

A comprehensive Secure Serverless

Container-based Architecture (SSCAR)

MSc Research Project

Cloud Computing

Kamrun Nahar Ali

Student ID: 21139474

School of Computing

National College of Ireland

Supervisor: Mr. Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Kamrun Nahar Ali

Student ID:

21139474

Programme:

MSc. Cloud Computing

Year:

2022-2023

Module:

MSc Research Project

Supervisor:

Mr. Vikas Sahni

Submission

Due Date:

15/12/2022

Project Title:

A comprehensive Secure Serverless Container-based

Architecture (SSCAR)

Word Count:

…6445………………………Page Count …22……………………………….

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Kamrun Nahar Ali………………………………………………………………………………

Date:

12/12/2022…………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

A comprehensive Secure Serverless

Container-based Architecture (SSCAR)

Kamrun Nahar Ali

21139474

Abstract

Due to the inherent flexibility and scalability, serverless computing in combination with

microservice deployment is emerging as the most promising and ever-growing service

available today. Public cloud service provider’s serverless computing, also known as

Function-as-service enables developers to build an application without having to worry

about infrastructure. However, certain obstacles exist on public cloud platforms, such as

vendor lock-in, computing constraints, regulatory constraints, and security vulnerabilities.

As a result, there is increased interest in deploying serverless computing on private

infrastructure. Containers are one of the most popular techniques to create serverless

computing enabling the use of an existing framework. Microservice architecture is worth

the exposure due to its ability to expand quickly with minimized cost and high reliability

is essential. With the ease of development, containers can bring some serious security

threats to application owners. This research has implemented a serverless event-driven

container-based (with docker container) framework in Azure with added security steps

such as RBAC, image scanning, and identity verification which allows a safe container

image run. The evaluation's findings demonstrated that the SSCAR architecture can make

it simple to deploy customized serverless event-driven functionalities while managing and

monitoring the Azure generated logs. This research has identified a niche for secure

container-based serverless Azure framework applications that can be deployed to any

company segment interested in moving to the cloud and experimenting with a cost-

effective solution without having to be concerned about vendor lock-in.

1 Introduction

Data holds the key to the future and that’s why data processing has become crucial for having

useful data. Cloud computing has made processing tasks simpler by offering on-demand

storage, networking, and computing resources. Serverless cloud computing was introduced by

AWS Lambda back in 2014 and it was later adopted by Microsoft in 2016. Serverless adds an

abstract layer in the cloud paradigm where server-side works are discharged from the

developers (Hassan et al., 2021).

Provisioning and using services have not been as easier rather has a certain background to it.

Let us look back and try to understand the concept of virtualization before moving ahead.

Virtualization is a pivotal aspect of cloud computing and its services, which provides numerous

2

virtual machines, networks, and storage available with a click. With Hypervisor technology1,

the software allows multiple operating systems to launch and run using a single hardware

system (Bermejo and Juiz, 2022). The traditional virtual machine (VM) tend to be heavier in

cost and time as VM technology uses software to simulate a hardware system to allocate and

isolate computing resources and thus manages resources for cloud computing for different

users. The hypervisor or virtual machine technology is having a major drawback in

independence and resource contention because the same hardware’s performance degrades

each time the VM runs a copy of the OS. This is an overhead of creating and maintaining a

VM in software development.

PaaS clouds must handle the necessity of packaging and application management. A solution

must be based on technologies that enable secure, portable, and interoperable sharing of the

underlying platform and infrastructure in a virtualized environment. The lightweight

virtualization technology which enables rapid distribution and deployment of the application

is called Containerization (Simonsson et al., 2021). Applications are stored in containers as

packaged, autonomous, and ready-to-deploy components, as well as, if necessary, middleware

and business logic in the form of binaries and libraries. Over the Operating System

virtualization, containerization adds an abstraction layer where all standardized software,

programs, and dependent libraries are bundled and encased (Pahl, 2015). The new age of

serverless computing is getting its limelight in today’s cloud world due to its advantages of

zero administrative work, elasticity, and minimum costs. On the other hand, containerization

is a virtualization technology that addresses the issue of resource sharing and program

independence. The run-time environment of the application is the main feature of containers.

As compared to traditional virtualization, this is more flexible.

The need for security increases as cloud development methodologies expand with novel

concepts because the data and system are exposed on the network and subject to attack at any

time. With added security steps this virtualization method provides a lightweight solution and

horizontal scalability. Containers give developers more control over the environment the

application runs in, and the languages and libraries used. Although these advantages come with

additional maintenance. Because of this, containers are often very useful for migrating legacy

systems to the cloud since replicating the application’s original running environment is

relatively easier.

Serverless architecture is not new to this area but the method of achieving a serverless event-

driven secure framework varies from one to another. (Pérez et al., 2018) had discussed and

proposed Serverless Container-aware Architecture (SCAR), a highly parallel, event-driven,

and scalable architecture in AWS without any measures of handling a secure framework. This

study has taken the serverless container-based architecture to implement in Azure and has

ensured preventive security measures to enable and maintain the system's security. Minding

the economic resource constraint, this study has aimed to provide a niche architecture to the

business organization that can adapt this framework in their favour and transition to their cloud

journey.

1 https://en.wikipedia.org/wiki/Hypervisor

https://en.wikipedia.org/wiki/Hypervisor

3

1.1 Research Question

To what extent a container-based event-driven scalable serverless framework can be secured

and what measures are useful to build a secure reliable container-based secure serverless

architecture?

1.2 Document Structure

Before delving into the intricacies of the proposed project, a quick review of research on the

issue would aid and enlighten the subject matter, as different perspectives would aid in better

understanding related themes and their problem areas. This paper is divided into six parts.

Section 2 provides a Related Work section with literature from relevant research publications

and gaps associated with it. Section 3 attempts to describe the methodology, technology stack,

of this study and why the study adapted certain characteristics of virtualization and

containerization as software and architecture specification respectively. Section 4 emphasizes

the process of implementation of SSCAR in Azure. Section 5 reviewed the framework using

four case studies and discussion. Section 6 closes this analysis by outlining areas for

improvements.

2 Related Work

SaaS, IaaS, and PaaS are the three basic categories into which cloud computing services can

be broadly categorized. The purpose of all cloud services is to shift the responsibility for the

upkeep of the platform, infrastructure, or software. Addressing the issues of load-balancing,

security, auto-scaling, and availability, helped pave the road for serverless computing (Jonas

et al., 2019).

Amazon AWS, Microsoft Azure, and Google Cloud are the leading cloud computing

providers2. Amazon AWS is the cloud's oldest operator, having seized the early bird advantage

to dominate the cloud business industry. However, with its planned industry approach,

Microsoft Azure intends to give AWS a run for its money. The creation of modern applications

has been transformed by serverless architecture for some time. Because of the development of

container-based technologies, their usability has risen with time. The industry has seen

exponential growth in event-driven services with the use of AWS Lambda and Azure functions

(Expósito Jiménez et al., 2018). AWS Lambda was the first of its kind in the case of serverless

computing services and then Microsoft Azure Functions and GCP Cloud functions followed

the trail.

A typical example of serverless computing is Function-as-a-service (FaaS) model, in which

developers create a function in various languages, and the same is then deployed to cloud

platforms and can be triggered based on events. Burkat et al. (2021) discussed and evaluated a

relatively new service, Container-as-a-service. They highlighted the features of container-

based virtualization. Serverless computing has been applied in various areas of computing

including IoT (Cheng et al., 2019), ETL (Pogiatzis & Samakovitis, 2021), and video

processing (Ao et al., 2018). Serverless technology has brought many benefits, but it has

2https://www.gartner.com/reviews/market/cloud-infrastructure-and-platform-services

https://www.gartner.com/reviews/market/cloud-infrastructure-and-platform-services

4

additional obstacles due to decreased quantitative measurement with limited observability and

increased system complexity (Leitner et al., 2019; Lenarduzzi & Panichella, 2021). However,

serverless computing is not all good it poses some serious challenges as well. On one side they

provide security because of cloud providers on the other hand serverless cloud services create

some unique threats and challenges as well which were discussed by Marin et al. (2022).

Azure Functions3 provides a variety of interface methods including CLI, API, and GUI and

uses related plugins for Visual Studio and Visual Studio Code to access the platform. Azure

Functions' price structure is comparable to AWS Lambda’s; however, it is based on the amount

of memory that serverless functions use. Additionally, billing is executed with a minimum

execution time of 100 milliseconds. Azure Functions has a 600-second maximum function

execution timeout. The execution and administration unit in Azure Functions is the function

app, which is still made up of several functions. There is no deployment package cap for Azure

Functions, and its flexible memory allocation can accommodate up to 1,536 MB of RAM. The

observability of Azure Functions is provided by Microsoft via Azure Application Insights.

Azure functions uses three hosting tiers for serverless applications: consumer, premium, and

dedicated. Microsoft offers a general-purpose Azure Marketplace for the market that consists

of serverless applications (Wen et al., 2022).

As an alternative, method of in-built serverless services provided by Cloud Service Providers

like AWS’s Lambda or Azure Function or Azure Automation Bebortta et al. (2020) discussed

and demonstrated that python and its vast libraries have been widely used by Cloud providers

to write serverless mechanism and frameworks; thus python is one of the most prominent

languages to be adopted by various providers. The novelty behind the proposed architecture is

to create a framework to use a serverless computing paradigm using python and its libraries for

data processing. Another study discussed vendor lock-in issues in serverless computing as the

providers give a very little scope of utilizing executable code systems and serverless computing

becomes highly platform dependent because authentication, configuration management,

storage, or monitoring becomes tightly coupled to the platform services (Adzic & Chatley,

2017) .

Developers have the option to wrap the execution environment, include the package and library

dependencies, and source code inside a container with the help of containerization which is

also termed as operating system virtualization. Unlike Virtual Machines (VMs), containers do

not require an operating system simulation starting up. The starting up of a containerized

application is faster than VMs (VasanthaKumari & Arulmurugan, 2022). To put into

perspective the operating system, containers can be considered as software systems. Since the

execution environments are bundled into a place, so the containers are considered very

portable. Though containerization is a technology that has been around for a while, it has only

begun to receive attention now. The possibility of becoming enslaved to a provider is a

prominent concern highlighted in the conference paper of Becker Westphall & Olmsted (2016)

and among IT executives regarding cloud computing. Mobility is constrained due to the high

switching costs in terms of time and effort required to switch between cloud service providers.

3 https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview

https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview

5

Containerization enables organizations to leverage several cloud providers to develop their

desired applications (Kratzke, 2014). Abdelbaky et al. (2015) had shown in their experiment

how an architecture made up of different cloud service providers can create a conglomerated

robust architecture with the help of containerization technology. Another case-study on micro-

service workloads highlighted the advantages of cloud and container clusters in scaling and

deployment of application (Augustyn et al., 2022).

As cloud containers are gaining popularity, the question of how to keep them secure came into

focus. Before docker containers had to run as a privileged user on the underlying OS, which

made it possible for a root or administrator access to be obtained if certain components of the

container were compromised, or vice versa (Watada et al., 2019). User namespaces, which

allow containers to run as certain users, are now supported by Docker.

Deploying rootless containers is another choice to reduce access problems. These containers

give an extra layer of security because they do not need root access. So, if a rootless container

is compromised, the hacker will not have root access. The ability for several users to run

containers on the same endpoint is another advantage of rootless containers. Docker currently

supports rootless containers, but Kubernetes does not (Brasser et al., 2022).

The safety of images acquired from Docker Hub is another problem (Shu, Gu, and Enck, 2017;

Kwon and Lee, 2020). Downloading a community-developed image does not necessarily

ensure the security of a container. With the introduction of the Docker Content Trust feature in

version 1.8, Docker began to solve this issue by confirming the identity of the image's

publisher. Vulnerabilities can also be checked in images. This provides some assurance, but if

containers are used for extremely sensitive applications, their verification processes might not

be thorough enough. To guarantee that the security policies have been followed and updates

have been made regularly, it would be prudent to produce the base image to maintain

authenticity in this situation.

It can be concluded from the foregoing discussion, that there is a great deal of interest in

serverless computing architectures for diverse scientific activities and web application

development across the industry. But Serverless computing, however, there are very few

architectures that propose a minimal effort with the maximum outcome. This study is going to

demonstrate how a secure serverless container-based architecture can be modelled using cloud

services to provide minimized processing time effective utilization of resources and thus

reducing the overall cost of the framework.

6

2.1 Research Gaps

Table 1 summarizes the research gaps of five papers.

Table 1

Comparative Analysis of Related Work on Serverless Container based Architecture framework

Research Reference Approach Benefits Limitations

Serverless computing for

container-based architectures

(Pérez et al., 2018).

Created a serverless

container architecture

using AWS lambda for

event-driven file

processing.

AWS-based

framework for

event-driven

serverless file

processing.

No security measures

were implemented and

SCAR had not been

implemented in other

cloud services.

Serverless Computing:

Economic and Architectural

Impact (Adzic & Chatley,

2017).

Presented case studies

showing how migrating to

the cloud reduced hosting

cost.

It motivates

business to move to

cloud.

The study is based on

AWS services need

more research on other

cloud services.

The FaaS based Cloud Agnostic

Architecture of Medical

Services — Polish Case

Study

(Augustyn et al., 2022).

The case study provides an

analysis of micro-service

architecture for various

workloads.

Highlights the

advantages of cloud

and container

clusters in scaling

and deployment of

application.

The functional groups

chosen for

implementation in the

FaaS model in this case

study were utilized so

infrequently.

Observability and chaos

engineering on system calls for

containerized applications in

Docker

(Simonsson et al., 2021)

Case study and

observation by injecting

system call failure in the

containerized application

and proposed framework

for resiliency.

Proposes metrics

and framework to

improve

observability of a

container.

This approach provides

observability of only

applications’ system

call failure.

Serverless computing: a security

perspective

(Marin et al., 2022)

Discussed the various

security flaws of serverless

computing.

Provides an insight

on possible security

adversaries on

Monoliths,

Microservices and

Serverless

The review paper

shows adversaries can

now launch Denial-of-

Wallet or DoW attacks

by flooding service

requests, drastically

increasing the cost for

application owners.

3 Research Methodology

This section discusses the methodology of this study. The research process flow is given in 3.1

and 3.2, which provide an overview of the techniques and technologies used in this study.

3.1 Process Workflow

Figure 1 depicts the whole workflow of the study conducted on this topic. The first stage

denotes the relevant study of the serverless computing paradigm from prior research work and

other internet resources that contributed to the basic information for this project. The second

stage suggests that the performed literature survey and critically evaluating various journals

and articles around this area. The next stage is the tabulation of the performed survey to present

7

a better visualization and understanding of the works performed. Then the fourth and fifth step

indicates the implementation process and finally at the sixth step this study concludes with a

discussion and possible future work.

Figure 1: Visual representation of research methodology behind SSCAR

3.2 Technology stack

Table 2 lists various components of this study and in the following sections, the methodology

of selecting those components has been discussed.

Table 2

Components Tool Stack

Cloud Service Provider Microsoft Azure

Code Editor Visual Studio Code

Operating System Windows

Container Engine Docker

Container Registry Docker Hub

Programming Language Python

Code Repository GitHub

Cloud providers: Selecting cloud service providers at a competitive price appears to be one

of the hardest tasks in today’s industry, where businesses must take care of the existing system

model and add a new segment to their business in order to grow faster and smother in the

industry. Ayoub Kamal et al. (2020) provided an elaborate comparison in their study where

they compared AWS, Azure, and GCP’s offerings and categorized their services into different

tiers of pricing. They have highlighted storage capacity, location infrastructure, and

computation which are some of the major service features that play a vital role when choosing

cloud service providers for any business. From their study and finding its evident for this

experiment in Azure was proven to be a better fit in terms of pricing and the goal of this study

is to determine whether a secure serverless container-based architecture can be reliable enough

to be used in the business segment. Also, Microsoft claims, Azure is one of the research-

8

friendly cloud service providers4 in academia and encourages to use Azure in the cost of

discovery.

Code Editor: According to a survey conducted by Mälardalen University Academy of

Innovation Design and Engineering5, it was found that Visual Studio Code is highly popular

among the developer community hence in this research the choice of code editor is Microsoft

Visual Studio Code.

Containers and Container Registry: Containers provide more mobility, reduced start-up

time, and higher resource usage than VMs, simplifying the creation and maintenance of large-

scale cloud applications. Even though there are other alternative container engines, Docker is

the most widely used container in cloud computing6. Clusters of containerized service instances

serve as the foundation for microservice systems. The containers must be fault-tolerant,

distributed, and highly available. (Khan, 2017) presented the capabilities of container tools and

designed a framework that highlights the essential process for techniques to execute container

orchestration. In an attempt to fill the gap of best orchestration tool, (Khan, 2017) and (al

Jawarneh et al., 2019) found that Kubernetes performs well for complex orchestration

deployment as compared to Apache Mesos7, Docker8 but for its simpler solutions these

orchestration tools are the best fit. Docker is a tool for packaging an application and all of its

dependencies into a container. It accomplishes this by offering a set of tools and a consistent

API for controlling kernel-level technologies including LXC containers, cgroups, and a copy-

on-write filesystem. Docker uses AuFS (Advanced Multi-Layered Unification Filesystem) as

its container filesystem. AuFS is a layered filesystem that can overlay one or more existing

filesystems transparently (Scheepers, 2014). Docker can use AuFS to base containers on

specific images. For example, an Ubuntu image may be used as the foundation for a variety of

containers. This study is using Docker as a containerization tool as it aims to find a simple and

cost-effective tool for secure serverless application deployment and development framework.

Event-driven file processing using Python: Python is the most popular coding language

which has an extensive library set for several functionalities and is compatible with various

platforms9 . The programming model to achieve event-driven results in the following order:

1. Authorized user uploads file to azure blob.

2. The input file is made available to execute a container.

3. The script deletes the file from the input file.

4. The input file is processed and saved to an archived folder of the azure blob.

5. Generate Log for each file-processing event.

This approach is achieved by functions which detects the file and processes it using a python

function that uses checkblob and moveblob user-defined library from the util package. The

4 https://edudownloads.azureedge.net/msdownloads/microsoft-azure-for-research-overview.pdf
5 https://www.diva-portal.org/smash/get/diva2:1177860/FULLTEXT01.pdf
6 https://www.g2.com/categories/container-engine
7 https://mesos.apache.org/
8 https://www.docker.com/
9 https://pypl.github.io/PYPL.html

https://edudownloads.azureedge.net/msdownloads/microsoft-azure-for-research-overview.pdf
https://www.diva-portal.org/smash/get/diva2:1177860/FULLTEXT01.pdf
https://mesos.apache.org/
https://www.docker.com/

9

python script processes the file and moves it to an output folder. Because this proposed

framework manages data staging fundamentally, the developer only needed to shift their focus

to how to process any file. Then, considering the limited storage space available, numerous

instances of this script can be executed in parallel, each on its own invocation, to

simultaneously process distinct files at scale. This method also makes testing easier because it

can be done locally to process one file within a Docker container and then scaled out to

thousands of concurrent invocations run on Azure.

4 Design Specification

The solution framework has been explained in the following subsection. 4.1 provides an

overview of the model shares an insight into underlying methods and adapted best practices

to build this model.

4.1 Architecture Overview

The proposed specification of the system design is demonstrated in Figure 2 which consists

of four main components. Event-driven function, Serverless computing, Storage, and finally

Security with monitoring log.

Event-driven function: Any trigger or event is a way to launch the function. The time-based,

HTTP request, new entry in the database, or a new event in the system can act as a trigger to

perform another task that can be used to detect events in the application. Bindings are used to

connect a function to another resource for additional inputs or outputs. They support writing to

a queue or a database, delivering an HTTP response, and a variety of other activities (Morenets

& Shabinskiy, 2020). So, whenever there is a change detected by the containerized function in

the blob storage, it identifies it as an event, detects the files and notifies to application for

processing.

Serverless Computing: Serverless computing paradigm had been employed in this architecture

using a python language and user-defined function where a file is read from input blob storage

and the processed file is stored in a different location. Input then gets deleted by the system.

Storage: Azure blob storage stores the input and output files which can be accessed by only

authorized users.

10

Figure 2: Architecture of SSCAR

Security and Log Monitoring: The entire system model gets encapsulated with its environment

variables and dependencies into a docker container, and the instance is then pushed to the Azure

Container instance. Azure Monitor keeps a log of the application activity. One security layer

would be in Azure blob storage where Role-Based-Access-Control established, this will reduce

data leakage and data breach. The second layer of security is to keep the docker container image

private image and perform vulnerability scanning before pushing the image to the docker

registry, which ensures network security. Docker file modification to create a non-root user

while running the docker container image. This ensures that a container launch will establish a

non-root user privileged image run and refrain any fatal modification to the image or root

directory. Lastly, the system log with Azure monitor provides overall system health

information.

Containerization: The storage requirements of the container instance are based on the size of

the container image. The size of the container image has a direct impact on the amount of

storage available to the container. Since the container image will be saved in the register, the

size of the container image has an impact on the storage requirements of the container registry.

Image size had been reduced using the following techniques:

• The image had been built from a scratch image.

• Used lightweight base image.

• Multistage built has been used.

• Reducing commands and concatenating into a single command for example in

Figure 3 commands are directed in a single prompt.

11

RUN apt-get install -y example-package && rm -rf

variable/library/apt/list/*

Figure 3

In a small scale like this experiment, container size might be irrelevant but when dealing with

a dynamic auto-scaling environment time to start the container can be translated as to waste of

resources.

5 Implementation

Implementation of the framework has used below mentioned (Table 3) configuration of

Azure and other services.

Table 3

A python program has been written to check blob storage for files with checkblob and

moveblob function libraries. This function acts as a listener and checks Azure blob storage for

files and moves them upon finding them. The program performs event-driven file processing

and generates user-readable logs when it detects the file and processes them to output blob

storage. These logs were sent to Azure-application monitoring using AzureLogHandler

package.

Docker registry: Web container configuration involves a methodical process. Writing a

Docker file in a local environment is the first step. Then software packages that must be

installed inside the Docker image in order for it to function are described in the text file, which

Item Resource

Cloud Service Provider Microsoft Azure

Subscription Azure for Students

Region Norway-East

Service Opted Azure Function, Monitor, Key Vault, Container Instance

OS Windows

Kernel Linux

Image size 1.5 GB memory, 0gpu, 1CPU

Instance type Standard

Network type Private

Runtime Stack Python Version 3.9

Consumption plan type Serverless

Storage Redundancy Locally redundant storage

Storage Performance Standard

Container instance

image

QuickStart image

Containerization tool Docker

12

is called Docker file. The second phase requires an in-depth test of the Docker image that had

been created.

 Deploy container to Docker hub registry and Azure instance: After building the docker

image shown in Figure 4, the Docker image was pushed to the Docker hub registry and created

Azure container instance using the Azure portal.

Figure 4

 Azure configuration: The container instance was then configured with Azure monitor for

application log monitoring, implemented role-base-access-control using Azure portal IAM.

6 Evaluation
This research evaluation had conducted based on five pillars of the Azure well architect

framework10. These five categories of evaluation as Performance Excellence, Operation,

Reliability, Security and Cost-Optimization.

6.1 Case Study 1 Performance Evaluation

The performance pillar includes the ability of any solution to use computing resources

efficiently and should be quick to meet the demand in this uncertain world. The

performance of the custom SSCAR model was evaluated with an experiment in the

following methods:

• The application was run locally considering the local system as a standalone server

without any azure function or container image running in the background to detect an

event.

• As an Azure function to detect Azure Blob Storage creation.

10 https://learn.microsoft.com/en-us/azure/architecture/framework/

https://learn.microsoft.com/en-us/azure/architecture/framework/

13

• Using azure container instance packaging the code.

• The application was run locally within a container.

Application runs on an independent machine

To replicate the 3-tier architecture or server, the local machine was considered as a server where

the application is executed with basic configuration such as core i7 process, 16GB RAM, and

200GB free SSD storage. When executed locally, a lightweight application was executed

within 52 seconds(Figure 5) which included manually placing the file in Azure Blob Storage.

Figure 5

• Application run as Azure function

The azure function was created with a basic student subscription plan (i.e., Azure for students)

in Location Norway East based on Linux distribution. During the evaluation, the Azure

function was created with a Blob storage trigger. The Blob storage trigger starts a function

when a new or updated blob is detected. The blob contents are provided as input to the function.

The function was enabled and was continuously listening to blob storage based on the defined

configuration. When the file was created in a source storage container, the blob trigger was

enabled and executed the Azure function which prints the log that the source blob object is

detected along with other details. Due to the limited subscription, it was not feasible to execute

lightweight application. However, given the fact that the code is very minimal, it will be fair to

assume that the total execution time would not have been more than additional 2-3 seconds.

The entire process was completed successfully in 16 seconds (Figure 6).

Figure 6: Logs from Azure functions

• Application run Azure container instance wrapping the application

The same lightweight application used above was containerized using docker and registered

into the docker hub registry index.docker.io as private. The container was built on top of

docker.io/library/python:3.8-slim-buster OS distribution. Azure container instance was

created using Linux distribution in Norway East Location and deployed the application

14

from the docker hub registry. One of the biggest bottlenecks in the performance of the

container is the time taken to pull the image from the registry. Bigger the image; farther the

location, greater the time taken to deploy the latest image from the registry. In this

evaluation, it was clear that even after using a slim version of the OS image in the container,

it took some time (~1.10 minutes) to kick in and executed the code. Figure 7 demonstrates

a log of the Azure container instance.

Figure 7: Container Instance Log

• Application runs on independent machine within the container

In order to replicate the 3-tier architecture or server, the local machine was considered as a

server where the application is executed with basic configuration such as core i7 process,

16GB RAM, and 200GB free SSD storage. When executed locally, the container was

executed within 53 seconds (Figure 8) which included manually placing the file to Azure

Blob Storage. It must be noted that execution of container does not include time taken to

build, pull the image from repository as it would be required only when there is a first-time

setup or some changes in images.

6.2 Case Study 2: Operational Excellence

The capacity to run and monitor systems to create business value and enhance supporting

processes and procedures is part of the operational excellence pillar. The amount of difficulty

in implementing metrics that can ease the process of operations and monitoring has been

assessed based on server-based vs cloud-based systems, as the method will be the same.

• Health Status

• Alert & logging mechanism

15

Figure 8: Execution Status of docker container

To generate health-related reports for the application, a server-based system will require an in-

built utility in the program, or the app owner will need to write a custom script. A cloud-based

system, on the other hand, has pre-defined health checks, logs, and other metrics to achieve

operational excellence, such as reliability and availability. Furthermore, it enables users to

create their own custom scripts to support any special use cases. Cloud-based health status

checks also enable the creation of alerts that can run in real time and notify the user if a rule is

violated (such as slow response of API, failure in connecting to app etc).

6.3 Case Study 3: Security

Based on pillars of container security outlined by (Brady et al., 2020) , this case-study had been

done to perform evaluate different Security aspects of modern-day threats. Table 4 suggests

the considered evaluation parameters.

Table 4: Security Parameter Evaluation

Para Parameter Local Server

(Without

Container)

Local Server

(With Container)

Azure functions Azure

Container

Instances

Identity and

Access

Management

Identity and

access

management in a

3-tier

architecture is

managed by on-

premise

infrastructure

team. Even

though users and

application, now

a days, can

connect to Azure

active directory

and authenticate,

restricted access

rule needs to be

set by Linux

admin, within

third party

application,

customize

One important aspect of

container is to provide

isolation to the application by

running application inside an

OS image. However, default

behaviour of container is to

run application using root user

(full administrative access).

This expands attack entire

system with full privilege

being exposed to intruders.

This was easily managed by

creating group and DEV user

in docker file and run

application using DEV user

within container.

A priority-

ordered allow or

deny list

regulates the

network access to

the app by

configuring

access limits.

Subnets of the

Azure Virtual

Network or IP

addresses may be

in the list. There

is an implicit

deny all at the

end of the list

when there are

one or more

entries. One can

easily define

custom access

Azure Active

directory,

Various pre-

defined access

role can be used

to define

restricted user

access. Also,

similar

improvements

can be

implemented as it

was mentioned

under Local

Server (with

container).

16

authorization in

some cases

which makes it

tough to manage

and has decent

chances of

missing out on

security threat.
This has ensured even if

intruder get access to

application, they will not be

able to do further damage with

this container user DEV.

Other aspect is managing

access to build infrastructure.

It is important to ensure that

CICD pipeline has limited

access to build infrastructure

so that intruder does not get

access to application which

may store password, token,

secrets which can give access

to sensitive information. This

can easily be managed by

CICD tool (Jenkins or Gitlab)

which is widely used by many

organizations.

restriction rules

in Azure.

Detective

Controls

Code level scan:

Various third-

party tools can

be used to scan

code

vulnerabilities

eg. SonarQube.

However, it is

app owner’s

responsibility to

integrate such

scan before

migrating code

to higher

environments.

Code level scan:

Various third-party tools can

be used to scan code

vulnerabilities eg. SonarQube.

However, it is app owner’s

responsibility to integrate

such scan before migrating

code to higher environments.

Container Scan:

Third party docker scanner

can be used to scan

vulnerabilities within the

docker images. A static

vulnerability scan on the

docker image after building

the image and before moving

the image to the container

instance. Dynamic scanning is

also possible when image is

pushed to the docker hub.

However, this could be

mostly under paid

subscription.

Code level scan:

Various third-

party tools can be

used to scan code

vulnerabilities

e.g., SonarQube.

However, it is

app owner’s

responsibility to

integrate such

scan before

migrating code to

higher

environments.

Container Scan:

Third party

docker scanner

can be used to

scan

vulnerabilities

within the docker

images. A static

vulnerability scan

on the docker

image after

building the

image and before

moving the

image to the

17

container

instance.

Dynamic

scanning is also

possible when

image is pushed

to the docker

hub. However,

this could be

mostly under

paid subscription.

6.3.1 Limitations

Current scheme of testing and evaluation of security scope heavily relies on vulnerability scan

count. While this option serves a good initial starting point for development and

implementation process, an arbitrary number of vulnerabilities is not sufficient for production-

level security. The default security policy utilized in this framework is at an initial phase and

it would take additional paid security services which can meet all the security standards that a

company must meet. Based on the results of this study it is evident that Docker images should

pass at least a threat scanning and change very few changes in the file system.

6.4 Case Study 3: Reliability

Because of its core properties throughout the application's lifecycle, container architecture

provides an advantage in terms of becoming reliable software. Change management, failure

management, and workload management all contribute to reliability. In this study the cloud

services chosen was able to handle availability based on availability zones and categories. This

architecture was built with Locally Redundant Storage to keep resource constraints in mind,

but it is suggested to use Geo Redundant Storage when developing application storage to boost

storage dependability. This framework included Azure app insight, which was an excellent way

to monitor and detect the health of the application and finally manage failure accordingly.

6.5 Case Study 4: Cost-Optimization

Over the course of a workload's existence, cost optimization is a continuous process that needs

refinement and improvement. It is evaluated here not based on actual cost spent to build the

application as the system used was local and cloud subscription was student plan. Hence, the

comparison has been done on static or dynamic charges involved with each setup (on-premises

vs Cloud). Any application running on local, custom designed or third-party licensed software,

runs with a fixed cost. Whereas cloud-based solution is pay-as-you-go model where cost is

totally based on type of resource provisioned, size of application, compute power etc.

6.6 Discussion

The analysis on the SSCAR has been done based-on best industry practises and as defined in

well architected frameworks11 such as execution time, scalability, health status, logging, data

protection and identity & access management. Based on the evaluation, each of these platforms

11 https://learn.microsoft.com/en-us/azure/architecture/framework/

https://learn.microsoft.com/en-us/azure/architecture/framework/

18

has been rated for each of these factors and Figure 9 shows the graph-based presentation of the

evaluation parameters.

Figure 9

Ratings are between 1-3 with 3 being the best, 1 being the lowest and 2 on average. It is evident

that Cloud-based applications performs better in almost every aspect and hence the popularity

these days whereas server-based application promises fixed cost but is not efficient and scalable

in terms of storage or computing power. The other parameters can still be controlled using

some third-party tools. Among cloud-based solutions, Azure functions have a certain degree of

flexibility but limited functionality over cloud-based containers as containers need some

additional time to pull the image and run applications. In serverless model, security is a shared

service model where responsibilities are shared between the customer and cloud provider

whereas security is fully managed by the organization and have full control to restrict access

and own the infrastructure, in a server-based model. Finally, serverless can occasionally be

vulnerable to denial-of-wallet attacks (DoW) (Marin et al., 2022), whereas monolith server-

based architecture has an advantage on the same cost in application deployment (so the rating

since server-based has always fixed cost and any operation does not raise cost), but it is highly

inefficient when it needs to be scaled up or down to control application performance.

7 Conclusion and Future Work
This study has discussed various use-cases of serverless computing, containerization, and

various ways to ease the development of security services in the cloud. It describes a serverless

design patterns that can be used to build Azure serverless applications and services. The

objective of this research is to test the baseline security improvements of traditional

containerized serverless computing models by implementing RBAC, vulnerability test, and

managed identity in Azure. The approach can be implemented when application systems are

broken down into little bits and generated smaller sized container images that can be developed

in a shorter time frame and put to production, as demonstrated by this experiment. If an

application bug is discovered in production, developers will be able to simply roll back the

system utilizing the containerized image change management mechanism while maintaining a

hierarchical container image. Because of the inherent stability and ease of service management,

this architecture is a good approach for businesses to use on a big scale in Azure or any other

cloud services.

This work can be further expanded to generate two or more containers with SSCAR utilizing

different cloud services and managed in Kubernetes or similar services, which would be an

excellent solution to eliminate vendor lock-in for an application.

19

References

Abdelbaky, M., Diaz-Montes, J., Parashar, M., Unuvar, M., & Steinder, M. (2015). Docker Containers
across Multiple Clouds and Data Centers. Proceedings - 2015 IEEE/ACM 8th International
Conference on Utility and Cloud Computing, UCC 2015, 368–371.
https://doi.org/10.1109/UCC.2015.58

Adzic, G., & Chatley, R. (2017). Serverless Computing: Economic and Architectural Impact. 6, pages.
https://doi.org/10.1145/3106237.3117767

al Jawarneh, I. M., Bellavista, P., Bosi, F., Foschini, L., Martuscelli, G., Montanari, R., & Palopoli, A. (2019).
Container Orchestration Engines: A Thorough Functional and Performance Comparison. IEEE
International Conference on Communications, 2019-May.
https://doi.org/10.1109/ICC.2019.8762053

Ao, L., Izhikevich, L., Voelker, G. M., & Porter, G. (2018). Sprocket: A Serverless Video Processing
Framework. https://doi.org/10.1145/3267809.3267815

Augustyn, D. R., Wyciślik, Ł., & Sojka, M. (2022). The FaaS-Based Cloud Agnostic Architecture of Medical
Services—Polish Case Study. Applied Sciences 2022, Vol. 12, Page 7954, 12(15), 7954.
https://doi.org/10.3390/APP12157954

Ayoub Kamal, M., Wahab Raza, H., Alam, M., & Mazliham, M. S. (2020). Highlight the Features of AWS,
GCP and Microsoft Azure that Have an Impact when Choosing a Cloud Service Provider Optimal
Placement of generator for Power System Losses Reduction in Substation using SSA Algorithm
View project Conference Paper View project. International Journal of Recent Technology and
Engineering, 5, 2277–3878. https://doi.org/10.35940/ijrte.D8573.018520

Bebortta, S., Das, S. K., Kandpal, M., Kumar Barik, R., & Dubey, H. (2020). Geo-Information Geospatial
Serverless Computing: Architectures, Tools and Future Directions.
Https://Doi.Org/10.3390/Ijgi9050311. https://doi.org/10.3390/ijgi9050311

Becker Westphall, C., & Olmsted, A. (2016). CLOUD COMPUTING 2016 The Seventh International
Conference on Cloud Computing, GRIDs, and Virtualization Membership certificates View project
MAIDAM in IoT/Fog/Cloud-Mutual Authentication, Intrusion Detection and Autonomic
Management in IoT/Fog/Cloud Environments View project.
https://www.researchgate.net/publication/298785531

Bermejo, B., & Juiz, C. (2022). A general method for evaluating the overhead when consolidating servers:
performance degradation in virtual machines and containers. The Journal of Supercomputing,
78(9), 11345–11372. https://doi.org/10.1007/s11227-022-04318-5

Brady, K., Moon, S., Nguyen, T., & Coffman, J. (2020). Docker Container Security in Cloud Computing;
Docker Container Security in Cloud Computing. 2020 10th Annual Computing and Communication
Workshop and Conference (CCWC). https://doi.org/10.1109/CCWC47524.2020.9031195

Brasser, F., Jauernig, P., Pustelnik, F., Sadeghi, A.-R., & Stapf, E. (n.d.). Trusted Container Extensions for
Container-based Confidential Computing.

Burkat, K., Pawlik, M., Balis, B., Malawski, M., Vahi, K., Rynge, M., da Silva, R. F., & Deelman, E. (2021).
Serverless Containers – Rising Viable Approach to Scientific Workflows. 2021 IEEE 17th
International Conference on EScience (EScience), 40–49.
https://doi.org/10.1109/eScience51609.2021.00014

Cheng, X., Lyu, F., Quan, W., Zhou, C., He, H., Shi, W., & Shen, X. (2019). Space/Aerial-Assisted Computing
Offloading for IoT Applications: A Learning-Based Approach. IEEE Journal on Selected Areas in
Communications, 37(5), 1117–1129. https://doi.org/10.1109/JSAC.2019.2906789

Expósito Jiménez, V. J., Zeiner, H., & Juan Expósito Jiménez, V. (2018). Serverless Cloud Computing : A
Comparison Between “Function as a Service” Platforms Robot technology for the wood industry
(RobWood) View project Secure Contactless Sphere. Smart RFID-Technologies for a Connected
World View project SERVERLESS CLOUD COMPUTING: A COMPARISON BETWEEN “FUNCTION AS A
SERVICE” PLATFORMS. 15–22. https://doi.org/10.5121/csit.2018.80702

Hassan, H. B., Barakat, S. A., & Sarhan, Q. I. (2021). Survey on serverless computing. Journal of Cloud
Computing, 10(1), 39. https://doi.org/10.1186/s13677-021-00253-7

Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.-C., Khandelwal, A., Pu, Q., Shankar, V., Carreira, J.,
Krauth, K., Yadwadkar, N., Gonzalez, J. E., Popa, R. A., & Patterson, D. A. (2019). Cloud
Programming Simplified: A Berkeley View on Serverless Computing.

20

Khan, A. (2017). Key Characteristics of a Container Orchestration Platform to Enable a Modern
Application. IEEE Cloud Computing, 4(5), 42–48. https://doi.org/10.1109/MCC.2017.4250933

Kratzke, N. (2014). Lightweight Virtualization Cluster How to Overcome Cloud Vendor Lock-In. Journal of
Computer and Communications, 02(12), 1–7. https://doi.org/10.4236/JCC.2014.212001

Kwon, S., & Lee, J. H. (2020). DIVDS: Docker Image Vulnerability Diagnostic System. IEEE Access, 8,
42666–42673. https://doi.org/10.1109/ACCESS.2020.2976874

Leitner, P., Wittern, E., Spillner, J., & Hummer, W. (2019). A mixed-method empirical study of Function-
as-a-Service software development in industrial practice. Journal of Systems and Software, 149,
340–359. https://doi.org/10.1016/J.JSS.2018.12.013

Lenarduzzi, V., & Panichella, A. (2021). Serverless Testing: Tool Vendors’ and Experts’ Points of View. IEEE
Software, 38(1), 54–60. https://doi.org/10.1109/MS.2020.3030803

Marin, E., Perino, D., & di Pietro, R. (2022). Serverless computing: a security perspective. Journal of Cloud
Computing, 11, 69. https://doi.org/10.1186/s13677-022-00347-w

Morenets, I., & Shabinskiy, A. (2020). Serverless Event-driven Applications Development Tools and
Techniques. NaUKMA Research Papers. Computer Science, 3(0), 36–41.
https://doi.org/10.18523/2617-3808.2020.3.36-41

Pahl, C. (2015). Containerization and the PaaS Cloud; Containerization and the PaaS Cloud.
https://doi.org/10.1109/MCC.2015.51

Pérez, A., Moltó, G., Caballer, M., & Calatrava, A. (2018). Serverless computing for container-based
architectures. Future Generation Computer Systems, 83, 50–59.
https://doi.org/10.1016/J.FUTURE.2018.01.022

Pogiatzis, A., & Samakovitis, G. (2021). An Event-Driven Serverless ETL Pipeline on AWS. Applied Sciences,
11(1). https://doi.org/10.3390/app11010191

Scheepers, T. (2014). Virtualization and Containerization of Application Infrastructure: A Comparison.
Shu, R., Gu, X., & Enck, W. (n.d.). A Study of Security Vulnerabilities on Docker Hub. Proceedings of the

Seventh ACM on Conference on Data and Application Security and Privacy.
https://doi.org/10.1145/3029806

Simonsson, J., Zhang, L., Morin, B., Baudry, B., & Monperrus, M. (2021). Observability and chaos
engineering on system calls for containerized applications in Docker. Future Generation Computer
Systems, 122, 117–129. https://doi.org/10.1016/J.FUTURE.2021.04.001

VasanthaKumari, N., & Arulmurugan, R. (2022). Reorganizing Virtual Machines as Docker Containers for
Efficient Data Centres (pp. 201–211). https://doi.org/10.1007/978-3-030-78750-9_14

Watada, J., Roy, A., Kadikar, R., Pham, H., & Xu, B. (2019). Emerging Trends, Techniques and Open Issues
of Containerization: A Review. IEEE Access, 7, 152443–152472.
https://doi.org/10.1109/ACCESS.2019.2945930

Wen, J. (2022). A Literature Review on Serverless Computing; A Literature Review on Serverless
Computing. https://doi.org/https://doi.org/10.48550/arXiv.2206.12275

