

Configuration Manual

MSc Research Project

Data Analytics

Albert Winston

Student ID: X20136331

School of Computing

National College of Ireland

Supervisor: Dr Catherine Mulwa

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

…….Albert Winston…………………………………………………………………………………

Student ID:

…x20136331…………………………………………………………………………………….……

Programme:

…MSc Data Analytics………………………………

Year:

……2022………….

Module:

……………………Research Project………………………………………………….………

Lecturer:

…………………Dr Catherine Mulwa……………………………………………….………

Submission
Due Date:

…………………15th August 2022……………………………………………….………

Project Title:

Assessment Methodology for Credit Models to Meet European
Regulatory Expectations

Word Count:

…………5571……………… Page Count: …37………………………….…….………

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Albert Winston

……

Date:

8 August 2022
……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Albert Winston

X20136331:

1 Introduction

This document details the Project configuration for the MSc research project ‘Assessment

Methodology for Credit Models to Meet European Regulatory Expectations’.

2 Hardware and Software Used

2.1 Hardware

The research project was developed on a custom build desktop PC. Additional analysis and

documentation were competed using a Lenovo Legion 5 laptop. Specifications for both

machines were as follows

Specification Desktop PC Laptop

Type Custom Lenovo Legion 5

CPU AMD Ryzen 5 3600 AMD Ryzen 5 4600H

GPU Nvidia RTX 3070Ti Nvidia GTX1650

RAM 64GB 32GB

Operating system Windows 11 Home 64 bit Windows 11 Home 64 bit

Note that for full functionality a machine with 64GB RAM is the recommended minimum

specification at present.

2.2 Software

Software used in the research included the following:

Software Role

Windows 11 Home (64 bit) Operating System

PyCharm Community edition Development of Python code

Microsoft SQL Server Development and housing of relational

database

SQL Server Management Studio Management of SQL database and testing of

generated tables

Microsoft Power BI Visualization of results in final reporting

MS Excel Initial documentation of results, generate

visuals for report

MS Word Complete checks of results, verify outcomes

MS Edge Research, development of report

2

R Development of Power BI visualizations

Overleaf LateX editor for report generation

2.3 Python Libraries

Within Python an extensive range of libraries were used to develop the research. All libraries

used are listed below.

Primary purpose Library Modules

Data preparation and

manipulation

Pandas

 Numpy

 Math

Visualization MatPlotlib Pyplot

 Seaborn

Modelling Scikit-Learn Preprocessing,

Model_selection.train_test_split

Linear_model.LogisticRegression

Ensemble.RandomForestClassifier

Ensemble.AdaBoostClassifier

tree

naïve_bayes.GaussianNB

metrics.classification_report

metrics.confusion_matrix

metrics.roc_curve

metrics.roc_auc_score

metrics.precision_recall_curve

metrics.auc

metrics.f1_score

metrics.precision_score

metrics.recall_score

model_selection.RandomizedSearchCV

model_selection.GridSaerchCV

 logitboost LogitBoost

 xgboost xgb

 TensorFlow

 Tensorflow_hub

 Tensorflow.keras Models, layers, callbacks,

BatchNormalization

 Imb_learn Over_sampling.SMOTE

 Scipy

 optbinning BinningProcess, Scorecard,

Scorecard.plots

Post model processing Pickle

Model explanations Shap

Database interaction Pyodbc

3

General file interaction

and control activity

Time

 datetime date

 os

 joblib

 pickle

 zipfile

 gc

 pprint

3 Methodology

3.1 Initial Data Preparation

Data was sourced from a publicly available credit scoring dataset housed at

www.Kaggle.com. The dataset represents credit scoring data used in a Kaggle competition to

create a model displaying the greatest possible predictive performance. The website link for

the data is: https://www.kaggle.com/c/GiveMeSomeCredit A screenshot of the webpage used

is shown in Figure 1

Figure 1: Kaggle website for Dataset used in research

The data was sourced in .csv file format. Only the training dataset was used for the research

as the test dataset contained on the site does not include the response variable, being intended

only for generating predicted values for submission.

Based on this file a SQL server database was created using SQL Server Management Studio

(SSMS) to store both the initial data and subsequent tables to be generated by the research as

part of developing the credit model database. The initial database (1 table) was generated

using the wizards available within MSMS as follows:

http://www.kaggle.com/

4

1. A new database named Credit was created using the SSMS wizards: The process is

illustrated in the screenshots in Figure 2

Figure 2: Process to Create initial database

2. Default settings were maintained here to create a basic database table to use to extract

the data in a (simple) replication of the process typically seen in industry where large

EDW arrangements would be used to store risk data

The data stored in the table contains 10 independent variables and a response variable as

detailed in Table 1 below

5

Table 1: Initial Variables for Credit Modelling dataset

A unique index column in also provided with the data. This index was used to form a unique

identifier for each record within the database, equivalent to a customer number.

3.2 Data Ingestion

The data was ingested into the Python scripts used to carry out the analysis. A function

(Import_Data2) was created to connect to the SQL server database using the pyodbc library

and select the data from the table containing the dataset. The code function is shown in Figure
3

6

Figure 3: Python function to bring in data from database

The process is parameterised with the details of the database, including Username and

password. In practice this would be an expected level of security. For this database the

username is set to ‘Database1’ and the password is ‘credit’.

To ensure data is successfully brought in a second code script was created to enable the data

to be read directly from the original .csv file in cases where there is an error encountered in

the database read. This is contained in the Import data function within the CreditData.py

module, with the import code within the main.py module branching as required if an error is

encountered. (Figure 4, Figure 5.). Following this Nan values are converted to 0’s for certain

variables -this is to address cases where a null is used to indicate no arrears and 0 is the

appropriate value to apply here.

Figure 4: Code to take data from original .csv file

Figure 5: Code to bring in data within main.py

3.3 Exploratory Analysis and Feature Engineering

7

3.3.1 Exploratory Analysis of Data

The candidate variables for the model were subjected to Exploratory data analysis (EDA)

using the code within the summview function within the CreditData.py module. Summview

produces descriptive statistics for the variables in the dataset including producing a

correlation heatmap of the variables

Figure 6: The Summview function

The code also gives a visual indication of the predictive power of the candidate variables by

producing boxplots and histograms of the variable, as well as creating decile bins for the

variables and using these to calculate the weights of evidence and the event rates which are

then plotted (Figure 7)

8

Figure 7: Example of summary plots produced by summview function

Based on this exploratory view of the data a number of issues were identified with the data

that were subsequently addressed in the code. A series of rules were applied to the data to

ensure that the credit logic was adhered to.

1. age must be between 18 and 80

2. monthly income must be less than 500k

3. NumberOfTime60-89DaysPastDueNotWorse - capped at 25 times

4. debt ratio must be < 200000 - above this is simply too high for any reasonable

consideration

6. NumberOfTimes90DaysLate capped at 25 similar to 60-69 factor

7. RevolvingUtilizationOfUnsecuredLines typically should not be much greater than 1 given

the ratios definition (cc may allow overdraw etc) - cap at 1.5

Note that in addressing these we have focused on a plausible business interpretation rather

the theoretical form of the data – this research is intended to reflect a real-world modelling

outcome and thus the guiding principle was plausibility (see Figure 8: Distribution pre and post

cleaning).

9

Figure 8: Distribution pre and post cleaning

The boxplots of the variables for the two event rates were also considered to assess which

factors appeared to be predictive.

10

3.3.2 Feature Imputation

On aspect revealed by the analysis was the presence of missing values for two variables. The

level of missing MonthlyIncome information in particular is very high at just under 20%.

While setting this to 0 was considered as a conservative approach, ultimately a MICE

imputation was applied to the two variables as shown in Figure 9

11

Figure 9: Imputation code

In a small number of instances this imputation led to negative values for the imputed

variables, and in this case the variable was set to zero.

3.3.3 Feature Generation

Next additional Ratio variables are created based on the data in the original dataset. These

represent additional financial information for case, for example indicating how often a case

has gone 90 days overdue relative to how often they went 60 days overdue and are added to

see if they add additional value to the models. Some clean-up of the variables is also required

here to address specific scenarios. This is shown in Figure 10:

12

Figure 10: Generation of additional variables

We also need to simulate additional variables to enable us to calculate the capital

requirements for an institution. Loss Given Default (LGD) and Exposure at Default (EAD)

variables are therefore calculated using the code in Figure 11

Figure 11: Code to simulate LGD and EAD dataset

The distributions used here follow the approach detailed within the literature, notably (de

Servigny & Renault, 2004). These capital variables are maintained in a separate dataset to the

modelling data and will be later moved into the modelling database. Distributions for these

variables are shown in Figure 12: Distribution of simulated LGD and EAD values

Figure 12: Distribution of simulated LGD and EAD values

13

Once these steps are completed the data are then standardized so that all variables are centred

around 0 with standard deviation of 1. This is completed using the Normy function within

the CreditModeller.py module (Figure 13)

Figure 13: Code to standardize variables

This dataset is then passed through the Summview1 function again to repeat the exploratory

analysis and ensure that the data is ready to progress to modelling.

4 Data Modelling

4.1 Data Splitting

The dataset created above was split into Train, test and validation samples in a Ratio of

60:20:20. This was completed using the Splitter() function within the CreditModeller.py

module (Figure 14).

14

Figure 14: Code for splitting dataset

While the Train/Test /Validation data split would typically be used in a Build / test /

hyperparameter tune approach, in this instance the validation dataset will not be used for this.

Regulators typically expect that (i) a model will undergo initial review with a separate data

sample – this is analogous to the test sample. In addition, they expect that models will be

tested on a regular basis using a separate out of time sample. For our research the validation

sample will fulfil this role.

4.2 Data Class Imbalance

A typical feature of credit default data is significant class imbalance. This is due to the nature

of credit risk where the aim is to only lend to those who will ultimately repay the debt. For

this dataset we see an event rate of 6.67%, which is heavily imbalanced.

To address the imbalance SMOTE resampling was applied to the data. A function Smoter()

was created withing the CreditModeller.py module (Figure 15). This approach ensures that the

frequency of event is equalized across the two outcomes through simulating additional data

points for the underrepresented class. As a result, the event rate is now increased to 50% in

the training dataset. SMOTE was only applied to the Training dataset.

15

Figure 15: code for smote resampling

4.3 Modelling

A range of Different models are developed as part of the research. The configuration for each

will be described below. All models are fitted using functions within the CreditModeller.py

module

4.3.1 Logistic Regression

Logistic Regression is fitted using the LogReg() function

16

Figure 16: Logistic Regression Modelling code

This applies the LogisticRegression module within Scikit-Learn to fit the model. The

standard plot of feature importance is produced as part of the analysis and the final model is

saved to a file for future use.

Once the model has been fitted by the function, model diagnostics are carried out using the

RocPlt() function within the Credit Diagnostic.py module. This generates a series of

diagnostics including a graphical view of the confusion matrix, ROC curve, K-S curve and

precision recall curve (Figure 17), and a dataframe containing a range of performance metrics

for the model.

Figure 17: diagnostic output from RocPlt function

All of the metrics produced will subsequently transferred into the Modelling database for

further use. The predicted values for each of the train, test and validated samples under this

model are also calculated and saved into dataframes.

As an indicative view of any overfitting the diagnostic information was also produced for the

Training dataset. The figures between the two are comparable, giving a degree of comfort

that overfit is not an issue here.

The same diagnostic approach is applied to the test dataset for all models. As such we will

not repeat the description for this in the sections that follow.

4.3.2 Binned Scorecard Logistic Regression

17

Binned scorecards developed using weights of evidence are a common approach applied to

retailing credit scoring. The advantages of the approach include that it is relatively easy to

score and understand the modelling outcomes using this approach.

For this research Pythons OptBinning library was used within the Scard() function. This

applies an optimised weight of evidence-based binning to the dataset and uses this to fit a

logistic regression via scikit learns LogisticRegression classifier (Figure 18). As such the

approach is comparable to the previous, with any difference in performance being down to

the additional binning step.

Figure 18: Scard() function to fit Binned Logistic Regression

4.3.3 Neural Network

A relatively simple Neural Net model was fitted to the data user the Netter() function. One of

the aims was to monitor the effect of increasing the number of model epochs on the fit time

for the model as an indicator of complexity. To achieve this a custom callback function

(Figure 19) was created to monitor this as part of capturing the history for the model:

18

Figure 19: Callback code applied with Neural Net

A Neural Network was then fitted to the data using Tensorflow.Keras. An input and dense

layer was fitted with a relu activation function. A sigmoid activation function was applied to

the output layer. A binary cross entropy loss function is applied. The model is designed to run

to up to 200 epochs, with a possibility of early stopping applied if 10 successive runs fail to

further improve performance.

Once the model is fitted it is saved to a .h5 file for later use. The history data for the model is

combined with the information from the custom callback and also output by the function for

later assessment.

Figure 20: Code for fitting Neural Network

19

4.3.4 Random Forest

Random Forest was fitted using the RFMod() function. This applies sklearns

RandomForestClassifier() to fit the model.

Hyperparameters for the model were tuned using the RandomsearchCV and GridsearchCV

modules. Initially 50 randomly selected fits are employed in a randomised search across a

range of the hyperparameters. Once this has selected a localised ‘best’ space, the

gridsearchCV approach is then used to refine this further to look for the best possible hyper-

parameter set. The final hyper-parameters selected from this are then the ones used in the

final fitted model. The search algorithms are both applying a 3-fold cross validation in their

search. This will also provide some assurance against overfitting of the model. A range of

hyper-parameters are considered in this approach as shown in Figure 21

Figure 21:GridSearchCV as applied to RandomForest model

The results of each step of the hyperparameter tuning are also retained during this step to

enable a view of the changing complexity of the model as the hyperparameters are adjusted.

Fitting time for each model is also captured to assess how the model complexity affects this.

The final model is also saved to file or future use.

4.3.5 XGBoost

An XGBoost model is fitted using XGBClassifier() from the XGBoost library. This is applied

within the Booster() function in CreditModeller.py. Once again RandomSearchCV and

GridSearchCV are used to tune the model hyperparameters, with an initial 50 point random

grid being refined through Grid search. A 3 folds cross validation approach is again applied

here. A range of parameters are tuned (Figure 22):

20

Figure 22: Hyperparameters tuned for XGBoost

Once the gridsearch has completed the best hyperparameters identified by the model are

passed to the XGBClassifier to fit the model. Outputs returned by the function include the

model, the selected nest parameters and the results from each stage of the tuning process.

Figure 23: fitting of XGBoost model

In common with all models fitted, model diagnostics are obtained using the RocPlt() function

withinCreditDiagnostic.py. The fitted model is also used to produce predicted probabilities

for each of the test, train and validation datasets.

4.3.6 AdaBoost

AdaBoost is fitted using scikitlearns AdaBoostClassifier. This is applied within the Ada()

function of the CreditModeller.py module. In common with the other tree based methods the

hyperparameters are optimised using the randonSearchCV and GridsearchCV routines, with a

3-fold cross validation employed and 50 initial random searches being used to identify an

optimal space which is then refined using the grid search approach.

21

Figure 24: Hyperparameter tuning for AdaBoost

Once again, the model is fitted based on the best parameters produced from this process. For

this the AdaBoostClassifier() within sklearn is applied. Results of this exercise, including fit

times for the various hyperparameter combinations attempted are ultimately saved to pandas

DataFrames, from where they are later uploaded to a SQL Server database. The model is also

saved to file during this process.

4.3.7 LogitBoost

22

Logit Boost is fitted using the LB() function within the CreditModeller.py module. Once

again, the hyperparameters of the model are tuned using GridsearchCV and

RandomSearchCV with a 3-fold cross validation applied and an initial random search of 50

points.

Figure 25: LogitBost Hyperparameter tuning

Once the hyperparameters are identified these are used to fit a model using the LogitBoost()

classifier from the LogitBoost library. Once again, the model and the tuning analysis is

returned by the model and stored in pandas dataframes for later use. Model diagnostic is

completed using the Rocplt() function and predicted values are generated using the model for

the train, test and validation samples.

4.3.8 Naïve Bayes

Naïve Bayes is fitted using the NB() function within the CreditModeller.py module. This fits

a Gaussian Naïve Bayes model from the scikit learn library. The fitted model is then saved to

file. Model diagnostics are completed using the rocplt() function once again and predicted

values are generated for the train, test and validation samples.

Note that the CreditModeller module also contains a script to fit a support vector machine.

However due to the extremely long fit times and memory requirements encountered this was

not progressed with. This limitation of SVM as dataset size increases is a known limitation of

this approach.

5 Model Assessment

Model Assessment for this research is considered under a number of different headings and

addressed using distinct components of the developed code.

23

5.1 Model Predictive Performance

Under the model performance heading we consider all generated metrics that consider the

predictive power of the model. As noted previously, diagnostics on the fitted model are

created within the CreditDiagnostic.py module. This module creates a series of Graphical and

tabular analysis to help understand the model’s performance. The graphic analysis includes:

• ROC plot

• Kolmogorov-Smirnov (KS) plot demonstrating the maximum separation between

distributions

• Precision-recall curve for the model

• Graphical view of confusion matrix

The AUC, the area under the ROC curve is the most common measure applied to assess

credit default models, and this is produced within the graphic. This metric is typically

superior as a measure in cases where class imbalance exists. However, within the literature

there are instances of other metrics being used to assess classifier performance. Given this the

model also computes a suite of additional metrics: Accuracy, precision, recall and F1, and

these are produced as a dataframe when the diagnostic code is run.

 Figure 26: Initial code for RocPlt() function

The function assumes a threshold probability of 0.5 in classification, however a user can

select a different value if they wish to look at the impact of this on the confusion matrix

generated.

24

In terms of results for each of the models we can graphically compare the results for each:

25

It’s clear from the confusion matrices for each that different models take differing

approaches, with precision and recall varying greatly across the different models. While

classical approaches apply a greater tendency to misclassify goods as bads, tree based

approaches appear to be more likely to misclassify bads as goods, which is an undesirable

property for a credit default model.

5.2 Model Explainability

Model Explainability at both a global and local level is considered using he SHAP package.

This applies an explainer to a model to generate a SHAP value for each entry, combining the

features of a number of explainability approaches including SHAP and LIME. While this will

differ from the classical approach for linear models and may lead to differing interpretation

of most predictive factors, it will allow for a model agnostic approach, and in most cases for a

simple logistic model will yield broadly similar interpretations.

26

Figure 27:Standard feature importance and SHAP feature importance for the fitted logistic

regression model

A different explainer is used for different model types. While this approach may lead to some

loss of the model agnostic element of SHAP, it conversely will lead to better estimates and

significantly faster run times. However, in practice the explainability element of the research

is implemented in a manner that allows a user to change their choice of explainer depending

on the model. In general however specific types of models will require either a specific

explainer (e.g. Linear models require LinearExplainer) or the use of the general

KernelExplainer. During the research it became clear that KernelExplainers, with their use of

a localized regression fit to explain cases, require significantly longer run times in many

cases. As such these are applied to a subset of the data to demonstrate the approach. The

explainers used in this research are as follows

Explainer Models’ explainer is applied to

LinearExplainer Logistic Regression

TreeExplainer Random Forest

XGBoost

DeepExplainer Neural Network

KernelExplainer LogitBoost, AdaBoost, Naïve Bayes

Note that not all models were successfully explained. The Logistic Scorecard failed to

generate results using SHAP. The issue appears to be related to the way the optbinning

package structures the model, which Shap cannot work with. At time of submission this issue

had not been satisfactorily resolved and hence explanations for this model are not included.

Logisitic scorecard general explainability is a given on the basis of the readily understandable

nature of mode coefficients, however this is not model agnostic and would prevent direct

comparison of models.

Because Shap can provide both Local and Global explainability it is ideal for satisfying the

regulatory requirements around explainability. Specifically, at a global level regulators

require senior management and independent validators to be able to explain models and

27

understand what drives predictions. At a local level, both regulatory guidance and GDPR

requirements necessitate the ability to understand individual predictions from the model.

SHAP is implemented within the Shaper() function in the CreditExplain.py function. This

function takes user parameters that allow different types of models to be explained

 For all models SHAP is first used to produce Global explainability, producing a plot of

overall feature importance as well as a violin plot that demonstrates how the individual cases

contribute to the explainability of the model. The type parameter allows users to toggle

between different explainers as required.

Figure 28: Initial code for the Shaper() function

For each explainer the function takes a subsample of the dataset to apply as the background

distribution. This is then applied with the relevant SHAP explainer to generate the Shap

values for the dataset. The code then generates plots of the overall importance of all features

and the violin plot showing the contribution of the datapoints to the overall effect for a

variable as shown in Figure 29.

28

Figure 29: Graphical Global output for Shaper() function

The function also considers the Partial dependency for each factor in the model, producing a

series of partial dependency plots for these (Figure 30)

Figure 30: Partial Dependency Plot from Shaper()

The Shaper functions returns the final explainer used as well as the shap values for the data.

This can then be used to obtain a local explanation specific to individual observations in a

given dataset. A slightly different manipulation is carried out in Main,py depending on the

explainer used, However the general sequence remains similar –

• Obtain shap values for a subset of values from a dataset using the explainer

• Get the base values for the analysis to obtain the expected value

• Generate a waterfall plot of the explanation for the individual observations.

29

Figure 31: Generation of waterfall plots for individual values using SHAP

Figure 32: Waterfall plot example using SHAP

The interpretation of the waterfall plots in Figure 32 is the straightforward, with the overall

estimate for the observation being calculates as the expected value E(X) plus the sum of the

contributions for the individual factors.

5.3 Model Capital Assessment

A key aspect of models used for credit default management is the contribution they make to

the overall capital holdings for a bank. The probability of Default (PD) is one component of

the calculation of the Risk Weighted Assets (RWA) for an institution

We use the predicted probabilities generated by each model, combined with the LGD and

EAD values we simulated earlier in the code (section 3.3.3) to calculate the RWA associated

with each model. Given that LGD and EAD are constant for a given observation, this

approach enables us to consider the impact of each model on the projected capital for the

institution. This analysis is completed in the CreditCapital.py module using the Cap()

function.

30

Figure 33: Cap() function for calculating regulatory capital

The Cap function applies the regulatory capital calculation specified within the Capital

Requirements Regulation (CRR). The function allows the user to specify different exposure

classes given that slightly different rules apply for each. Given the variables in our dataset we

have assumed a retail exposure class for this research.

Note that in calculating the RWA we have not imposed certain regulatory floors (for example

some exposure classes place a lower bound on PD). This is to allow the research to

demonstrate only the effects of the model choice.

In terms of how a model contributes to RWA, the distribution of PD is critical due to the

nonlinear relationship between PD and Unexpected Loss, which is the key element of the

RWA calculation. This relationship is shown in Figure 34 while the underlying risk function

applied is shown in Figure 35

Figure 34: Relationship between PD and Loss

31

Figure 35: Basel Loss function

As a result we see that the lowest RWA will be obtained when PD is either extremely low or

extremely high. This is due to the loss at high PD values largely being expected loss. This

means that a classifier that produces an extremely well separated distribution, such as

Logitboost, is likely to generate very favourable capital outcomes, while one that is less

definite, e.g. AdaBoost in our example, while require relatively high capital regardless of

predictive power. Given the Underlying approach to capital assumes the other capital

parameters LGD and EAD are independent of PD we also get no benefit when we

subsequently model these. However excessively low capital is likely to lead to regulatory

concerns, therefore there is a trade-off between the two extremes.

5.4 Model complexity

In assessing model complexity, we use predictive latency as proxy for complexity. Predictive

latency is seen as being affected by both model complexity and model size and as such

should serve as a good proxy for the overall complexity of the model. A number of variables

could skew the results and therefore the research attempts as far as possible to fix a number

of elements associated with the complexity estimation, for example:

The same pandas dataframe structure is fitted to each model: this ensures that (i) the models

are all tested on the exact same data and (ii) the data structure used is the same to ensure none

of the models benefit from simply having more optimised data.

The same machine is used to fit the data to the models. This ensures that differences in

hardware do not influence the performance of the models.

A common Python function is applied to both the atomic and batch predictive latency across

all models considered. This is to ensure that any differences due to the coding approach are

not a factor. The code applied is illustrated in Figure 36 and Figure 37

32

Figure 36: Atomic latency code

Figure 37: Batch latency Code

6 Database Preparation
A SQL Server database of modelling results is generated based on the results of the analysis.

This is to enable (i) a permanent record of the modelled outcomes as well as (ii) the capacity

33

to augment this database with future modelling information. Such information would

potentially help inform an organisations future modelling choices and (iii)a detailed record of

the data used to make modelling decisions as typically required by regulators during on-site

inspections and considered a key element of the model’s documentation.

All information is written to the database using PYODBC. The Python scrip generates new

database tables for:

• The Test, train and validation datasets

• The fit estimates from each stage of the gridsearch approach for the ensemble

approaches and for the epochs of the Neural Network.

• The predicted values from each model.

• The capital parameters and EL and RWA estimates.

• The timings for the complexity calculations for each model.

Each of these forms a history of the modelling experience that can be leveraged to justify

modelling choices to regulators against one or more of the criteria contained in the regulatory

guidance. The database tables are also related through various fields, for example the capital

and test data are elated through the unique identifier. This is to allow potentially more

complex queries to be created from the history database.

.

7 Power BI dashboards

Power BI is used to generate dashboards to both visualize the results of the model

developments and assessment and to provide monitoring and validation against the separate

validation sample. This ability to effectively monitor and validate is a key regulatory

requirement.

For the purposes of demonstrating this aspect, the validation split (20%) from the original

train/ test/validate split has been employed as an Out of Sample (OOS) dataset. This is

typically the dataset that regulators would expect to see monitoring and validation carried out

against, including backtesting and model performance.

8 Installing and Running the Project

8.1 Files included in submission

The submitted files include:

• The final database backup file. This includes the original dataset table used in the

analysis

• Python code to generate the results of the research. Note that the original dataset splits

used are contained in the database.

• The PowerBI dashboard generated for the database results

• The original CSV dataset downloaded from Kaggle.com

34

These are stored within separate subfolders in the submission files and need to be restored to

a single folder location that the code can be pointed to. The exception is the database backup

restore, which should be restored to the appropriate location on the user’s system. Filepath

will again need to be pointed to this.

To install and run the project it is necessary to restore the database containing the data, and

then modify the code to point to this. Steps are as follows:

8.2 Restore Database

Open SQL Server Management Studio

Right click on databases and select ‘Restore Database’

Select Device and search for the database to be restored.

35

8.3 Files required

There is a standard dependency in the files used – the power BI requires a database in place

to draw data from, the Python code requires appropriate file path structure to be defined at the

start of the code etc. Details of setup are provided below.

8.4 Running Python code

To run the code the script should point to the database restored in section 8.1. Line 26 of the

main .py module therefore needs to be modified to point to the server location for this

database.

The script also needs to point to the directory where the python code is stored. Line 36 can be modified to
achieve this.

36

8.5 Possible issues and known bugs

TensorFlow’s latest version is known to have some issues interacting with SHAPs DeepExplainer. The SHAP
explainer for this project was run against TensorFlow 2.5.0. However some issues were identified when
attempting to run using TensorFlow 2.9.1

References

Brownlee (2020) Repeated k-Fold Cross-Validation for Model Evaluation in Python Available at Repeated k-
Fold Cross-Validation for Model Evaluation in Python (machinelearningmastery.com) (Accessed 18 June 2022)
Brownlee (2020) SMOTE for imbalanced classification with Python, Available at:
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
(Accessed: 16 May 2020)

Brownlee (2021) How to Develop Your First XGBoost Model in Python, Available at
https://machinelearningmastery.com/develop-first-xgboost-model-python-scikit-learn/ (Accessed 28 May
2022)

Brownlee (2022) How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras
(machinelearningmastery.com) Available at https://machinelearningmastery.com/grid-search-
hyperparameters-deep-learning-models-python-keras/ (Accessed 20 June 2022)

Builtin (2021) Classification Models in Python: A Beginner's Guide, Available at
https://builtin.com/data-science/evaluating-classification-models (Accessed 11 June 2022)

cmdlinetips (2019) How To Make Grouped Boxplots in Python with Seaborn? - Python and R Tips AZ
Available at https://cmdlinetips.com/2019/03/how-to-make-grouped-boxplots-in-python-with-
seaborn/#:~:text=Boxplots%20are%20one%20of%20the%20most%20common%20ways,want%20to%20visuali
ze%20such%20data%20using%20grouped%20boxplots. (Accessed 13 June 2022)

Datacamp (2022) Using XGBoost in Python Tutorial, Available at Using XGBoost in Python Tutorial | DataCamp,
(Accessed 28 May 2022)

de Servigny, A., & Renault, O. (2004). Measuring and Managing Credit Risk. McGraw-Hill.

Google (2019) Minimizing real-time prediction serving latency in machine learning | Cloud Architecture
Center | Google Cloud Available at https://cloud.google.com/architecture/minimizing-predictive-serving-
latency-in-machine-learning (Accessed 14 June 2022)

Keras.io (2021) Evaluating and exporting scikit-learn metrics in a Keras callback Available at
https://keras.io/examples/keras_recipes/sklearn_metric_callbacks/ (Accessed 30 June 2022)

37

Koehrsen (2018) Hyperparameter Tuning the Random Forest in Python Available at
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-
28d2aa77dd74 (Accessed 15 June 2022)

Koehrsen (2018) A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine Learning
Available at https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-
hyperparameter-optimization-for-machine-learning-b8172278050f (Accessed 19 June 2022)

Mavrim (2019) LogitBoost — logitboost 0.7 documentation Available at https://logitboost.readthedocs.io/
(Accessed 19 June 2022)

Martins (2021) XGBoost: A Complete Guide to Fine-Tune and Optimize your Model Available at
https://towardsdatascience.com/xgboost-fine-tune-and-optimize-your-model-23d996fab663 (Accessed 22
June 2022)
Okamura (2020) GridSearchCV for Beginners. Available at GridSearchCV for Beginners. It is somewhat common
knowledge in the… | by Scott Okamura | Towards Data Science (Accessed 18 June 2022)

O’Reilly.com (2019) Local Interpretable Model-Agnostic Explanations (LIME): An Introduction – O’Reilly
(oreilly.com) Available at https://www.oreilly.com/content/introduction-to-local-interpretable-model-
agnostic-explanations-lime/ (Accessed 30 June 2022)
Stack Vidhya (2021) How To Plot Confusion Matrix In Python And Why You Need To? - Stack Vidhya Available
at https://www.stackvidhya.com/plot-confusion-matrix-in-python-and-why/ (Accessed 11 June 2022)

Palencia, G (2020) developing-scorecards-in-python-using-optbinning, Available at
https://towardsdatascience.com/developing-scorecards-in-python-using-optbinning-ab9a205e1f69
(Accessed 28 May 2022)

Statology (2021) How to Create a Confusion Matrix in Python - Statology Available at
https://www.statology.org/confusion-matrix-
python/#:~:text=To%20create%20a%20confusion%20matrix%20for%20a%20logistic,matrix%20for%20a%20log
istic%20regression%20model%20in%20Python. (Accessed 11 June 2022)

The Programming Foundation Module 4 - Logistic Regression | The Programming Foundation
Available at:
https://learn.theprogrammingfoundation.org/getting_started/intro_data_science/module4/?gclid=CjwKCAjw7
IeUBhBbEiwADhiEMWuMLd8ZAbvOg9VTPSATHM4XN9jp9g2ADIzCwexa1pLGAo5c5gQuZxoCLawQAvD_BwE
(Accessed 17 May 2022)

