
Food Image Recognition and Calorie
Estimation Using Object Detection

Algorithms

MSc Research Project

Data Analytics

Manoj Kumar Yuganathan
Student ID:x20179189

School of Computing

National College of Ireland

Supervisor: Professor Majid Latifi

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Manoj Kumar Yuganathan

Student ID: x20179189

Programme: Data Analytics

Year: 2021-2022

Module: MSc Research Project

Supervisor: Professor Majid Latifi

Submission Due Date: 31/01/2022

Project Title: Food Image Recognition and Calorie Estimation Using Object
Detection Algorithms

Word Count: 1400

Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Manoj Kumar Yuganathan

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Food Image Recognition and Calorie Estimation
Using Object Detection Algorithms

Manoj Kumar Yuganathan
x20179189

1 Introduction

In the Food-101 dataset 1, There are 101 different classes of food, with 1000 labeled
images per class available for supervised training.This project aims at combining object
detection algorithms along with Google’s pre-trained Inception v3 algorithm and fine
tuning the results using data augmentation.

2 System Configuration

2.1 Hardware Requirements For Local Machine

The implementation is carried out locally using a Jupyter Notebook and the Python
version used is 3.9.

Operating System: Mac Os

Processor: Intel Core i7-7300H @ 3.1 GHz

RAM: 16 GB

Hard drive: 512 GB SSD

GPU: AMD 1650 Ti

2.2 Software Requirements

The project implementation is carried out in the latest version of Python 3.8 and the
Jupyter notebook interface is used for visually representing the output of the deep learning
models. Inception v3 models are tuned based on various hyperparameters and the results
are concluded in the Jupyter master notebook. An user interface is built using ReactJs,
Javascript, HTML and CSS for aiding the end users to upload images and test the results
of the deep learning model. The packages included in the project are listed as follows:
1. Python 3.8
2. React JS
3. HTML

1Food Dataset:https://www.kaggle.com/kmader/food41

1

https://www.kaggle.com/kmader/food41


4. CSS
5. JavaScript
6. Jupyter Notebook
7. Visual Studio Code Editor
8. TensorFlow
9. Keras
10. pandas
11. matplotlib
12. os
13. urllib
14. json
15. tqdm
16. opencv

3 Dataset Description

The dataset for this project is generated from Kaggle 2 and it is an open source public
dataset available for research purposes. The dataset has 101 categories of food items and
each category is labelled with a minimum of 1000 images. The dataset has been further
expanded in size by subjecting the dataset to a series of data augmentation steps.

Figure 1: Model Loss Comparison Metrics

2Food Dataset:https://www.kaggle.com/kmader/food41

2

https://www.kaggle.com/kmader/food41


4 Environment Setup

The environment setup has been carried out locally and the local environment needs to be
setup by installing a series of softwares and libraries. Beginning with the installation of
python 3.8 followed by Anacondas and Jupyter notebook for testing, training and tuning
the deep learning models and analyzing them. The Jupyter notebook makes use of the
Tensorflow library and the GPU needs to be computationally intensive to handle deep
learning and neural networking of the images. For the implementation of user interface,
install NodeJS and npm which are library management providers and Visual Studio Code
is used as the editor for implementing the frontend UI medium in ReactJS.

For running the Jupyter notebook, navigate to the master notebook and run the entire
master notebook to view the results. To run the frontend setup, go to the command
prompt or terminal and type npm install to install all the dependencies libraries. Then
run npm start to get the application up and running on the browser. The end users can
now view the application running on the local port 8080 and test the deep learning model
by uploading test images.

5 Training and Implementation of Model with Tensor-

Flow

The data is transformed to a standard resolution and trimmed to filter out unwanted
noise and distrubance. The 3 dimesnional images are transformed into 2 dimesnsional
images for faster processing. The models are built by using the combination of different
hyperparameters and learning rate schedulers to fetch the most successful models based
on InceptionNet v2 architecture. The Figure 4 shows the model running and identification
of a person in the Azure Machine Learning workspace. This is a workspace we can build
the model by creating Jupyter Notebooks.

The 5,6,7 shows the pipeline creation for this MLOps process. The Azure Machine
Learning has the inbuilt feature of MLOps (Machine Learning Operation) that can be
accessed by the options Azure ML Pipeline. The Pipeline can be accessed by the trained
model with the library ”azureml” package in our code. The running pipeline is shown
clearly in the second and third figures that are clicked to view the experiment outputs and
also if the code is changed in the workspace and if you run all the model building pipeline
will trigger to create the new endpoint that can be accessed by the web application to
implement the model in web application.

The Completely trained model will generate a REST API, Through this REST API,
you can easily access the model to test and validate. This model-trained end-point API
can be accessed with the flask in the back end to easily Validate the authentication
process of a Masked Face person. The Figure 8 shows the end-point that is generated for
our model and is integrated with the web application.

Finally, we will discuss the model integration part with the web application. Previous
figures show the implementation and model building with Azure Cloud Service. The
model was built and integrated with the MLOps part with the help of the Azure Machine
Learning service. Now we see how to run the developed web application model with flask.
From the figure 2, we see the environment setup we made in our local machine to run the

3



Figure 2: Folder Hierarchy of the Project Setup

4



Figure 3: Folder Structure Jupyter Notebook in Azure Machine Learning Workspace

5



Figure 4: Hyperparameters Tuned For Implemetation

web application. From the image 9, we see the ”app.py” which is the heart of the project.
This is the file that uses the flask framework and triggers all UI to communicate with the
back-end developed model. After running the main file app.py the server started that
server is communicated with the model that is deployed in the Azure Container. This
interaction of recognizing the person is identified by REST API which is generated as an
end-point that we discussed in the previous paragraph.

6



Figure 5: Object Detection of Food Categories

7



Figure 6: Accuracies Based on Categories

Figure 7: Inception Net v3 architecture

8



Figure 8: Comparison of Validation and Loss Metrics across Models

Figure 9: Unique Prediction Categories

9


	Introduction
	System Configuration
	Hardware Requirements For Local Machine
	Software Requirements

	Dataset Description
	Environment Setup
	Training and Implementation of Model with TensorFlow

