestration container platform built-in monitoring features. It is also be-
coming quite popular inside the observability arena because it aids in metrics as well as
alerts.
Node Exporter This is a part of prometheus exporter which is used to get various met-
rics related to the nodes. In our research, we are using node exporter to get the memory
available in the working nodes.

5.3.1 Monitoring tool-Prometheus tool

Metric Gathering: Prometheus retrieves metrics through HTTP using the pull ap-
proach. For use instances when Prometheus doesn’t scrape the data, it is possible to
send metrics to Prometheus using Push gateway. One such instance is gathering unique
data from temporary Kubernetes tasks and Cronjobs.
Metric Endpoint: The platforms you want Prometheus to watch should disclose their
metrics on to an endpoint called /metrics. This API is used by Prometheus to retrieve
the statistics on a regular basis.
PromQL: The query language PromQL, which is included with Prometheus, can be
utilized to search the data on the Prometheus dashboards. To begin, a Kubernetes
namespace will be created for all of the monitoring components to reside under. All of
the Prometheus-kubernetes deployments objects will be put into the default namespace
if you do not build a dedicated namespace beforehand.

we need to run the script to set up a brand-new namespace that you can refer to as
monitoring.

17

• kubectl create namespace monitoring

Kubernetes APIs are used by Prometheus in order to get all of the obtainable metrics
through Nodes, Pods, Implementation, and so on.

Figure 8: Monitoring tools used in the custom scheduler

created a new file with the name clusterRole.yaml,
One will see that I have added the get, list, as well as watch rights to the role that

is provided below. These permissions apply to nodes, service endpoints, pods, as well
as ingresses. The monitoring namespace serves as the location for the role binding. In
the event that has a use case in which it is necessary to get metrics from another object,
have need to be included in this cluster role. The Kubernetes nodes’ Linux system-level
statistics would be made available to the user using the Node Exporter service.
A portion of a Prometheus configuration map is devoted to the scraping config for the
node-exporter. After we have deployed the node exporter, we ought to be able to see the
targets as well as metrics associated with the node exporter within Prometheus.

• cd node-exporter/

• kubectl create -f node-exporter-daemonset.yml

We then constructed components to incorporate the nodes metric measured value by
Prometheus into the scheduling choice we were making based on this foundation. After
the standard predicate tests have been conducted to determine the list of suitable nodes
that fulfill the pod’s specified CPU and memory needs, a Prom QL query is made using
Prometheus Http API to acquire the node memory mem Available model parameters for
the suitable nodes, which are as follows: After that, the node that has the highest value

Figure 9: Prometheus API query which is used to get the node metrics in order to
determine the best node

is located, which is the one that is allocated to the pod.

18

6 Evaluation

Experiment has been conducted by using AWS EC2 services and the server used to
create the kubernetes cluster is Ubuntu Server 20.04 LTS. For evaluation, we install
five pods in order to compare the performance of the custom scheduler to that of the
default scheduler on Kubernetes. These pods are named as follows: Sleep (two replicas),
Sys (1 replica) on both the default scheduler as well as the custom scheduler.

6.1 Setting up multi-node cluster

Kubeadmdind-cluster, often known as KDC, is a script that may be configured to meet
a variety of needs. Its primary function is to simplify the process of installing several
Kubernetes node on a single computer by using Docker containers.
This figure 10 shows the master node where the token is being generated in order to
provide in the slave nodes to form kubeadm cluster

Figure 10: kubeadm token in order to form cluster

The token is generated in the master node and then provided to the slave node in
order for it to join the cluster. In the 11 we can see that slave node has been added.
Even before doing this, we need to run a few commands in the master node in order to
form kubeadm cluster. Clear instructions are provided in the configuration manual. If
the link expires for the creation of the token we need to use ”Kubectl token create”.

Figure 11: After we run the token in Slave node

In order to check if the cluster is formed, we need to use the command Kubectl get
nodes. This can be seen the in the below figure 12

Figure 12: Cluster Formation in the master node

19

6.2 Configuring Prometheus to Work with Node Exporter on a
Kubernetes Cluster

This is achieved by first Creating a namespace for monitoring using the kubectl command.
kubectl create namespace monitoring
Configure a DaemonSet on each of the nodes, then set up the node exporter:
In this step, we need to cd to the node expoter folder and use the following command
kubectl create -f node-exporter-daemonset.yml
The next step is to set up Prometheus, here we need to do monitoring by using yaml file
.

Figure 13: Prometheus dashboard showing slave nodes state

In figure 13, we can see the nodes which we created and connected with the node exporter.
When we click on the endpoint of any of the slave nodes, we can check the node metrics
regarding it.

6.3 Establishing a Connection With Prometheus

In order to connect UI of prometheus, by using command kubectl port-forward [your-
prometheus-pod-name] 8080:9090 -n monitoring. In the 9 we can see the kuber-
netes cluster with the following nodes.

6.4 Conducting tests with the Custom Scheduler

As it was said at the introduction of this section we will deploy 4 pods in order to test
the performance of the proposed scheduler.
Step-1:
The sleep. yaml is just a pod that demands 1800Mi in memory as well as an unlimited
capacity for sleeping. In all, I deployed two sleep pods and make a request for 3,600
megabytes of RAM. The default for the test. yaml triggers the execution of the Nginx
application using the standard scheduler.
Step-2:
The workload for the sysbench memory tasks is executed by using the sysbench.yaml
file. The benchmark program begins by allocating a buffer with the size specified by the

20

memory block size. After that, it reads and writes data from the buffer till the volume
specified by the memory total size is achieved. The user is able to make selections about
the thread count as well as the kind of operation. The buffer size that has been allotted
for the present project is 2 gigabytes, while the overall volume that must be read is 5
terabytes. The reading operation is carried out in a random manner by ten different
threads.

Figure 14: Deployment using default scheduler

Step-3
The last step involves the deployment of three pods: two pods that will run a sleep ap-
plication, and one pod that will run a sys-bench workload. The deployment of such three
pods takes place just on three distinct nodes. Both the custom scheduler as well as the
default scheduler are used in the deployment of a fourth pod. Both the custom scheduler
as well as the default scheduler provide a set of metrics that are used to determine how
pods should be distributed to nodes.

Figure 15: Deployment using custom scheduler

In the next part, we will go through the findings of the tests that were carried out
to determine how best to schedule all pods using both the custom scheduler and the
default scheduler. As we can see the CPU utilization is constant while using the default

Figure 16: CPU Performance of nodes
- Default Scheduler

Figure 17: CPU Performance of nodes
-Proposed Scheduler

scheduler and increases to 80% while using the custom scheduler for the initial 10 minutes

21

the scheduler keeps the pod in the pending stage before running due to the additional
task of working on getting the metric details from the node exporter tool.

6.5 Results & Discussion

The following table provides a summary of the results that were obtained for your perusal.
In order to evaluate both the performance of the default scheduler as well as the per-
formance of the proposed scheduler, a total of five pods were deployed across two distinct
nodes. The sysbench pods have asked for 24 percent of memory to be deployed to one
of the nodes, however, if the application utilizes more memory than the user requested,
then another pod that needs 84 percent of memory will fall to sleep once the deployment
takes place. When making the comparison, these severe and extreme examples were taken
into consideration as appropriate. When determining the bestNode, the proposed custom
scheduler will make use of the node exporter tool in conjunction with the Prometheus
tool. Both of these tools will take into account the storage metrics and send the exact
amount of memory being used as well as the memory that is available to the scheduler.
Because of this benefit, the scheduler will be in a position to make the correct decision in
order to choose the node for the correct node. When compared to the default scheduler,
this method assigns the newly created pod to the sysbech node. This node has asked for
less memory, but it uses more of it, therefore it is susceptible to unavailability for the
pods that are being deployed in this node.

Result
PODS NODE-1 NODE-2

Sys applica-
tion(memory
request of 24 %)

Running

Sleep applic-
ation(memory
request of 84 %)

Running

Default Sched-
uler

Running

Custom Sched-
uler

Running

The suggested scheduler has been evaluated in Amazon Web Services EC2 cloud services,
where scalability and security were taken into consideration during the process. Amazon
Elastic Container Service is a managed service that allows users to host Kubernetes on the
cloud as well as onpremises datacentres. Amazon EKS is capable of automatically hand-
ling the scalability and availability of a Kubernetes control-plane module in the cloud.
These nodes are responsible for a variety of important tasks, including the scheduling of
containers, the management of application availability, the storage of cluster data, and
more. You will be able to make the most of the performance, scalability, stability, and
availability offered by Aws platform, in addition to integrations of AWS network and
security services.

22

7 Conclusion and Future Work

We identified the significant contributions which have been made in kubernetes resource
scheduling, while also highlighting the ways in which the primary drivers behind custom
schedules in Kubernetes have developed over course of the years. Researchers also pro-
posed a technique for categorizing the works that were assessed based on characteristics
such as the top-level aims, the target environments as well as workloads, the specific
handling of the case of the scheduler that was changed, in addition to the implementa-
tion and assessment methods. In addition to this, we offered an in-depth description of
the evaluated custom scheduling inputs based on their specific aims, while also doing an
analysis of the primary trends that were observed for each purpose.
Thus, customizing the scheduler by itself might not be the best course of action. In point
of fact, it’s possible that specialized resources will have to be produced in order to offer
additional support for the planned scheduling behavior. Because of this, it is possible that
more fine-grained and reduced datasets will be required to offer anticipatory scheduling
capabilities. It is also important to point out that the Kubernetes organization is continu-
ously working to enhance the system as a whole, including the scheduling in specific. This
indicates that problems that are now being solved by custom schedules may, in future
releases of a scheduler, be made available by default to be used in scheduling operations.
It also implies it is essential to keep a close eye on the most recent improvements that
have been made towards the scheduling to ensure that every adjustment that is made in
it is in accordance with the most up-to-date best practices.

References

2021-08-0, G. (2021). scheduler-plugins/kep/61-trimaran-real-load-aware-scheduling at
master · kubernetes-sigs/scheduler-plugins.

Al Jawarneh, I. M., Bellavista, P., Bosi, F., Foschini, L., Martuscelli, G., Montanari, R.
and Palopoli, A. (2019). Container orchestration engines: A thorough functional and
performance comparison, ICC 2019-2019 IEEE International Conference on Commu-
nications (ICC), IEEE, pp. 1–6.

Bao, Y., Peng, Y. and Wu, C. (2019). Deep learning-based job placement in distrib-
uted machine learning clusters, IEEE INFOCOM 2019-IEEE conference on computer
communications, IEEE, pp. 505–513.

Beltre, A., Saha, P. and Govindaraju, M. (2019). Kubesphere: An approach to multi-
tenant fair scheduling for kubernetes clusters, 2019 IEEE Cloud Summit, IEEE, pp. 14–
20.

Bernstein, D. (2014). Containers and cloud: From lxc to docker to kubernetes, IEEE
cloud computing 1(3): 81–84.

Burns, B. and Beda, J. (2019). ja hightower, k. kubernetes: Dive into the future of
infrastructure.

Cai, H., Wang, C. and Zhou, X. (2021). Deployment and verification of machine learn-
ing tool-chain based on kubernetes distributed clusters, CCF Transactions on High
Performance Computing 3(2): 157–170.

23

Chang, C.-C., Yang, S.-R., Yeh, E.-H., Lin, P. and Jeng, J.-Y. (2017). A kubernetes-
based monitoring platform for dynamic cloud resource provisioning, GLOBECOM 2017
- 2017 IEEE Global Communications Conference, pp. 1–6.

Chima Ogbuachi, M., Reale, A., Suskovics, P. and Kovács, B. (2020). Context-aware
kubernetes scheduler for edge-native applications on 5g, Journal of communications
software and systems 16(1): 85–94.

Ghag, A., Ben-Itzhak, Y., Pettit, J. and Pfaff, B. (n.d.). Traffic footprint characterization
of workloads using bpf.

Kaur, K., Garg, S., Kaddoum, G., Ahmed, S. H. and Atiquzzaman, M. (2019). Keids:
Kubernetes-based energy and interference driven scheduler for industrial iot in edge-
cloud ecosystem, IEEE Internet of Things Journal 7(5): 4228–4237.

Kayal, P. (2020). Kubernetes in fog computing: Feasibility demonstration, limitations
and improvement scope, 2020 IEEE 6th World Forum on Internet of Things (WF-IoT),
IEEE, pp. 1–6.

Li, D., Wei, Y. and Zeng, B. (2020). A dynamic i/o sensing scheduling scheme in kuber-
netes, Proceedings of the 2020 4th International Conference on High Performance Com-
pilation, Computing and Communications, pp. 14–19.

Li, J., Liu, B., Lin, W., Li, P. and Gao, Q. (2019). An improved container scheduling al-
gorithm based on pso for big data applications, International Symposium on Cyberspace
Safety and Security, Springer, pp. 516–530.

Medel, V., Tolón, C., Arronategui, U., Tolosana-Calasanz, R., Bañares, J. Á. and Rana,
O. F. (2017). Client-side scheduling based on application characterization on kuber-
netes, International Conference on the Economics of Grids, Clouds, Systems, and Ser-
vices, Springer, pp. 162–176.

Ogbuachi, M. C., Gore, C., Reale, A., Suskovics, P. and Kovács, B. (2019). Context-
aware k8s scheduler for real time distributed 5g edge computing applications, 2019
International Conference on Software, Telecommunications and Computer Networks
(SoftCOM), IEEE, pp. 1–6.

Rejiba, Z. and Chamanara, J. (2022). Custom scheduling in kubernetes: A survey on
common problems and solution approaches, ACM Journal of the ACM (JACM) .

Rodriguez, M. A. and Buyya, R. (2019). Container-based cluster orchestration systems:
A taxonomy and future directions, Software: Practice and Experience 49(5): 698–719.

Santos, J., Wauters, T., Volckaert, B. and De Turck, F. (2019). Towards network-aware
resource provisioning in kubernetes for fog computing applications, 2019 IEEE Con-
ference on Network Softwarization (NetSoft), IEEE, pp. 351–359.

Townend, P., Clement, S., Burdett, D., Yang, R., Shaw, J., Slater, B. and Xu, J.
(2019). Improving data center efficiency through holistic scheduling in kubernetes,
2019 IEEE International Conference on Service-Oriented System Engineering (SOSE),
IEEE, pp. 156–15610.

24

Ungureanu, O.-M., Vlădeanu, C. and Kooij, R. (2019). Kubernetes cluster optimization
using hybrid shared-state scheduling framework, Proceedings of the 3rd International
Conference on Future Networks and Distributed Systems, pp. 1–12.

Xu, C., Rajamani, K. and Felter, W. (2018). Nbwguard: Realizing network qos for kuber-
netes, Proceedings of the 19th International Middleware Conference Industry, pp. 32–
38.

25

	Introduction
	Research Question
	Objective
	Paper Structure

	Literature Review
	Kubernetes Survey
	Scheduling in Kubernetes
	Custom Based Scheduling
	Need for the proposed Custom Scheduler
	Summary

	Methodology
	Components for the proposed design
	Purpose of the custom scheduler
	Functioning of the proposed custom scheduler

	Design Specification
	Proposed Kubernetes Scheduler-Architecture

	Implementation
	Kubernetes Cluster Formation
	Proposed scheduling algorithm working
	Node Exporter and Monitoring tool
	Monitoring tool-Prometheus tool

	Evaluation
	Setting up multi-node cluster
	Configuring Prometheus to Work with Node Exporter on a Kubernetes Cluster
	Establishing a Connection With Prometheus
	Conducting tests with the Custom Scheduler
	Results & Discussion

	Conclusion and Future Work

