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1 Introduction 
 

This document details the Project configuration for the MSc research project ‘Assessment 

Methodology for Credit Models to Meet European Regulatory Expectations’. 

 

2 Hardware and Software Used 
 

2.1 Hardware 

 

The research project was developed on a custom build desktop PC. Additional analysis and 

documentation were competed using a Lenovo Legion 5 laptop. Specifications for both 

machines were as follows 

 

Specification Desktop PC Laptop 

Type Custom Lenovo Legion 5 

CPU AMD Ryzen 5 3600 AMD Ryzen 5 4600H 

GPU Nvidia RTX 3070Ti Nvidia GTX1650 

RAM 64GB 32GB 

Operating system Windows 11 Home 64 bit Windows 11 Home 64 bit 

 

Note that for full functionality a machine with 64GB RAM is the recommended minimum 

specification at present. 

2.2 Software 

 

Software used in the research included the following: 

Software Role 

Windows 11 Home (64 bit) Operating System 

PyCharm Community edition Development of Python code 

Microsoft SQL Server Development and housing of relational 

database 

SQL Server Management Studio Management of SQL database and testing of 

generated tables 

Microsoft Power BI Visualization of results in final reporting 

MS Excel Initial documentation of results, generate 

visuals for report 

MS Word Complete checks of results, verify outcomes 

MS Edge Research, development of report 
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R Development of Power BI visualizations 

Overleaf LateX editor for report generation 

2.3 Python Libraries 

Within Python an extensive range of libraries were used to develop the research. All libraries 

used are listed below. 

 

Primary purpose Library Modules 

Data preparation and 

manipulation 

Pandas   

 Numpy  

 Math  

   

Visualization MatPlotlib Pyplot 

 Seaborn  

Modelling Scikit-Learn Preprocessing, 

Model_selection.train_test_split 

Linear_model.LogisticRegression 

Ensemble.RandomForestClassifier 

Ensemble.AdaBoostClassifier 

tree 

naïve_bayes.GaussianNB 

metrics.classification_report 

metrics.confusion_matrix 

metrics.roc_curve 

metrics.roc_auc_score 

metrics.precision_recall_curve 

metrics.auc 

metrics.f1_score 

metrics.precision_score 

metrics.recall_score 

 

model_selection.RandomizedSearchCV 

model_selection.GridSaerchCV 

 logitboost LogitBoost 

 xgboost xgb 

 TensorFlow  

 Tensorflow_hub  

 Tensorflow.keras Models, layers, callbacks, 

BatchNormalization 

 Imb_learn Over_sampling.SMOTE 

 Scipy  

 optbinning BinningProcess, Scorecard, 

Scorecard.plots 

Post model processing Pickle  

   

Model explanations Shap  

   

Database interaction Pyodbc  
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General file interaction 

and control activity 

Time  

 datetime date 

 os  

 joblib  

 pickle  

 zipfile 

 

 

 gc  

 pprint  

 

 

 

3 Methodology 

3.1 Initial Data Preparation 

Data was sourced from a publicly available credit scoring dataset housed at 

www.Kaggle.com. The dataset represents credit scoring data used in a Kaggle competition to 

create a model displaying the greatest possible predictive performance. The website link for 

the data is: https://www.kaggle.com/c/GiveMeSomeCredit A screenshot of the webpage used 

is shown in Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Kaggle website for Dataset used in research 

 

The data was sourced in .csv file format. Only the training dataset was used for the research 

as the test dataset contained on the site does not include the response variable, being intended 

only for generating predicted values for submission.  

 

Based on this file a SQL server database was created using SQL Server Management Studio 

(SSMS) to store both the initial data and subsequent tables to be generated by the research as 

part of developing the credit model database. The initial database (1 table) was generated 

using the wizards available within MSMS as follows:  

 

 

http://www.kaggle.com/
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1. A new database named Credit was created using the SSMS wizards: The process is 

illustrated in the screenshots in Figure 2 

 

 

Figure 2: Process to Create initial database 

 

 

2. Default settings were maintained here to create a basic database table to use to extract 

the data in a (simple) replication of the process typically seen in industry where large 

EDW arrangements would be used to store risk data  

 

 

 

The data stored in the table contains 10 independent variables and a response variable as 

detailed in Table 1 below  
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Table 1: Initial Variables for Credit Modelling dataset 

 
 

 

A unique index column in also provided with the data. This index was used to form a unique 

identifier for each record within the database, equivalent to a customer number. 

 

 

3.2 Data Ingestion  

 

The data was ingested into the Python scripts used to carry out the analysis. A function 

(Import_Data2) was created to connect to the SQL server database using the pyodbc library 

and select the data from the table containing the dataset. The code function is shown in Figure 
3 
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Figure 3: Python function to bring in data from database 

 

 

The process is parameterised with the details of the database, including Username and 

password. In practice this would be an expected level of security. For this database the 

username is set to ‘Database1’ and the password is ‘credit’.  

 

 

To ensure data is successfully brought in a second code script was created to enable the data 

to be read directly from the original .csv file in cases where there is an error encountered in 

the database read. This is contained in the Import data function within the CreditData.py 

module, with the import code within the main.py module branching as required if an error is 

encountered. (Figure 4, Figure 5.). Following this Nan values are converted to 0’s for certain 

variables -this is to address cases where a null is used to indicate no arrears and 0 is the 

appropriate value to apply here.  

Figure 4: Code to take data from original .csv file 

 

 

 

 

 

 

 

 

 

 

Figure 5: Code to bring in data within main.py 

 

 

 

3.3 Exploratory Analysis and Feature Engineering 
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3.3.1 Exploratory Analysis of Data 

 

The candidate variables for the model were subjected to Exploratory data analysis (EDA) 

using the code within the summview function within the CreditData.py module. Summview 

produces descriptive statistics for the variables in the dataset including producing a 

correlation heatmap of the variables 

 

 

Figure 6: The Summview function 

 

The code also gives a visual indication of the predictive power of the candidate variables by 

producing boxplots and histograms of the variable, as well as creating decile bins for the 

variables and using these to calculate the weights of evidence and the event rates which are 

then plotted (Figure 7) 
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Figure 7: Example of summary plots produced by summview function 

  

 

 

Based on this exploratory view of the data a number of issues were identified with the data 

that were subsequently addressed in the code. A series of rules were applied to the data to 

ensure that the credit logic was adhered to. 

 

1. age must be between 18 and 80 

2. monthly income must be less than 500k 

3. NumberOfTime60-89DaysPastDueNotWorse - capped at 25 times 

4. debt ratio must be < 200000 - above this is simply too high for any reasonable 

consideration 

6. NumberOfTimes90DaysLate capped at 25 similar to 60-69 factor 

7. RevolvingUtilizationOfUnsecuredLines typically should not be much greater than 1 given 

the ratios definition (cc may allow overdraw etc) - cap at 1.5 

 

 

Note that in addressing these we have focused on a plausible business interpretation rather 

the theoretical form of the data – this research is intended to reflect a real-world modelling 

outcome and thus the guiding principle was plausibility (see Figure 8: Distribution pre and post 

cleaning). 
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Figure 8: Distribution pre and post cleaning 

 

 

The boxplots of the variables for the two event rates were also considered to assess which 

factors appeared to be predictive. 
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3.3.2 Feature Imputation 

 

On aspect revealed by the analysis was the presence of missing values for two variables. The 

level of missing MonthlyIncome information in particular is very high at just under 20%. 

While setting this to 0 was considered as a conservative approach, ultimately a MICE 

imputation was applied to the two variables as shown in Figure 9 
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Figure 9: Imputation code 

 

In a small number of instances this imputation led to negative values for the imputed 

variables, and in this case the variable was set to zero. 

3.3.3 Feature Generation 

 

Next additional Ratio variables are created based on the data in the original dataset. These 

represent additional financial information for case, for example indicating how often a case 

has gone 90 days overdue relative to how often they went 60 days overdue and are added to 

see if they add additional value to the models. Some clean-up of the variables is also required 

here to address specific scenarios. This is shown in Figure 10: 
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Figure 10: Generation of additional variables 

 

We also need to simulate additional variables to enable us to calculate the capital 

requirements for an institution. Loss Given Default (LGD) and Exposure at Default (EAD) 

variables are therefore calculated using the code in Figure 11 

 

 
 

Figure 11: Code to simulate LGD and EAD dataset 

 

The distributions used here follow the approach detailed within the literature, notably (de 

Servigny & Renault, 2004). These capital variables are maintained in a separate dataset to the 

modelling data and will be later moved into the modelling database. Distributions for these 

variables are shown in Figure 12: Distribution of simulated LGD and EAD values 

 

 

Figure 12: Distribution of simulated LGD and EAD values 
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Once these steps are completed the data are then standardized so that all variables are centred 

around 0 with standard deviation of 1.  This is completed using the Normy function within 

the CreditModeller.py module (Figure 13) 

 

 

Figure 13: Code to standardize variables 

 

 

This dataset is then passed through the Summview1 function again to repeat the exploratory 

analysis and ensure that the data is ready to progress to modelling. 

 

 

 

4 Data Modelling 
 

4.1 Data Splitting 

 

The dataset created above was split into Train, test and validation samples in a Ratio of 

60:20:20. This was completed using the Splitter() function within the CreditModeller.py 

module (Figure 14). 
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Figure 14: Code for splitting dataset 

 

While the Train/Test /Validation data split would typically be used in a Build / test / 

hyperparameter tune approach, in this instance the validation dataset will not be used for this. 

Regulators typically expect that (i) a model will undergo initial review with a separate data 

sample – this is analogous to the test sample. In addition, they expect that models will be 

tested on a regular basis using a separate out of time sample. For our research the validation 

sample will fulfil this role. 

 

 

4.2 Data Class Imbalance  

 

A typical feature of credit default data is significant class imbalance. This is due to the nature 

of credit risk where the aim is to only lend to those who will ultimately repay the debt. For 

this dataset we see an event rate of 6.67%, which is heavily imbalanced. 

 

To address the imbalance SMOTE resampling was applied to the data. A function Smoter() 

was created withing the CreditModeller.py module (Figure 15). This approach ensures that the 

frequency of event is equalized across the two outcomes through simulating additional data 

points for the underrepresented class. As a result, the event rate is now increased to 50% in 

the training dataset. SMOTE was only applied to the Training dataset.  
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Figure 15: code for smote resampling 

 

 

4.3 Modelling 

A range of Different models are developed as part of the research. The configuration for each 

will be described below. All models are fitted using functions within the CreditModeller.py 

module 

 

4.3.1 Logistic Regression 

 

Logistic Regression is fitted using the LogReg() function 
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Figure 16: Logistic Regression Modelling code 

This applies the LogisticRegression module within Scikit-Learn to fit the model. The 

standard plot of feature importance is produced as part of the analysis and the final model is 

saved to a file for future use.  

 

Once the model has been fitted by the function, model diagnostics are carried out using the 

RocPlt() function within the Credit Diagnostic.py module. This generates a series of 

diagnostics including a graphical view of the confusion matrix, ROC curve, K-S curve and 

precision recall curve (Figure 17), and a dataframe containing a range of performance metrics 

for the model. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: diagnostic output from RocPlt function 

 

All of the metrics produced will subsequently transferred into the Modelling database for 

further use. The predicted values for each of the train, test and validated samples under this 

model are also calculated and saved into dataframes. 

 

As an indicative view of any overfitting the diagnostic information was also produced for the 

Training dataset. The figures between the two are comparable, giving a degree of comfort 

that overfit is not an issue here. 

 

The same diagnostic approach is applied to the test dataset for all models. As such we will 

not repeat the description for this in the sections that follow. 

 

 

 

4.3.2 Binned Scorecard Logistic Regression 
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Binned scorecards developed using weights of evidence are a common approach applied to 

retailing credit scoring. The advantages of the approach include that it is relatively easy to 

score and understand the modelling outcomes using this approach. 

For this research Pythons OptBinning library was used within the Scard() function. This 

applies an optimised weight of evidence-based binning to the dataset and uses this to fit a 

logistic regression via scikit learns LogisticRegression classifier (Figure 18). As such the 

approach is comparable to the previous, with any difference in performance being down to 

the additional binning step. 

 

 

Figure 18: Scard() function to fit Binned Logistic Regression 

 

 

 

4.3.3 Neural Network   

 

A relatively simple Neural Net model was fitted to the data user the Netter() function. One of 

the aims was to monitor the effect of increasing the number of model epochs on the fit time 

for the model as an indicator of complexity. To achieve this a custom callback function 

(Figure 19) was created to monitor this as part of capturing the history for the model: 
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Figure 19: Callback code applied with Neural Net 

 

A Neural Network was then fitted to the data using Tensorflow.Keras. An input and dense 

layer was fitted with a relu activation function. A sigmoid activation function was applied to 

the output layer. A binary cross entropy loss function is applied. The model is designed to run 

to up to 200 epochs, with a possibility of early stopping applied if 10 successive runs fail to 

further improve performance. 

 

Once the model is fitted it is saved to a .h5 file for later use. The history data for the model is 

combined with the information from the custom callback and also output by the function for 

later assessment. 

 

 

Figure 20: Code for fitting Neural Network 
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4.3.4 Random Forest 

 

Random Forest was fitted using the RFMod() function. This applies sklearns 

RandomForestClassifier() to fit the model.  

 

Hyperparameters for the model were tuned using the RandomsearchCV and GridsearchCV 

modules. Initially 50 randomly selected fits are employed in a randomised search across a 

range of the hyperparameters. Once this has selected a localised ‘best’ space, the 

gridsearchCV approach is then used to refine this further to look for the best possible hyper-

parameter set. The final hyper-parameters selected from this are then the ones used in the 

final fitted model. The search algorithms are both applying a 3-fold cross validation in their 

search. This will also provide some assurance against overfitting of the model. A range of 

hyper-parameters are considered in this approach as shown in Figure 21 

 

 

Figure 21:GridSearchCV as applied to RandomForest model 

 

The results of each step of the hyperparameter tuning are also retained during this step to 

enable a view of the changing complexity of the model as the hyperparameters are adjusted. 

Fitting time for each model is also captured to assess how the model complexity affects this. 

The final model is also saved to file or future use. 

 

4.3.5 XGBoost 

 

An XGBoost model is fitted using XGBClassifier() from the XGBoost library. This is applied 

within the Booster() function in CreditModeller.py. Once again RandomSearchCV and 

GridSearchCV are used to tune the model hyperparameters, with an initial 50 point random  

grid being refined through Grid search. A 3 folds cross validation approach is again applied 

here. A range of parameters are tuned (Figure 22): 
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Figure 22: Hyperparameters tuned for XGBoost 

Once the gridsearch has completed the best hyperparameters identified by the model are 

passed to the XGBClassifier to fit the model. Outputs returned by the function include the 

model, the selected nest parameters and the results from each stage of the tuning process. 

 

 
 

Figure 23: fitting of XGBoost model 

 

In common with all models fitted, model diagnostics are obtained using the RocPlt() function 

withinCreditDiagnostic.py. The fitted model is also used to produce predicted probabilities 

for each of the test, train and validation datasets. 

 

4.3.6 AdaBoost 

 

AdaBoost is fitted using scikitlearns AdaBoostClassifier. This is applied within the Ada() 

function of the CreditModeller.py module. In common with the other tree based methods the 

hyperparameters are optimised using the randonSearchCV and GridsearchCV routines, with a 

3-fold cross validation employed and 50 initial random searches being used to identify an 

optimal space which is then refined using the grid search approach. 
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Figure 24: Hyperparameter tuning for AdaBoost 

 

Once again, the model is fitted based on the best parameters produced from this process.  For 

this the AdaBoostClassifier() within sklearn is applied. Results of this exercise, including fit 

times for the various hyperparameter combinations attempted are ultimately saved to pandas 

DataFrames, from where they are later uploaded to a SQL Server database. The model is also 

saved to file during this process.  

 

 
 

 

4.3.7 LogitBoost 
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Logit Boost is fitted using the LB() function within the CreditModeller.py module. Once 

again, the hyperparameters of the model are tuned using GridsearchCV and 

RandomSearchCV with a 3-fold cross validation applied and an initial random search of 50 

points. 

 

 

Figure 25: LogitBost Hyperparameter tuning 

 

Once the hyperparameters are identified these are used to fit a model using the LogitBoost() 

classifier from the LogitBoost library. Once again, the model and the tuning analysis is 

returned by the model and stored in pandas dataframes for later use. Model diagnostic is 

completed using the Rocplt() function and predicted values are generated using the model for 

the train, test and validation samples. 

4.3.8 Naïve Bayes 

Naïve Bayes is fitted using the NB() function within the CreditModeller.py module. This fits 

a Gaussian Naïve Bayes model from the scikit learn library. The fitted model is then saved to 

file. Model diagnostics are completed using the rocplt() function once again and predicted 

values are generated for the train, test and validation samples. 

 

Note that the CreditModeller module also contains a script to fit a support vector machine. 

However due to the extremely long fit times and memory requirements encountered this was 

not progressed with. This limitation of SVM as dataset size increases is a known limitation of 

this approach.  

 

 

5 Model Assessment 
 

Model Assessment for this research is considered under a number of different headings and 

addressed using distinct components of the developed code. 
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5.1 Model Predictive Performance 

 

Under the model performance heading we consider all generated  metrics that consider the 

predictive power of the model. As noted previously, diagnostics on the fitted model are 

created within the CreditDiagnostic.py module. This module creates a series of Graphical and 

tabular analysis to help understand the model’s performance. The graphic analysis includes: 

 

• ROC plot  

• Kolmogorov-Smirnov (KS) plot demonstrating the maximum separation between 

distributions 

• Precision-recall curve for the model 

• Graphical view of confusion matrix 

 

The AUC, the area under the ROC curve is the most common measure applied to assess 

credit default models, and this is produced within the graphic. This metric is typically 

superior as a measure in cases where class imbalance exists. However, within the literature 

there are instances of other metrics being used to assess classifier performance. Given this the 

model also computes a suite of additional metrics: Accuracy, precision, recall and F1, and 

these are produced as a dataframe when the diagnostic code is run. 

 

 
 

 Figure 26: Initial code for RocPlt() function 

 

The function assumes a threshold probability of 0.5 in classification, however a user can 

select a different value if they wish to look at the impact of this on the confusion matrix 

generated. 
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In terms of results for each of the models we can graphically compare the results for each: 
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It’s clear from the confusion matrices for each that different models take differing 

approaches, with precision and recall varying greatly across the different models. While 

classical approaches apply a greater tendency to misclassify goods as bads, tree based 

approaches appear to be more likely to misclassify bads as goods, which is an undesirable 

property for a credit default model.  

 

5.2 Model Explainability 

 

Model Explainability at both a global and local level is considered using he SHAP package. 

This applies an explainer to a model to generate a SHAP value for each entry, combining the 

features of a number of explainability approaches including SHAP and LIME. While this will 

differ from the classical approach for linear models and may lead to differing interpretation 

of most predictive factors, it will allow for a model agnostic approach, and in most cases for a 

simple logistic model will yield broadly similar interpretations.  
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Figure 27:Standard feature importance and SHAP feature importance for the fitted logistic 

regression model  

 

 

A different explainer is used for different model types. While this approach may lead to some 

loss of the model agnostic element of SHAP, it conversely will lead to better estimates and 

significantly faster run times. However, in practice the explainability element of the research 

is implemented in a manner that allows a user to change their choice of explainer depending 

on the model. In general however specific types of models will require either a specific 

explainer (e.g. Linear models require LinearExplainer) or the use of the general 

KernelExplainer. During the research it became clear that KernelExplainers, with their use of 

a localized regression fit to explain cases, require significantly longer run times in many 

cases. As such these are applied to a subset of the data to demonstrate the approach. The 

explainers used in this research are as follows 

 

 

Explainer Models’ explainer is applied to 

LinearExplainer Logistic Regression 

TreeExplainer Random Forest 

XGBoost 

 

DeepExplainer Neural Network 

KernelExplainer LogitBoost, AdaBoost, Naïve Bayes 

 

Note that not all models were successfully explained. The Logistic Scorecard failed to 

generate results using SHAP. The issue appears to be related to the way the optbinning 

package structures the model, which Shap cannot work with. At time of submission this issue 

had not been satisfactorily resolved and hence explanations for this model are not included. 

Logisitic scorecard general explainability is a given on the basis of the readily understandable 

nature of mode coefficients, however this is not model agnostic and would prevent direct 

comparison of models. 

 

Because Shap can provide both Local and Global explainability it is ideal for satisfying the 

regulatory requirements around explainability. Specifically, at a global level regulators 

require senior management and independent validators to be able to explain models and 
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understand what drives predictions. At a local level, both regulatory guidance and GDPR 

requirements necessitate the ability to understand individual predictions from the model. 

 

 

SHAP is implemented within the Shaper() function in the CreditExplain.py function. This 

function takes user parameters that allow different types of models to be explained 

 For all models SHAP is first used to produce Global explainability, producing a plot of 

overall feature importance as well as a violin plot that demonstrates how the individual cases 

contribute to the explainability of the model. The type parameter allows users to toggle 

between different explainers as required. 

 

Figure 28: Initial code for the Shaper() function 

 

For each explainer the function takes a subsample of the dataset to apply as the background 

distribution. This is then applied with the relevant SHAP explainer to generate the Shap 

values for the dataset. The code then generates plots of the overall importance of all features 

and the violin plot showing the contribution of the datapoints to the overall effect for a 

variable as shown in Figure 29. 
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Figure 29: Graphical Global output for Shaper() function 

 

The function also considers the Partial dependency for each factor in the model, producing a 

series of partial dependency plots for these (Figure 30) 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 30: Partial Dependency Plot from Shaper() 

 

 

The Shaper functions returns the final explainer used as well as the shap values for the data. 

This can then be used to obtain a local explanation specific to individual observations in a 

given dataset. A slightly different manipulation is carried out in Main,py depending on the 

explainer used, However the general sequence remains similar –  

• Obtain shap values for a subset of values from a dataset using the explainer 

• Get the base values for the analysis to obtain the expected value 

• Generate a waterfall plot of the explanation for the individual observations. 
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Figure 31: Generation of waterfall plots for individual values using SHAP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Waterfall plot example using SHAP 

 

 

The interpretation of the waterfall plots in Figure 32 is the straightforward, with the overall 

estimate for the observation being calculates as the expected value E(X) plus the sum of the 

contributions for the individual factors. 

 

5.3 Model Capital Assessment 

 

A key aspect of models used for credit default management is the contribution they make to 

the overall capital holdings for a bank. The probability of Default (PD) is one component of 

the calculation of the Risk Weighted Assets (RWA) for an institution 

 

We use the predicted probabilities generated by each model, combined with the LGD and 

EAD values we simulated earlier in the code (section 3.3.3) to calculate the RWA associated 

with each model. Given that LGD and EAD are constant for a given observation, this 

approach enables us to consider the impact of each model on the projected capital for the 

institution.  This analysis is completed in the CreditCapital.py module using the Cap() 

function. 
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Figure 33: Cap() function for calculating regulatory capital 

 

The Cap function applies the regulatory capital calculation specified within the Capital 

Requirements Regulation (CRR). The function allows the user to specify different exposure 

classes given that slightly different rules apply for each. Given the variables in our dataset we 

have assumed a retail exposure class for this research. 

 

Note that in calculating the RWA we have not imposed certain regulatory floors (for example 

some exposure classes place a lower bound on PD). This is to allow the research to 

demonstrate only the effects of the model choice. 

 

In terms of how a model contributes to RWA, the distribution of PD is critical due to the 

nonlinear relationship between PD and Unexpected Loss, which is the key element of the 

RWA calculation. This relationship is shown in Figure 34 while the underlying risk function 

applied is shown in Figure 35 

 

 

 

Figure 34: Relationship between PD and Loss 
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Figure 35: Basel Loss function 

 

As a result we see that the lowest RWA will be obtained when PD is either extremely low or 

extremely high. This is due to the loss at high PD values largely being expected loss. This 

means that a classifier that produces an extremely well separated distribution, such as 

Logitboost, is likely to generate very favourable capital outcomes, while one that is less 

definite, e.g. AdaBoost in our example, while require relatively high capital regardless of 

predictive power. Given the Underlying approach to capital assumes the other capital 

parameters LGD and EAD are independent of PD we also get no benefit when we 

subsequently model these. However excessively low capital is likely to lead to regulatory 

concerns, therefore there is a trade-off between the two extremes.   

5.4 Model complexity 

In assessing model complexity, we use predictive latency as proxy for complexity. Predictive 

latency is seen as being affected by both model complexity and model size and as such 

should serve as a good proxy for the overall complexity of the model. A number of variables 

could skew the results and therefore the research attempts as far as possible to fix a number 

of elements associated with the complexity estimation, for example: 

 

The same pandas dataframe structure is fitted to each model: this ensures that (i) the models 

are all tested on the exact same data and (ii) the data structure used is the same to ensure none 

of the models benefit from simply having more optimised data. 

 

The same machine is used to fit the data to the models. This ensures that differences in 

hardware do not influence the performance of the models. 

 

A common Python function is applied to both the atomic and batch predictive latency across 

all models considered. This is to ensure that any differences due to the coding approach are 

not a factor.  The code applied is illustrated in Figure 36 and Figure 37 
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Figure 36: Atomic latency code 

 

 

Figure 37: Batch latency Code 

 

6 Database Preparation 
A SQL Server database of modelling results is generated based on the results of the analysis. 

This is to enable (i) a permanent record of the modelled outcomes as well as (ii) the capacity 
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to augment this database with future modelling information. Such information would 

potentially help inform an organisations future modelling choices and (iii)a detailed record of 

the data used to make modelling decisions as typically required by regulators during on-site 

inspections and considered a key element of the model’s documentation. 

 

All information is written to the database using PYODBC. The Python scrip generates new 

database tables for: 

 

• The Test, train and validation datasets 

• The fit estimates from each stage of the gridsearch approach for the ensemble 

approaches and for the epochs of the Neural Network.   

• The predicted values from each model. 

• The capital parameters and EL and RWA estimates. 

• The timings for the complexity calculations for each model. 

 

Each of these forms a history of the modelling experience that can be leveraged to justify 

modelling choices to regulators against one or more of the criteria contained in the regulatory 

guidance.  The database tables are also related through various fields, for example the capital 

and test data are elated through the unique identifier. This is to allow potentially more 

complex queries to be created from the history database. 

. 

 

 

 

7 Power BI dashboards 
 

Power BI is used to generate dashboards to both visualize the results of the model 

developments and assessment and to provide monitoring and validation against the separate 

validation sample. This ability to effectively monitor and validate is a key regulatory 

requirement. 

 

For the purposes of demonstrating this aspect, the validation split (20%) from the original 

train/ test/validate split has been employed as an Out of Sample (OOS) dataset. This is 

typically the dataset that regulators would expect to see monitoring and validation carried out 

against, including backtesting and model performance. 

 

8 Installing and Running the Project 
 

8.1 Files included in submission 

 

The submitted files include: 

• The final database backup file. This includes the original dataset table used in the 

analysis 

• Python code to generate the results of the research. Note that the original dataset splits 

used are contained in the database. 

• The PowerBI dashboard generated for the database results 

• The original CSV dataset downloaded from Kaggle.com 
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These are stored within separate subfolders in the submission files and need to be restored to 

a single folder location that the code can be pointed to. The exception is the database backup 

restore, which should be restored to the appropriate location on the user’s system. Filepath 

will again need to be pointed to this. 

 

 

To install and run the project it is necessary to restore the database containing the data, and 

then modify the code to point to this.  Steps are as follows: 

8.2 Restore Database 

 

Open SQL Server Management Studio  

Right click on databases and select ‘Restore Database’ 

 

 

 
 

Select Device and search for the database to be restored. 
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8.3 Files required 

 

There is a standard dependency in the files used – the power BI requires a database in place 

to draw data from, the Python code requires appropriate file path structure to be defined at the 

start of the code etc. Details of setup are provided below. 
 

8.4 Running Python code 

 

To run the code the script should point to the database restored in section 8.1. Line 26 of the 

_main_ .py  module therefore needs to be modified to point to the server location for this 

database. 

 

 

 
 
The script also needs to point to the directory where the python code is stored. Line 36 can be modified to 
achieve this. 
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8.5 Possible issues and known bugs 

 
TensorFlow’s latest version is known to have some issues interacting with SHAPs DeepExplainer. The SHAP 
explainer for this project was run against TensorFlow 2.5.0. However some issues were identified when 
attempting to run using TensorFlow 2.9.1 
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