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Enhance Microservices Placement by Using Workload
Profiling Across Multiple Container Clusters

Shamir Ahamed A M
21154929

Abstract

Companies use microservices to break up large, centralized applications into
smaller, more manageable pieces that can be deployed and run in their own con-
tainers. Microservices are used by businesses to hasten product creation and up-
keep, improve performance forecasting, and increase scalability. Using a task-based
method, We may move only the additional workloads away from a stressed service
and into a less taxed one, effectively balance the network. when there is a rise in
demand for a service. Multiple versions of the system are frequently constructed
to accommodate the high volume of responses. sharing network traffic amongst
multiple far-flung computers. In this article, We looked at how to balance the
workload of containerized microservices using a variety of flexible techniques. As a
result of using cloud-based computing capabilities, microservices can make use of a
distributed deployment model for their resources.
After reviewing the literature on existing methods and algorithms for load balan-
cing, the findings indicate that further exploration concludes that further study is
warranted. In this study, I have validated the PSO (Particle-Swarm-Optimization),
SJF (Shorted Job First), FCFS (First Come, First Served), and RR (Round Robin)
methods for microservice load balancing evaluation. A statistical analysis shows
that the proposed technique is useful for reducing execution latency by picking the
best load-balancing algorithm.

Keywords: MicroServices,Workloads, Task Scheduler,ContainerCloudSim,Cloudlet,
VMs,Containers, Nodes.
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1 Introduction

In recent times, microservices are becoming increasingly popular in software applica-
tions. Containers replication greatly improves the reuse of developed microservice ele-
ments. Functions in a software application are separated into independent services in a
microservices.Wan et al. (2018).

Microservices has simplified the testing and deployment of complicated systems by
breaking down big monolithic app stack into the more controllable, independent logical
groups or elements that can run in cloud environments.

Microservices needed a system with lightweight deployment capabilities due to its
loose coupling and flexibility to be launched separately.
Container technologies has quickly surpassed other options as the preferred platform

Figure 1: Microservices vs Monolithic Architecture Microservices vs. Monolithic Archi-
tecture (2021)

for deploying software to multiple servers. The container encloses the microservice or
program logically, protecting it from the outside world.
Cloud service users and suppliers alike can reap the benefits of virtualization and dynamic
scheduling of tasks. Reduced resource consumption (improved utilisation ratio), exped-
ited job completion, and higher resource utilization are all the results of well-scheduled
tasks (minimizes the makespan). Task scheduling has taken on greater significance as
a result of the potential shortage of the cloud’s resources brought on by the persist-
ent growth in workloads at datacenters. More study is needed in the emerging topic
of cloud real - time tasks to better fit incoming activities with available resources and
enhance Quality of Service (QoS) criteria.Houssein et al. (2021) The performance of a
cloud computing system might be significantly impacted by improperly scheduled jobs.
In the cloud, tasks are scheduled in a way that is different from the normal.Ibrahim et al.
(2021) This occurs because work time, processing power, and processing costs are just a
few of the many variables considered throughout the scheduling.t Kaur and Verma (2012).
Scheduling tasks entails assigning priorities to open jobs and distributing them among
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accessible resources in accordance with those priorities.Houssein et al. (2021)Figure 1
This allows for simple deployment of containerized services and apps to any number of
destinations, including on-premises servers, public clouds, and even personal devices.Liu
et al. (2020)Söylemez et al. (2022)
The following are this paper’s primary contributors:

• Using the principles of diversity and bandwidth allocation, a plan for deploying
microservices is outlined. Through distributed deployment, it guarantees that no
service is overburdened, improves speed, and makes better use of available band-
width by reducing the dependency of microservices on a single node.

• The trials’ end purpose is to evaluate how well the chosen algorithms performs.
The suggested method demonstrably outperforms the competition.

Numerous researches have examined the optimal resource management for cloud techno-
logy. Included in these creations is the realization that cloud-native applications’ smooth
functioning depends on their having quick and simple access to resources provided by
microservices. It may be difficult to provide new microservices enough capacity to thrive.
Han et al. (2020). Analysis of a Microservice, This profiling will reveal the workload-
and granularity-dependent resources usage of various applications. Devices designed for
’s responsiveness often keep an eye on servers, both real and virtual. Furthermore, as
cloud-native apps become more reliant on containers, understanding the data stored in
containers that make up the number of benefits is more important then ever before. Since
application programs are made up of many interconnected microservices, their monitoring
platform must be able to track beyond just the underlying hardware.

1.1 Research-Question

What are the most appropriate load balancer strategies and algorithms to consider in
order to improve response time and boost call speed across different microservices in a
multiple microservices architecture?

2 Literature Review

2.1 Scheduling

Scheduling automates decision making and forges stronger linkages, and it provides
backend support for a wide variety of uses, including but not limited to games, NLP, data
science, etc. This complicates the ability of CSPs to use a variety of QoS models, includ-
ing those for public cloud, services, virtual machine templates, implementation strategies,
excitation system, etc. Unknowns, insufficient operational excellence, valuable opportun-
ities, latency, delay, implementation capacity, cache delay, setup and regulatory oversight,
virtual machines, platform support, fault types, violence, and there own limitations are
all topics that have been studied in latest business analytics research. Multiple studies
have shown that an on-premises QoS environment is preferable for industry 4.0, and sci-
entists are learning to pinpoint particular issues via careful measurement and analysis.
The standard operating procedures for using machine learning in business, healthcare,
presentation, and certifications; sleep identification; signature detection; metal sensing;
etc. will be the primary topic.

4



Job planning and process automation in the cloud might seem like an image of alloc-
ating values with one or more tasks, based on the authors and the nature of the work.
Changes in the virtual machine (VM) status supplied by service providers are reflected
in real-time management tools and comprehensive assistance from cloud suppliers. This
virtual machine (VM) has to be up to the task of completing the project. The complexity
of the process is established by the form that input and output data take. The next cloud
scheduling Li et al. (2022) will be affected by whether or not the scheduling model was
static or dynamic.

The primary purpose is to identify the most cost-effective Virtual to lessen the pos-
sibility of using the cloud-based weather board application and maximize the full use
of all available resources. Honey bee provincial expansion (BCO), insect settlement en-
hancement (Insect), bat streamlining, and molecule multiplicity enhancement are only
few of the many knowledge tactics utilized to choose the top Virtual (PSO). However,
most of these methods have little mathematical use. Honey bee settlement enhancement
(BCO) is a populace-based calculation roused by the way of behaving of bumble bees,
however, it has two fundamental inconveniences: (1) its sluggish combination and (2)
many control boundaries. Kruekaew and Kimpan (2022) ANT is used to figure out the
best approach to a problem based on how a person would act if they were looking for
honey bees. It is not necessary to do the same investigation on every single person. The
technique of critical thinking known as molecule pillar improvement, which use objects
to reproduce a population and channels to hunt down a solution, is used to determine
the optimal course of action. However, it cannot handle the exchange problem and can-
not use identical integers concurrently. Even yet, the two players are now using equal
molecule channel development (PPSO) to select Virtual Ms for practical settings, which
is used by both and overcomes the shortcomings of the current system. In order to save
processing time, PPSO divides the population into smaller subpopulations and performs
its own computation on each subpopulation separately. That’s why it’s crucial to respond
to requests from all of your partners in a timely manner.

2.2 Workflow Scheduling in Cloud

Geological Mapping, Astrophysics, Quantum theory, and Bio-informatics are just a few
examples of fields where workflow modeling has been widely adopted to simulate large-
scale scientific and technical applications. Directed acyclic graphs (DAGs) consisting of
nodes and edges are used to depict a Workow. Large-scale scientific applications are
represented by a network in which nodes stand for computing operations and edges for
data/control relationships. Depending on the specifics of the scientific use, the workow
might be somewhat compact or rather large. Researchers needed a highperformance
compute cluster, such as computer clusters, grid computing, or the most recent iteration,
cloud computing, to conduct various workows of varied sizes.

The effectiveness of scientific process tasks is tested in a simulation environment.
Additionally, the effect of several system and workload characteristics on application per-
formance is studied. This review of performance shows how successful it is. As cloud
computing grows in popularity, more and more applications, especially those with com-
plex execution flows and resource requirements, are being deployed to the cloud (referred
to as multi-stage jobs). Many businesses and academic organizations rely on MapReduce
to provide Big Data analyses, usually in tandem with cloud or cluster computing. In order
to meet service level agreements (SLAs) in a distributed computing system with a finite
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amount of resources, this study focuses on developing an effective matching and schedul-
ing approach for processing a continuous flow of multi-stage activities (workflows).Khan
et al. (2021)

2.3 Survey of Microservices

When implementing containerized apps as microservices, the intricacy of distributed in-
frastructure can make it difficult to detect and resolve outages for mission-critical use
cases, such as industry 4.0 processes. Observability is to help operators manage and con-
trol large - scale distributed infrastructure and microarchitectures by the measurement
of end-to-end simulation of the effect.

Building, delivering, and maintaining user applications is being transformed by the
combination of Development and Operations (DevOps), a design philosophy and develop-
ing technologies. In contrast to a monolithic program, which builds all of its parts into a
single, cohesive structure, a microservices architecture separates the application into a set
of independent services that collaborate to carry out a larger whole. Lightweight REST-
ful App Programming Interfaces (APIs) are extensively used to facilitate communication
across microservices in the context of actual application execution. Keeping track of
things, whether successfully or not, is not a new phenomenon. Existing monitoring sys-
tems have considerable challenges when it comes to meeting the operation monitoring
needs of container orchestration deployed across distributed IT infrastructures. Analyz-
ing metrics from individual bare-metal servers, VM instances, or application containers
won’t give a diverse operations (Ops) staff a complete picture of performance issues
unless they also understand the topological connections between these components. A
decentralized infrastructure is one in which many modules run independently on various
machines spread out over a network and communicate with one another to accomplish
their goals. The need to provide a high level of service quality (QoS) for end users in
order to deliver a positive Quality of Experience (QoE) is a major driving force behind
the current state of distributed infrastructure development. The overarching trend of
computer advancements over time. Usman et al. (2022)

2.4 Microservice vs Monolithic Service Architecture

Using a monolithic design, developers may build applications with dozens or even hun-
dreds of independently functioning services that share a common codebase. In a shared
office space, this might cause a lot of problems for the team. Thus, many businesses
are adopting a microservices design to facilitate communication and collaboration across
their design teams. Compared to the microservices design, the monolithic architecture
achieved a 6 percentage point greater bandwidth in the concurrent tests. There was little
to no noticeable distinction between the two architectures throughout the load testing
scenario. Additionally, a third test evaluating the performance of microservices systems
built using various service discovery technologies like Consul and Eureka revealed that
the apps using Consul achieved higher results. In contrast to microservices design, mono-
lithic applications have a single source of code that incorporates all of the necessary
services. They use protocols like Web services, HTML pages, and REST API to talk
to other systems and end users. It is believed that the use of microservices architecture
would improve the procedures of supportability, re - usability, adaptability, reliability, and
automatic deployment. comparisons were made between the efficiency of microservices
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running in a containerized setting and a virtual machine (VM) setting. Throughput,
reaction time, and CPU use were measured and compared across different Amazon cloud
settings. This article shows that virtual machine (VM)-based settings on Aws cloud ser-
vices beat container-based settings by a factor of 125 percent. This is notably true when
comparing response times.

2.5 Microservice-Workload Profiling

In this paper Han et al. (2020) A change to Empirical workload profiling calls for a
shift in how microservices are allocated. Since stage microservices deployment can learn
to account for changes in demand, newline For cloud-native apps to run well, planning
process must take into account the requirements of realizing its individual microservices.
There are a number of obstacles that must be surmounted before new services may receive
adequate funding. Most scholars rely on mathematically noticed on simulations than than
attempting to answer these problems directly. Many often, the research fails to account
for the resources required to run a microservice. When calculating resource requirements
for various workloads,the solutions should factor in the complexities of microservices.
This research provides an effective way for evaluating application relative performance
to the placement of microservices through the use of empirical profiling. This section
provides a brief overview.

• Workload profile-based microservice deployment framework. System enables work
load analysis and distributed software development. Build resource fluctuations
monitor to gather microservices resource use data. That data examines cloud-
native programs that adjust to loads regularly. Profiled data guides microservice
implementation.

• Profiling microservice deployment that use the refining architecture across con-
tainer clusters. Practical profiling of distributed software deployment reveals a
greedy-based workload-responsive heuristic. Positioning testing used three con-
tainer clusters. To check the idea, deploy microservices using the new structure
deployment rules on the testing ground. Trials show thatthe solutions increase
service quality.

3 Methodology

Amicroservice is a small, self-contained service that may interact with other microservices
over an application programming interface (API). Services like this are managed by self-
contained, small-sized teams. Applications may be developed and expanded with less
effort thanks to microservices architectures, which promotes creativity and speeds up the
deployment of new features. The term ”load balancing” refers to the process of dividing
network traffic that arrives amongst several servers in a data centre or servers pooling
in real time or in a number of servers that may be used at any one moment. This
technique for dividing up the resources can be carried out on a fair scale or in accordance
with established Analysis tools. To prevent any one server from being overworked to the
point that its performance suffers, a load balancer acts as just a ”traffic cop” ahead of
the server, distributing requests evenly among all available machines. If one server goes
down, the scheduler will forward all of the requests to the other servers. The scheduler
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will immediately begin routing requests to the newly added server once it has been
registered to the service group. The functional group will store data to be monitored
using distributed software containers. The workload parameters will be analyzed by the
activity scheduler, that will allocate virtual machines and containers. The effectiveness
of different task schedulers with varied distributed software workloads will be analyzed
and demonstrated for future study.
Improvements to microservices with multiple schedulers will simulate task schedulers with
a variety of microservices workloads in order to study features with multilayer workloads
across different datacenters, VMs, and containers. Container CPU-memory, storage, and
network metrics will be tracked and shown for analysis.

3.1 ContainerCloudSim

Simulator creates a simulated setting in which research investigations may be tested and
validated, leading to better, more real applications solutions. It’s a scholarly technique
for making a simulation or a working program.Singh et al. (2021). As a result, it removes
the requirement for and costs associated with computational facilities for performance
evaluation and modeling the research answer. This tutorial primarily focuses on the
CloudSim simulation tool and its usefulness for research.
CloudSim is divided into three levels. The uppermost layer, known as the ”User Code”

Figure 2: CloudSim Architecture Tariq and Santarcangelo (2015)

layer, is made up of the cloud’s fundamental elements. This is where the simulation’s
requirements, such as the number of VMs, users, and the upgraded or suggested schedul-
ing scheme. The cloudlet in this tool is known as the task, which is the user request.
As a result, this layer supplies the interface as well as additional simulation experiment
characteristics such as data center location, etc. The second layer, ”CloudSim,” also aids
in the creation of a cloud-based environment by implementing a user interface that in-
corporates the Cloudlet and Virtual Machines.This layer allows customers to adjust the
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cloud services’ bandwidth, memory, and CPU. The layer can also be used to imitate the
network in cloud settings. The last layer is the ”Simulation Engine,” which is in charge of
conducting events such as cloud component formation and communication Alotaibi et al.
(2021).

To better simulate cloud computing environments and services, ContainerCloudSim
has been built upon the existing CloudSim modeling framework. ContainerCloudSim
Piraghaj et al. (2017) models cloud environments that make use of containers. Schedule
and provisioning tests for containerized applications. The majority of existing simulators,
with the exception of ContainerCloudSim, are geared at providing a platform built around
virtual machines. Figure 2.

• Data centers may manage containers and virtualized workloads.

• Dynamic fog nodes for modelling and applications are distributed in real time during
simulations using Element.

• Information technology facilitates the modeling of applications with interdependent
duties

3.1.1 Implementation

ContainerCloudSim Meng et al. (2016) represents a simulation, or is a simulator. The
entities and pieces in CloudSim communicate with one another via messaging to produce
a model of the clouds and its capabilities.

After registering with CIS, Datacenter Brokers link to CIS to find Datacenters that
are currently available. Cloudlets and other virtual resources are created and scheduled
through communication between data centers and data center brokers. Due to the fact
that two forms of virtualization cannot coexist in a single Datacenter in CloudSim, several
kinds of Data centres are required. After obtaining Cloud computing Cloud resources
from of the Cloud computing Broker at the beginning of the simulation period, the
Infrastructure Broker immediately assigns them to virtual machines or containers. It is
recommended that at the start of the simulation time, a list of all arriving fog nodes
be provided into the Broker. Multiple jobs would be scheduled using time management
software, and the results of these schedules would be reviewed for both data and efficiency.

3.2 PSO Task Scheduling Algorithm

Eberhart and Kennedy created and refined the standard PSO in 1995, drawing inspiration
from the feeding behavior of birds. In PSO, a random solution is generated at the outset,
and the local best solution is generated at the end of each iteration to find the global
best solution. The solution’s particles are nearly probably the optimal solution. The
probability of a best solution is calculated with the help of the fitness value, and the
particles has a tendency to reach that value.Dubey and Sharma (2021)

3.3 SJF Algorithm

An example of a common classical scheduling method is shortest job first (SJF). When
scheduling, this method chooses the nodes with the quickest execution, making it simple
to implement.Lin et al. (2022)
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3.4 Round Robin Algorithm

Round robin scheduling allocates a predetermined time quantum to each process.
In this method, every process is performed cyclically, so programs that have burst time
left after the period quantum expire are being sent back to a ready queue and wait until
their next chance to finish execution until it finishes. FIFO processing means first-come,
first-served.

3.5 First Come First Serve Algorithm

FCFS is a scheduler that instantly handles requests and tasks in the order they were put
in a queue. It is the most straightforward and straightforward way to schedule things. In
this kind of algorithm, the allocation goes to the process that asked for it first. A FIFO
queue is used to handle it.

3.6 Proposed-Algorithm-Workflow

Under the emerging paradigms, the cloud services platform may be administered in a
variety of ways that are beneficial to businesses and end users alike. There is a significant
challenge in the cloud when it comes to coordinating the schedule of Microservice jobs
among Host, Vms, Container, and Cloud Services. In order to address these issues, this
paper proposes a method of task scheduling that is both effective and practical. I plan on
comparing PSO, SJF, RR, and FCFS to examine cloud containers availability, production
cycle time, order to obtain higher, and CPU use.

4 Design Specification

CloudSim Discrete Event simulators Core is being used to represent fundamental features
of cloud services and offer the basic discrete event simulation functionality required for
delivering the above capabilities. Message passing between instances and elements in
CloudSim is a crucial

The core layer is accountable for of processes, actions, and relations between modules.
Visual representation of ContainerCloudSim’s primary data types. Here, we’ll discuss the
specifics of these courses. The core components of a ContainerCloudSim implementation
are a set of simulated components and a set of modelled applications. With the help of a
custom java application and some measuring in the construction process, I can emulate
the desired results.

• Datacenter-:Datacenter represents the hardware component of cloud services.
This class functions as a proxy for all servers at the physical layer.

• Host-:In a computer system, the Host class stands in for the hardware (servers).
Their specs are broken down into three categories: memory, storage, and computing
power, all of which are measured in MIPS (million instruction per second).

• VM-:Users may express the qualities of a virtual machine device class by its
memory, processing power, and storage space. Hosts often play the role of hosting
and managing virtual machines (VMs).
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Figure 3: Illustration and Simulations of Containerized Cloud Piraghaj et al. (2017)

• Container-: Virtual machines (VMs) act as hosts for containers, representing their
resources like memory, processing power, and disk space.

• Cloudlet-: Version with this object that runs in a containers or VM. The cloudlet
count, the agency’s starting timing, and its current state are some of the most
crucial configuration options.

• Datacenter components-: Implementing the foundational tenets of VM/Container
assignment in a facility that is able to operate both is the holy grail of modern data-
centers. The introduction of Container to cloud users and virtualization software
enables the Data centre to pick the most appropriate allocation method. As an
added bonus, ContainerCloudSim offers the following services for simulation pur-
poses:

• VM Provisioning: A property of the Host class, the VM provisioning process
will determine how the host’s CPU resources are divided up across running virtual
machines. The Host element is, in many ways, like CloudSim. Classes that manages
CPU cores and provides a model for simulation via interfaces that it implements.
alternatively, cores may be shared with other VMs on the host.

• Workload Management:The simulation supports containers installation at both
the virtual machine and container levels. Each package’s systematically analyze are
set at the virtual machine (VM) level. Each application services can be allocated a
certain number of resources per the structure’s specifications.

• CloudletScheduler:As with virtual machines, programs (here called Cloudlets)
may be placed within containers. Extending the CloudletScheduler abstract meth-
ods allows for the implementation of alternative techniques for measuring the dis-
tribution of resources across Cloudlets inside a container. The ContainerCloud-
Sim bundle has time-shared (ContainerCloudletSchedulerTime-Shared) deployment
rules.
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• ContainerAllocationPolicy:When assigning containers to virtual machines, this
abstract class stands in for the placement policy that will be used. To allocate
containers, ContainerAllocationPolicy determines which available virtual machine
(VM) in a given data center satisfies the container’s distribution criteria, such as
ram, store, and availability.

• VmAllocationPolicy:The abstract data type not only sets the consolidation rules
at the containers and VM layers, it also implements the optimizeAllocation function
that is responsible for assigning virtual machines to hosts.

• Workload Management:Cloud applications are characterized by their highly
changeable workloads. This is because ContainerCloudSim allows for the simu-
lation of cloud apps’ changing required to fill inside a CaaS setting. To learn about
container-level resource needs, I used CloudSim’s preexisting Consumption Model.
As an abstract class, the Utilization Model allows simulated users to acquire unique
workload characteristics by overriding the getUtilization() function. As input to the
getUtilization() function is the duration of the simulated, and as output is the pro-
portion of each Cloudlet’s compute time that was actually used throughout the
experiment.

Figure 4: ContainerCloudSim classes Piraghaj et al. (2017)

4.1 Lifecycle of Simulation Modeling

Within the container carrying out the tasks, the simulating execution of job pieces is
handled. In this regard, the status of the currently running job is updated at each iteration
of the simulation. The Server class’s updateVMsProcessing() function is invoked at every
simulated sampling interval. The update VMsProcessing() function takes a simulation
time value as its devices generate. Each host is then prompted to modify the execution of
all of its virtual machines through a function call (updateContainersProcessing()). Each
virtual machine (VM) must repeat the procedure in order to refresh the process of its
containers, so each containers must repeat the process in order to update the process of
its applications. The container-level technique provides the quickest expected completion
time for all tasks executing on the container. The containers with the quickest turnaround
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times are the ones whose results are sent back to the host VM. At the end of the day, only
the VMs with the quickest total finishing time are sent back to the Datacenter from the
network level. If the Datacenter class receives a time value earlier than the current time,
the current time will be reset and the procedure will begin again at that moment. The
next model phase then is determined based on the predicted time, as well as an activity
is planned in the simulated core at that moment.

.

5 Implementation

The primary objective of the new design is to solve problems with the traditional method
of scheduling tasks by using a novel approach to scheduling tasks. The system’s infra-
structure was acquired from Amazon’s Web Services (AWS dedicated-hosts) and (AWS
instance-types) and has been taken into consideration for one Datacenteres each data-
center having two host computers. Each host machine has the potential to allocate up to
20 VMs, depending on the number of cloudlets, and each Virtual Machine will have two
cores, allowing for the creation of two containers simultaneously. When doing the study,
I will take into account VM CPU usage,container assignment, time consumption, and
memory utilization before coming to a conclusion on the performance of the Scheduling
algorithms. The assignment of VMs and containers is determined by PSO,FCFS,SJF and
RR algorithms.

Table 1: Configuration of the server, VMs, and containers
Server Configurations

Server type CPU Memory (GB) Population
m4 24 192 2

VM Configuration
t2.medium 2 4 20

Container Configuration
- 1 1 40

The Virtual Machine Manager installed on top of the physical servers relays inform-
ation like the host status and the needed container list to the consolidation manager,
demonstrating the potential of ContainerCloudSim for analyzing TaskScheduling. All
the use cases I looked at have the same basic architecture. When a migration is sched-
uled, VMM notifies the consolidation management of the host’s current condition and
provides a list of container that will be moved. The consolidation management selects
where containers will go and then asks that resources be made available there.

Depending on how the containers are mapped to the VMs, the resources are used in
a variety of ways. In order to learn more about container to virtual machine mapping
methods like PSO,FCFS,SJF and RR I may use ContainerCloudSim. Here, I provide a
case study illustrating how ContainerCloudSim may be put to work to probe the impact
of container placement methods. Three distinct placement strategies are analyzed.
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5.1 Proposed Task Schedulers Architecture

In the first step, the given workload is analyzed and used to inform a characterisation
model used in the process of classifying the application. Based on their respective re-
quirements for computing power, memory, and network connectivity, applications are
separated into three distinct categories. The second step of scheduling algorithms in-
volves checking against the previously described situations to determine whether a new
virtual machine (VM) should be added or an existing one used. The suggested paradigm
guarantees that requests using the same resource group all belong to the same pod.
Likewise, by grouping requests of the same kind together, the likelihood of duplicate
requests for the same set of resources is reduced. As a result, increased resource utilisa-
tion is the implementation and demonstration of the theory, allowing for a decrease in
resource contention and an improvement in performance metrics by avoiding over- and
under-utilization.

5.2 Stacking of Containers

As part ofthe thesis, I investigate using the Cloudsim Simulation platform to emulate the
cloud environment and undertake the necessary analysis of the container choosing policy
optimization technique. Containers have been shown to be a more light virtualization
technique than virtualization hypervisor layers. Containers isolate workloads while gen-
erating the overheads that hypervisors do. The virtual machines that host the containers
provide an additional degree of protection and separation for unknown incoming work-
loads. Simulation models assist us in comparing novel resource management techniques.
The simulation model allows us to replicate large - scale distributed network in order to
test resources plans and policies without had to reach cloud services, which is a costly
and time-consuming job. The simulator also allows for the verification and testing of
different resource procedures.

5.3 Container Provisioning

In the simulation model, containers are provisioned in the following ways: at virtual
machines. Whenever container are added to virtual machines (VMs), the amount of
processing power allocated to each container must be specified; however, at the container
level, a variable amounts of resources may be allotted to each application operating inside
the container. There are also abstract classes for managing memory and bandwidth
consumption for containers, allowing them to be allocated dynamically to processes.

5.4 Container Consolidation

The study’s goal is to validate the suggested algorithm’s efficiency in a cloud data center in
terms of increasing processing time and energy usage via the use of CloudSim simulation.
In container cloudsim, I use the Container as a Service architecture to replicate a data
center with a few hundred physical nodes, each hosting a variety of containers and one of
four distinct kinds of virtual machines. Below is a table detailing the various host types
and their distinguishing traits.
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5.5 Simulation Scalability

ContainerCloudSim is a lightweight and scalable cloud simulation tool that uses contain-
ers. I shall run the simulation using workloads for PSO,FCFS,SJF and RR and set up
the experiment with a container initial placement strategy to examine the sustainability
of the built simulator. The same test is run with workloads varying their normal size.
Both the number of hosts and the number of virtual machines (VMs) are assumed to be
the same for the sake of this comparison.

To demonstrate the efficacy of the suggested work in a real-world setting, an applic-
ation designed for that purpose must be installed in an easy manner on a simulation
platform. Cloudsim simulations of the proposed scheduler in action provide for a more
thorough understanding of its potential. Real implementation requires carrying out the
procedures shown, while the simulation of this task may benefit from the information
provided.

Figure 5: Simulation

5.6 Code Implementation

This part digs further into the implementation structure of the CloudContainer CloudSim
model, where it keeps a separate category for each element, in order to include the
Container Scheduler.

5.7 Development Structure

The Container Task Scheduler model was simulated in Cloudsim. In order to simulate
the scheduling of virtual machines and containers, I will utilize the PSO,FCFS,SJF and
RR algorithms.

Figure 6: Development Structure

• Cloud-Sim.init - When creating any structures in CloudSim, it is necessary to ini-
tialize the CloudSim Packages.

• Container-Allocation-Policy - Determining how containers will be allocated. The
allocation of Containers to Virtual Machines in the data center is controlled by this
policy.
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• Host-Selection-Policy - The Virtual Machine (VM) Policy Formulation. Whenever
a hosts is found to be overrun, this policy defines whether virtual machines should
be used.

• host-List - When compiling the host lists, I take into account the total number of
nodes.

• cloudlet-List - In this implementation, a simulated work load is utilized. These
load files are generated using a mathematical model. CPU, memory, storage, and
network bandwidth are only some of the hardware variables evaluated.

• vmList - Compilation of the defined virtual machines

• Container-VmAllocation-Policy - In this part, I present the above-described preset
algorithms as policies for allocating VMs to containers.

• cloudlet-List,container-List,vm-List - Lists of cloudlets, containers, and virtual ma-
chines (VMs) are created and sent to the Datacenter broker.

• Container-Datacenter-Broker - This class will get all of the knowledge that was
been reviewed.

• submit-Cloudlet-List,submitContainerList,submitVmList - Sending a list of cloud-
lets, containers, and virtual machines to the datacenter provider

• CloudSim-start-Simulation,CloudSim-stop-Simulation - By providing the aforemen-
tioned information, the simulation may begin, run its course, and display the out-
comes.

6 Evaluation

With ContainerCloudSim, this test case hopes to understand how a certain container
selection method affects the productivity of the container consolidation procedure. The
data, including the host’s state and a list of containers, is sent to the consolidation man-
ager through VMM. The consolidation manager makes the decision on where containers
go, and then asks that resources be made available there. manager, which runs on a dif-
ferent system, makes the decision on where to relocate containers and then asks resources
from the target host.
In order to get a better grasp on the data processing and time consumption, I have
adopted the container model and scheduling model, assigning the vm schedular to the
container model. This allows us to conduct in-depth analyses ofthe progress and provide
timely updates to other modules, including the data center, the vms, and their depend-
encies.
As tasks are being carried out, several scheduling techniques are applied at various
points. The virtual machine assignment phase makes use of Scheduling algorithms:
PSO,FCFS,SJF and RR.
With the configuration of 2 datacenters, each datacenter having 2 host systems, and each
host system having 10 virtual machines (VMs), and required containers being assigned as
per the requirement, this setup has been done on Container cloudsim for the purposes of
validating resource utilization, maintaining resource load balance, and increasing system
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performance by reducing the amount of processing that needs to be done.
The container cloudsim software consolidation manager will check through the workload
files and divide them once it has processed anywhere from five to ten different types of
workload-related files. The workload file will be assigned to a particular virtual machine
(VM), which will depend on availability and the configuration. The decision will be made
by the scheduling algorithm, which is scheduled and defined in the simulation. With a
variety of factors, the performance factors will assist us in determining which algorithm
provides the best possible results. In the beginning, I will visualize the assignment of
containers with respect to VM. This will help us to understand the scheduling progress,
such as how frequently the VM is used and how many containers are assigned in parallel
with the processing time of individual workloads using various scheduling algorithms, I
will discover which algorithm is performing most effectively.

6.1 VM and Container Scheduling

Figure 7: FCFS Schedler Figure 8: Round Robin Scheduler

Figure 9: SJF Scheduler Figure 10: PSO Scheduler

Based on visual analysis. Once the procedure is complete, the next available virtual
machine (VM) and container (container) will be assigned by FCFS. Round Once the time
limit has been reached, Robin will cease processing that task on the VM container and
initiate a new one; the old one will be returned to the queue. This is determined by
Robin’s analysis of the cloudlet. To begin a new task, SJF will first locate a shorted-
availability container with available resources, then wait for that container to complete its
execution. Once the PSO has finished analyzing all of the cloudlets and their workload
and the availability of containers, it will begin processing the workload in the order
calculated previously and using the predefined VM container.
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6.2 Processing Time with Various alogrithm

Figure 11: Processing Time Vs FCFS, RR, SJF, PSO Scheduler

6.2.1 Makespan

The time taken from the beginning of a project to its completion is called its makespan.
The goal of a multi-mode resources restricted task scheduling challenge is to develop the
short logic scheduling feasible by making the most effective use of available resources
and allocating the fewest possible extra resources in order to meet the required minimum
makespan. I analyzed the Processing Time of FCFS, RR, SJF, and PSO Scheduler using

Table 2: Processing Time and Makespan for FCFS, RR, SJF, PSO Scheduler
FDFS Round Robin SJF PSO

Processing Time (Seconds) 1723.64 1689.33 5035.51 1674.77
Make Span 3794 4247 3974 2900

the same workload on a cloud simulator with the same sort of data center having the
same host machine and virtual machines with containers.The visualization of processing
time shows PSO on top, then RR, then FDFS, then SJF. The SJF scheduler is slower
than alternatives.
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6.3 Processing time and Makespan evaluation with Schedulers

Figure 12: Processing time Figure 13: Makespan

On a cloud simulator with the same kind of data center, using the same host machine
and virtual machines with containers, I compared the Processing Time and make span
of FCFS, RR, SJF, and PSO Scheduler with multiple workloads. There is no fluctuation
in processing time while working with little cloudlets, but this changes dramatically as
the demand does. I have modeled a wide range of workloads, each with its own unique
processing time. After graphing the data for each of the aforementioned task schedulers,
I came to the conclusion that PSO Scheduler performed the best overall.

Table 3: Processing Time and Makespan for FCFS, RR, SJF,PSO Scheduler
Processing Time (Seconds)

Workload FDFS Round Robin PSO SJF
WL1 11.86 9.03 8.8 16.12
WL2 53.61 52.6 48 128.63
WL3 125.24 128 123 347
WL4 242 255 238 673
WL5 405 413 393 1151

Makespan
WL1 3794 4247 2900 3974
WL2 4142 4814 3240 4245
WL3 4711 4699 3263 4457
WL4 4784 5501 3053 4087
WL5 4960 4632 2839 5451

7 Conclusion

As the number of virtual machines (VMs) and containers (Containers) using a given host
CPU increases, I have found that their performance slightly degrades. As the workload file
sizes grow above a certain limit, though, the process time shifts. To evaluate the efficacy
and effectiveness of container consolidation with the chosen Scheduler, I compare identical
workloads with a similar test executed on virtual machines hosted within containers.
When compared to the time required by the newly developed approach to execute an
operation is much different. After being subjected to several types of workloads, the
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average processing times have been studied. Processing time analysis places PSO at the
top, followed by RR, FDFS, and finally SJF. The goal is not to demonstrate the superior
scheduler, but rather to demonstrate how we may simulate with schedulers using old log
files and understand the conclusion for use in future implementation. .

7.1 Future Directions

In additional, the work that will be carried out in the future in relation to this may
include the implementation of these algorithms on the real code base and the observation
of the outcomes of the application. The fact that the results of the simulation have
been verified with the output values has provided us with some useful insights into the
possible behavior of this algorithms in real life. Because the workload will be almost

Figure 14: Time Vs FCFS, RR, SJF, PSO Scheduler

identical after the implementation after a long long run, the workload log files will be
gathered and stored at a central destination. After that, I will be able to build a system
that will fetch all of the workload files from real container based platform and simulate
with multiple custom schedulers and visualize with the base of the simulation, I will
be able to implement the schedulers in real time and can increase the performance by
decreasing the processing time.
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