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Assessment Methodology for Credit Models to Meet
European Regulatory Expectations

Albert Winston
X20136331

Abstract

This research considers the assessment of machine learning models for banking
in the context of European regulatory expectations. This includes requirements
beyond predictive performance, is not well addressed in existing literature and pre-
vents the wider industry adoption. Research has shown that such models may lead
to capital savings for banks, but introduce complexity and cost to risk management.

The research developed a range of models for predicting credit default risk.
These were subjected to an assessment approach that considered predictive per-
formance, explainability at a local and global level, complexity and capital impacts.
Under these additional headings we see that the preferred model may change de-
pending on the regulatory focus. In addition while models may display good pre-
dictive ability it may be difficult to promote them under other criteria. The distri-
bution of probability may lead to unexpected capital effects due to the non-linearity
of that relationship.

Further work is required to consider how to optimally weight each aspect of
the assessment criteria within a model risk management framework, however the
research provides an important starting point for this.

1 Introduction

Credit default models within the banking industry have remained relatively unchanged
in decades, with Logistic Regression classifiers being the dominant approach, as detailed
by for example Siddiqi (2012). In recent years considerable research has been undertaken
into the potential of more sophisticated approaches to improve the accuracy of credit
default prediction, demonstrating the potential of such models (Yu (2020)). However
regulatory challenges exist in terms of transparency, explainability and governance. As a
result uptake has been slow. Recent discussions and guidance documents from regulators
have identified expectations around more sophisticated modelling approaches

1.1 Background and Motivation

Credit default models are used by banks assess default risk 1 and for regulatory Capital
and Impairment calculations. They are subject to strict regulatory requirements, includ-
ing that they are part of business processes, transparent, understood by management and

1default risk is the risk that an obligor will fail to repay a loan in line with contractual terms potentially
exposing the lender to loss
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subject to validation and monitoring. These present challenges to the use of advanced
machine learning models. While industry is aware of this problem Kurshan et al. (2020),
research to date has been much more limited as noted by Dastile et al. (2020). As a res-
ult Alonso and Carbo (2021) highlights interpretability and governance as two frequent
concerns of supervisors when reviewing Machine Learning models.

The Irish Central Bank notes that average risk weight density 2 is 33% for European
Banks, and 49% for Irish Banks as at June 2021 3. Given Basel requires 8% of RWA
to be held as capital under Pillar 1 there are benefits to managing the components of
RWA calculations 4. This has benefits both for the industry and wider society, with Das
and Deb (2017) demonstrating that both the quantity and quality of bank lending is
positively impacted by regulatory capital levels.

This research presents an assessment approach for Machine Learning models for Credit
Scoring that addresses key European regulatory expectations. The motivation is to facil-
itate the adoption of complex modelling approaches for credit modelling within industry.
This has significant financial implications given such models may be a key part of both
credit and capital management. The approach presented offers an end-to-end view of the
model lifecycle, with scope for further commercial development in the future.

1.2 Research Question, Objectives and Contributions

The research question identified the gaps in current research and demonstrated that
additional criteria may be utilised in selecting the preferred modelling approach. The
scope of the research presents broader assessment criteria for a range of models commonly
applied to Credit default data

Research Question: ”How can complex Machine Learning Models be assessed in a way
that allows a clear demonstration of the preferred model in terms of both understandabil-
ity of the model, pure model performance, capital impacts and relative model complexity?”

Sub-Research Question: ”For a selection of models that frequently demonstrate su-
perior predictive performance to classical approaches, how can we demonstrate if these
are still the preferred model when additional regulatory concerns are taken into account?”

Sub-Research Question: ”Can this information be presented in a manner that enables
senior management of an organisation to satisfy their requirements around understanding
of the chosen model?”

The research problem was addressed through research objectives detailed in Table 1.
The models fitted reflects the most promising classifiers based on existing research. The
simpler approaches represent the baseline which any challenger must outperform. As
per regulatory guidance models must be explainable and increased complexity should be
justified by performance. A simple Logistic and a Weight of Evidence based scorecard
were developed representing two common classical approaches, along with Naive Bayes.
Random forest and Boosted models represent ensemble methods and a neural network

2Risk weight density is defined as risk-weighted assets (RWA) expressed as a percentage of the banks
total loan exposure

3https://www.centralbank.ie/docs/default-source/publications/financial-stability-notes/risk-
weights-on-irish-mortgages.pdf

4the calculation for Risk Weighted Assets under the IRB approach is detailed in the Capital
Requirements Regulation: Regulation EU 575/2013 (CRR), Chapter 2, section 2. For details see
https://www.eba.europa.eu/regulation-and-policy/single-rulebook/interactive-single-rulebook/504
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was also developed. While Logistic Boost hasn’t featured heavily in research it is included
as an interesting variation.

Table 1: Description of Research Objectives

Detailed Research Objectives
Ref Objective Description
1 Literature Review Critical review of key literature related to the research
2 Data extraction, pre-

processing and explor-
atory analysis

Data was extracted, subjected to exploratory analysis
and cleaned. Feature extraction and generation was be
completed. Class Imbalance was addressed.

3 Development of
Credit Models

All models for assessment is produced at this stage

3.0 Logistic Regression
3.1 Logistic Regression
3.2 Random Forest
3.3 Neural Network
3.4 XGBoost
3.5 AdaBoost
3.6 LogitBoost
3.7 Naive Bayes
4 Model Evaluations

and comparisons
Model performance assessed. Graphical outputs pro-
duced for model performance.

5 Global Explanations Global explainability of the model assessed using SHAP.
Relevant summary and visual information produced, in-
cluding factor importance plots

6 Local Explainability Local explainability assessed using SHAP for a selection
of datapoints in the test sample.

7 Complexity Assess-
ment

This is based on the predictive latency of the testing
dataset for the fitted model.

8 Capital Assessment Compares RWA for each model.
9 Database of results Generate a SQL Server repository containing the key

datasets produced
10 Dashboard of results A Power BI dashboard produced as a MI tool to ensure

senior management understanding.Technical dashboard
with a wider range of metrics produced to support de-
velopers and validators

The remainder of the report is structured as follows. Chapter 2 considers peer-
reviewed literature aligned to the research objectives. Chapter 3 lays out the scientific
methodology applied in carrying out the research. Chapter 4 describes the Implement-
ation approach that was followed as well as detailing preparation undertaken, while
Chapter 5 evaluates the results obtained during the research. Chapter 6 provides an
overall conclusion, as well as identifying possible areas for future research.
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2 Related Work

2.1 Introduction

In reviewing the current literature, several subsections will be considered that look at
the development and assessment of credit default models by financial institutions and
the associated regulatory obligations. These are: (i) The application machine learning to
credit models, (ii) regulatory expectations, including the challenges and opportunities this
provides (iii) the existing research into model explainability and assessment approaches.

2.2 Application of Machine Learning to Credit Default

A number of different approaches to applying Machine Learning approaches have been
considered. Work by Yu (2020) indicated that for Credit card data random forest pro-
duced superior results due to the inability of classical approaches to address the non-
linearity inherent in the problem. Wang et al. (2020) also favours Random Forest, albeit
their comparison doesn’t include many of the more powerful ensemble and Deep Learn-
ing methods. The use of Deep Neural Networks to model Credit Card delinquency was
explored by Sun and Vasarhalyi (2021). This demonstrated that DNN’s could provide
an effective approach, emphasising the importance of the hyperparameter choice, a topic
regulators have also focused on in guidance documents. Further work on applying DNN
is provided by Chishti and Awan (2019), who attempts to apply a range of deep learning
models to Credit Card data. This research also highlights the ability of this modelling
class to produce a probability of default output, necessary to utilise these models for
capital calculations.

The use of other machine learning approaches has also been explored, with a lack of
consensus as to the ’best’ modelling approach to apply. Research by Chen et al. (2021)
finds no clearly preferred approach. This might be expected given credit risk covers a
range of risk appetites and Butaru et al. (2016) has demonstrated this diversity with
models of Credit Card default. Even within a single dataset, competing research has
championed a range of approaches. A summary of research is provided by Dastile et al.
(2020), considering 74 studies. Based on this ensemble approaches appear to have the
edge, with some support for deep learning. However even classical approaches have been
championed in some studies. Notably research focuses on model performance in terms of
predictive performance, with AUC and accuracy frequently used to select the best model.
Typically the complexity and transparency of the models is not considered. Considera-
tions such as regulatory and privacy concerns feature less prominently in research, and
only a limited number of papers Addo et al. (2018) attempt to address this, highlighting
the gap between the research approaches and the regulatory focus on transparency.

2.3 Regulatory Expectations for Credit Default Models

The early view of models risk management is captured in the Comptroller of the Cur-
rency’s SR 11-07 document 5, which heavily influenced US and European thinking. Since
Basel II the requirements for internal credit models have steadily grown and binding

5Board of Governors of the Federal Reserve System Supervision and Regulation Letters (2011) ‘SR
11-7: Guidance on model risk management’
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guidance and regulation has developed. European Regulatory authorities have signi-
ficant expectations for the use of Advanced Analytics approaches. In their Report on
Big Data and Advanced Analytics 6 the EBA detailed key requirements around ethics,
explainability, auditability, fairness, data and consumer protection.

As noted by Kurshan et al. (2020), current governance approaches struggle to be
effective, timely and cost -effective here. Existing manual approaches are insufficient to
address model governance for AI with 67% of financial institutions perceiving regulatory
complexity as a topic of concern due to the balance between model performance and
compliance. The authors propose building regulatory verification into the modelling
framework. Within industry this is echoed by key players, with McKinsey 7 noting that
Model Risk management faces challenges and changes in the near future. Kokaly et al.
(2016) has highlighted the cost of compliance, proposing an integration of the model
management and software compliance aspects. Our research aims to apply a practical
approach to this in the context of European regulations for credit default models.

In November 2021 the EBA issued their initial discussion paper on Machine Learn-
ing for IRB Models 8, outlining the expectations for Machine Learning models used for
Internal Capital purposes. An emphasis is placed on strong internal understanding and
a balance between performance and explainability - complexity should be justified by
a predictive improvement and validation and monitoring of model changes is expected.
This is in line with the view of national central banks 9. Additional European Commis-
sion regulation and guidance, as detailed by Smuha (2019) defines key concepts such as
explainability.

Research into meeting regulatory expectations has been slow to evolve. In their review
Onay and Öztürk (2018) note that regulatory aspects of Big Data challenges represent
the trajectory of future research. In considering 248 distinct research works they find
that while 41% of research was concerned with statistical techniques, only 5% considered
the theme of regulation. Data privacy and fairness considerations have led to the latter
topic regaining popularity in more recent research. However recent research by Dastile
et al. (2020) still finds a figure of only 8%. Alonso and Carbó (2020) has considered
the problems faced from a supervisory perspective, proposing a cost function to capture
supervisory risk tolerance. This focuses on the use of the IRB approach, generalising
through the requirements of the Basel ’Use-test’ 10. However this approach, and the
supervisory cost function employed, does not leverage how explainability for example,
should be used to bridge the acceptability gap between classic and complex approaches.
Further work in the area carried out by Alonso and Carbo (2021) indicates that savings
in regulatory capital of up to 17% may be possible. The sensitivity of RWA to model
changes is also considered here as required under regulatory materiality guidelines 11.
However once again there are gaps versus the expectations of the regulations.

6EBA Report on Big Data and Advanced Analytics, January 2020 EBA/REP/2020/01
7https://www.mckinsey.com/business-functions/risk-and-resilience/our-insights/banking-models-

after-covid-19-taking-model-risk-management-to-the-next-level
8EBA Discussion Paper on Machine Learning for IRB Models, November 2021 EBA/DP/2021/04
9Machine learning in risk models – Characteristics and supervisory priorities July 2021 Deutsche

Bundesbank
10Use test is a CRR requirement whereby capital models must also be embedded in the wider business

activities of the institution
11EU 529/2014: regulatory technical standards for assessing the materiality of extensions and changes

of the Internal Ratings Based Approach and the Advanced Measurement Approach
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2.4 Approaches to Explainability and Model Assessment

Explainability of Machine Learning models represents a growing field of research interest.
Current work by Phillips et al. (2020) for NIST has introduced key principles that would
be expected of explainable AI which align well with the view of the EBA on big data,
while Guidotti et al. (2018) has provided a summary of many of the explainability meth-
ods currently employed, albeit Lipton (2018) highlights the underspecified nature of the
problem. A local methodology is LIME (Locally Inerpretable Model Explanation), as
demonstrated by Magesh et al. (2020) and Dieber and Kirrane (2022), which is often fa-
voured in the explanation of specific (local) outcomes.Lundberg and Lee (2017) presents
an approach, based on the use of SHAP (Shapley Additive ExPlanations) which extends
the idea of an explanation model to explain the outputs of the target model. This ap-
proach presents a unifying framework for the various approaches based on properties of
the common approaches, including Shapley values and LIME.

The need for explainability is further extended to credit scoring models by Demajo
et al. (2020) who highlight regulatory requirement, including local and global elements,
and identifies the limited scope of application in existing research. The authors suggest
a number of enhancements for future work, including the generation of an overall risk
rating and greater ability to manage parameters of the explanations.

Research on model selection often focuses on standard performance metrics, e.g.
Aleksandrova et al. (2021), Hurlin et al. (2018) rather than incorporating other cri-
teria due the difficulty in quantifying aspects such as interpretatability islam2020towards.
While Carrington et al. (2018) have made some progress here their work focuses on SVM
models. There is limited consensus on how to assess the validity of the explainability
outcome as noted by Vilone and Longo (2021). Research to incorporate other aspects are
relatively recent, for example Ouedraogo (2021). This is necessary to to satisfy regulatory
expectation.

2.5 Comparison and Critique of Approaches and Findings for
Developing and Assessing Regulatory Credit Models

While there is an extensive range of research on modelling credit risk using machine
learning approaches, there is no consensus as to the best approach as noted by Chen
et al. (2021). A range of metrics are also used to select the preferred model, in spite
of the class imbalance that regularly appears with default datasets. Research into the
explainability and assessment of these models is far less prevalent. In Table 2 below the
findings of the literature review are summarised.
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Table 2: Summary of Key Findings from Literature Review.

Subsection Sources Key Findings
Application of
Machine Learn-
ing to Credit
Default

Yu (2020)
Sun and Vasarhalyi (2021)
Chishti and Awan (2019)

Chen et al. (2021)
Butaru et al. (2016)
Dastile et al. (2020)
Addo et al. (2018)

• Machine learning shows promise

• No consensus on best approach

• Focus on Model performance

• limited work to incorporate regulatory
and other aspects

Regulatory Ex-
pectations for
Credit Default
Models

Kurshan et al. (2020)
Kokaly et al. (2016)

Smuha (2019)
Kumar and Gunjan (2020)

Onay and Öztürk (2018)
Dastile et al. (2020)

Alonso and Carbó (2020)
Alonso and Carbo (2021)

• Regulators have significant expecta-
tions for explainability and governance

• Limited focus in existing research

• Significant benefits identified from a
governance perspective to ML models

• This is a frequent regulatory concern

Approaches to
Explainability
and Model As-
sessment

Phillips et al. (2020)
Guidotti et al. (2018)

Lipton (2018)
Lundberg and Lee (2017)
Cornacchia et al. (2021)
Magesh et al. (2020)

Dieber and Kirrane (2022)
Chen et al. (2018)

Demajo et al. (2020)
Bracke et al. (2019)

Aleksandrova et al. (2021)
Hurlin et al. (2018)
Islam et al. (2020)

Carrington et al. (2018)
Vilone and Longo (2021)

Ouedraogo (2021)

• A number of approaches to Explainab-
ility are available

• A model agnostic approach at local
and global level is required

• Limited work so far to incorporate this
or other criteria into model assess-
ments

2.6 Conclusion

While model risk management is developing to consider regulatory changes, research still
tends to consider only model performance metrics. Limited work exists to develop a
risk assessment approach that incorporates other aspects into model selection. However
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regulators have expectations that model assessment involve more than just performance.
The research has identified potential approaches to deliver additional assessment criteria
to inform model selection. However the development of such an assessment approach
remains a gap. Given the increasing cost and complexity of model risk management this
would represent a significant benefit to the industry.

3 Research Methodology for Assessment of Credit

Models

This section details the process employed in carrying out the research. This has been
divided into steps to cover Data details, data exploration and processing, feature engin-
eering, candidate model development, model assessment and model Explanation.

3.1 Description of Methodology for Approach to Assessment of
Credit Models

The process flow applied for the methodology is illustrated in Figure 1. As noted by
Plotnikova et al. (2020) adaptions of project methodology to enable integration with
business processes are common and reflect the motivation for the adaptions employed
here. The approach builds on the Crisp-DM process developed for industry Shafique and
Qaiser (2014)

Figure 1: Process flow applied to research
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3.2 Design Flow

For the research a two tier design process flow is applied. Tier (i) is a Presentation
Tier representing the outputs from the Classification models, the model diagnostics and
the exploratory analysis supporting the analysis. In practice this is technical reporting
supporting model development or validation, and a management reporting. Tier (ii) is
a business logic tier, representing the Feature extraction, data cleaning and the model
development and assessment. This is illustrated in Figure 2

Figure 2: Design flow used in research

3.3 Data Collection and Description

Credit default modelling requires a binary classification dataset. For this research we
have used a publicly available dataset, sourced from the Kaggle website. This was ori-
ginally used in a competition in 2011, and can be found at: https://www.kaggle.com/
competitions/GiveMeSomeCredit/data. The objective of this competition was to max-
imise model performance and as such transparency, explainability and complexity were
not key considerations for the competitors. The data consists of a response variable
representing cases that default in the two years post observation and 10 independent
attributes. The total dataset size is 150,000 records and this is stored in a SQL server
database. Summary informastion of the data is detailed Table 3.
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Table 3: Summary description of attributes.

Attttribute mean std min max

RevolvingUtilizationOfUnsecuredLines 6.05 249.76 0 50,708
age 52.30 14.77 0 109
NumberOfTime30-
59DaysPastDueNotWorse

0.42 4.19 0 98

DebtRatio 353.01 2037.82 0 329,664
MonthlyIncome 5348.14 13152.06 0 3,008,750
NumberOfOpenCreditLinesAndLoans 8.45 5.15 0 58
NumberOfTimes90DaysLate 0.27 4.17 0 98
NumberRealEstateLoansOrLines 1.02 1.13 0 54
NumberOfTime60-
89DaysPastDueNotWorse

0.24 4.16 0 98

NumberOfDependents 0.74 1.11 0 20

3.3.1 Data Preparation and Cleaning

A number of variables displayed missing data. These were imputed using the MICE
algorithm as originally proposed by Dempster et al. (1977). Work by for example Li
et al. (2022) demonstrates this as an effective imputation method.

The dataset was split into Training, Test and Validation samples in a 60:20:20 rate.
While the hyperparameter tuning applied cross validation, the Validation dataset is main-
tained separately for use as an additional dataset in the implemented solution.

Significant class imbalance was identified within the dataset. This could lead to biased
models with poor accuracy over the minority class relative to the majority class As a result
SMOTE oversampling Luque et al. (2019) was applied in the training sample.

3.3.2 Feature Selection

A number of variables displayed outliers and were cleaned as decribed in Table 4. However
while extreme values were removed, plausible but high values were generally retained.

10



Table 4: Description of Data Cleaning Completed

Variable Cleaning completed
Age variable ranged between 0 and 109 years. Credit cannot be

legally extended to customers ¡ 18 while extreme ages may be
considered questionable. Data constrained in the range 18-80

Monthly income Range from 0 to 3 million. Data constrained to an upper
value of 100,000.

NumberOfTime60-
89DaysPastDueNotWorse

Ranges from 0 to 98. Given this is over a 24 month period
the upper value was limited at 25

NumberOfTimes90DaysLate Similar approach to above
RevolvingUtilizationOfUns-
ecuredLines

This is a a ratio of credit used to available credit and as such
should constrain at 1. To allow for overdraw on revolving
credit lines the constraint was set to 1.5.

Debt ratio Ranges between 0 and 329,664. Given this represents the level
of debt to assets a high value indicates poor capacity to repay.
This variable is constrained at 25,000

Following these steps the data was reviewed once again. While we still see skew
within the distributions, the removal of implausible values clearly improved the attribute
distributions.

A number of Ratio variables were also created to expand the feature set. Ratios are
a common financial tool to represent creditwortiness Saygili et al. (2019). The following
ratios were used:

Ratios looking at propensity to move to higher Arrears.

• (NumberOfTimes90DaysLate)/(NumberOfTime60- 89DaysPastDueNotWorse)

• (NumberOfTimes90DaysLate)/(NumberOfTime30- 59DaysPastDueNotWorse)

• (NumberOfTime60- 89DaysPastDueNotWorse)/(NumberOfTime30- 59DaysPastDu-
eNotWorse)

Ratios looking at potential drags on available income:

• MonthlyIncome/ NumberOfDependents

• MonthlyIncome/ NumberOfOpenCreditLinesAndLoans

• MonthlyIncome/ NumberRealEstateLoansOrLines

In addition to Assess the capital impact associated with each model values for the
Loss Given Default (LGD) and Exposure at Default (EAD) parameters used in capital
calculation were simulated for each observation. The approach applied was as follows:
For LGD a Beta Distribution was simulated, with parameters α = 1.5 and β =10. The
Beta distribution is a distribution commonly used to model loss distributions De Servigny
et al. (2004) and has form:

f(x) =
xα−1(1− x)β−1∫ 1

i=0
(t)α−1(1− t)β−1dt
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with

E(X) =
α

α + β
, V (X) =

αβ

(α + β)2(α + β + 1)

For the distribution simulated this gives an average LGD of 15% and variance of 0.9%
For EAD a Gamma distribution was simulated Jiménez and Menćıa (2009), with

parameters k = 2 and θ = 200. This distribution has form:

f(x) =
xα−1e−βxβα

Γ(α)
forx > 0α, β > 0

this will give an average loss given default of €400.

3.4 Modelling Approaches

the following Modelling approaches were applied to develop credit models. :Logistic re-
gressions and Naive Bayes represent classical, explainable approaches while ensemble and
Neural Net approaches represent more sophisticated approches. Any model must, as per
EBA regulations, (i) be locally and globally transparent, (ii) have superior performance
to the others and (iii) this improvement must be sufficient to overcome any increase
in complexity seen. The EBA guidelines do not specify how this final point should be
interpreted.

3.4.1 Logistic Regression

Logistic Regression represents an industry standard approach. Logistic regression repres-
ents a model from the Generalized Linear model class.

f(x) = α +
∑

βixi

where f(x) represents a logit link function

ln(
p

1− p
)

Models in this form are most commonly seen in non-retail exposure classes where large
scale scoring is not required. For this implementation the Python Package Scikit-Learn
is used.

3.4.2 Logistic Regression using Binning based on weight of Evidence

This approach is often taken with Retail Exposure classes/. Each factor is binned into
several bins

x1, ...xi

. For each level of an attribute a weight of evidence (WOE) is calculated and these are
combined to produce information value (IV) for the attribute. The WOE values then
form the inputs for the model.

WOEi = ln(
%Goodsi

%Defaultedi
)
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IV =
n∑

i=1

(%Goodsi −%Defaultedi) ∗WOEi

For this project the Python packages OptBinning and SciKit- Learn were used to
generate an optimally binned set of attributes and generate a scorecard for these.

3.4.3 Naive Bayes

Naive Bayes in a relatively simple conditional probability model that leverages Bayes
theorem and assumes that feature values are independent of the values of any other
feature. Sckikit-Learn is used to implement.

3.4.4 Random Forest

An ensemble Learning method based on constructing a large number of Decision Tree
classifiers. A bagging approach is typically applied to construct a large number of trees
with controlled variance. As such Random Forest is a parallel learner.

The model was implemented in Scikit learn. Hyperparameter tuning was implemented
using the Gridsearch and RandomSearch modules and the results of each estimation were
saved to be used in assessing model performance versus complexity

3.4.5 Neural Network

Neural Networks were built using Tensorflow. We used a network with a single hidden
layers with relu activation function and allowed the number of Epochs to reach up to
200. Early stopping was enabled where performance fails to increase across 10 successive
runs, and a custom Tensorflow callback allows the capture of changes in performance and
fit times as the number of epochs is increased.

3.4.6 XGBoost

XGBoost is a modelling approach that uses gradient boosted decision trees. It is deigned
to be a fast and computationally efficient approach, which has produced strong results as
a classifier approach. The model was implemented using the XGBoost library in Python.
Hyperparameter tuning was implemented using cross-validation with the Gridsearch and
RandomSearch modules and the results of each estimation were saved to provide inform-
ation on the model evolution.

3.4.7 AdaBoost

Adaboost is an ensemble learning method based on iteratively improving the performance
of weak learners. AdaBoost is a sequential learner using a boosting approach where the
weak learners are decision tree stumps. It is equivalent to an additive tree regression that
minimises an exponential loss function Hastie et al. (2009)

The model was implemented in Scikit learns AdaBoost Classifier package. Hyper-
parameter tuning was implemented with cross-validation using the Gridsearch and Ran-
domSearch modules and the results were saved to provide information on the model
evolution
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3.4.8 LogitBoost

LogitBoost is another boosted ensemble learning approach. The approach was proposed
by Friedman et al. (2000) and represents an additive tree regression that minimises a Lo-
gistic loss function. The model was implemented using the ogitBoost Package in Python,
with hyperparameter tuning implemented using cross-validation with the Gridsearch and
RandomSearch modules. Results from this were again saved.

3.5 Model Assessment

3.5.1 Model Performance

For each model fitted AUC was used as the primary performance assessment metric. This
is consistent with industry practice Izzi et al. (2011), Engelmann (2006), and is typically
employed ahead of accuracy due to class imbalance in default data. However a number
of other metrics were also produced including Precision, recall and accuracy

3.5.2 Model Complexity

In general there is no agreement in the literature on a model agnostic approach to assessing
model complexity. For this research complexity is considered in terms of the Prediction
Latency - the time required to score a case using a given model. This also aligns to the
results saved from the hyperparameter tuning. These results were also be collected into
the final modelling Database to ensure the EBA expectation to consider the effect of
model hyperparameters could be addressed

3.5.3 Model Explainability

Model explainability will be considered using SHAP (SHapley Additive exPlanations)
values generated for each model. This will allow a model agnostic approach to comparing
the contributors for each model, as well as explanation of the models at both a local
and Global level. this in turn satisfies regulatory expectations to understand key model
drivers as well as GDPR requirements to explain individual model predictions.

Shapley values present a game theoretic view of the global contribution of each factor,
with Shapley values representing the fair allocations to each players, of gains in a cooper-
ative game. LIME generates a locally weighted linear model on perturbed instances of
the observation of interest. SHAP brings together these concepts through taking the
original model and calculating Shapley values for a conditional expectation function.

ϕi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z

′)− fx(z
′\i)]

where |z′| is the number of non-zero entries in z’, z′ ⊆ x′ is all vectors z’ with non-zero
entries as a subset of non zero entries in x’

3.5.4 Model Materiality

The RWA percentage associated with each record will also be calculated, using the formula
contained within the Capital Requirements regulation, for each mode produced. For the
purposes of the research the portfolio will be assumed to follow the Retail exposure class
and the capital floors stated in the regulations will not be applied
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4 Implementation of Process for Development and

Assessment of Credit Models

4.1 Introduction

This section will describe the implementation of each stage of this research. It is divided
into sections describing the implementation for each stage of the process, including data
assessment, model generation and model assessment steps.

4.1.1 Exploratory Analysis of Dataset

Following initial data adjustments the correlation matrix was generated to assess rela-
tionships in the data. This is shown in Figure 3. Based on this we see that a number
of variables display reasonable levels of correlation. However, given the small number of
independent variables all variables were retained at this stage.

Figure 3: Correlation Matrix for Dataset

The predictive ability of each factor in the model was considered. Given that factors
are all continuous this was visualised by applying a decile binning approach and calcu-
lating the event rate for each decile. if a factor is predictive this should be evidenced by
differing event rates across the decile. Box plots of the distribution of the attribute for
each level of the target variable were also generated,several variables appear predictive.

The data were standardised around a mean of zero and a sigma of one. A split into
Train test and Validation datasets in a 60:20:20 ratio was completed.

4.2 Class Imbalance and Feature Engineering

Initial analysis of the data indicated that class imbalance was a concern as the default
target represented only 6.7% of cases in the sample. This is an issue frequently seen
in credit default. As Luque et al. (2019) has noted, class imbalance can impact the
accuracy of many performance metrics, typically leading to low predictive ability for the
infrequent class Ling and Sheng (2010). To address this imbalance in the development
dataset SMOTE oversampling was applied as detailed in Chawla et al. (2002). This
oversampling approach was applied only to the development dataset.
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The Risk Weighted Assets (RWA) were calculated using simulated EAD. LGD and
the predicted probability generated by the developed models, in accordance with the
regulatory approach 12. Additional ratio variables were also created as per Section 3.

4.3 Model Development

A range of Python libraries were used to develop the credit scoring models considered in
the research. For the Logistic Regression, Random Forest, AdaBoost and Naive Bayes
approaches SciKit learn was used. XGBoost was fitted with the xgbost library, Logit
Boosting was fitted with the logitboost library, and Neural Net was fitted with Tensor-
Flow. Hyperparameter tuning for the ensemble approaches was completed using Ran-
domizedSearchCv and GridsearchCV. This addresses a regulatory expectation that hyper-
parameter evaluation be considered.

4.4 Performance Evaluation Approach

To evaluate the models the AUCmetric is used, as well as considering the overall confusion
matrix and precision-recall curves to understand the capabilities of each model tested.

Model Explainabiluty is considered through the SHAP values obtained. This will
be applied to both the local explanation of selected observations and the Global feature
importance for the model.

Model complexity is assessed using Prediction Latency as applied to the test data-
set. As noted in the documentation for sci-kit learn (https://scikit-learn.org/0.15/
modules/computational_performance.html), the main features influencing prediction
latency are Number of features, Input data representation and sparsity, Model complexity
and Feature extraction

The final step involves presenting a view of the model that considers performance,
explainability, capital and complexity. Based on this a model selection can be proposed.

5 Model Evaluation and Assessment

5.1 Model Development and Performance Evaluation

5.1.1 Logistic Regression

The logistic regression model displays an AUC of 86.2% as as shown in Figure 4. The
confusion matrix illustrates how the model makes a trade off between a strong ability to
detect true defaults versus a tendency to incorrectly classify good customers as possible
defaults. Considering additional statistics from the confusion matrix we see that the
models precision, at 23.56% is relatively low. Precision represents the number of true
positives as a ratio of total predicted positives, and a low precision indicates the models
tendency to mis-classify negatives as positives. Conversely the high recall indicates that
the model is strong at not mis-classifying defaults as goods. This illustrates a sterength
of the Logistic regression, given the loss associated with having a default is much higher
than the profit foregone by rejecting a good obligor.

12Regulation (EU) 575 2013, section 2
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Figure 4: Diagnostic Plots for Logistic Regression Model

5.1.2 Binned Scorecard Logistic Regression Model

The Binned Scorecard logistic regression model displays a similar performance to the Lo-
gistic regression model with an AUC of 83% A small reduction in AUC is not unexpected
due to the combining of continuous variables into discrete bins. The confusion matrix
also displays similar behaviour in terms of strong ability to detect true defaults but a
tendency to incorrectly classify good customers. This model has somewhat poorer recall
at 56.84%.

5.1.3 Random Forest Model

Performance using Random Forest was disappointing given what has been seen in other
research, with an AUC, at 85.6%, lower than the Logistic Regression model. However
accuracy is quite high at 93.5%. When we consider Precision (54.9%) and recall (26.6%)
we see that the model has reversed the trend in previous models, displaying a lower
rate of both false and true positives - e.g. the model tends to more aggressively classify
as non-default. The confusion matrices also show this, with a much lower tendency to
declare a default but a better chance of correctly classifying non-defaulters.

5.1.4 XGBoost Model

For XGBoost we see performance with an AUC of 83%, that is again lower than the
Logistic Regression model. Similarly to the Random Forest the model displays high
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accuracy at 93.36%. Considering Precision (52%) and recall (28.7%) the model again
tends to have higher true and false negatives.

5.1.5 LogitBoost Model

For LogitBoost, model performance is similar to other Boosted ensemble models, with an
AUC of 85.3%, and lower than the Logistic Regression model. Accuracy is again high at
93.57%, with precision (57.7%) and recall (20.1%). The model has a much lower tendency
to declare a default than the logistic regression. This is based on a threshold of 0.5 being
applied for the outcome.

5.1.6 AdaBoost Model

In Figure 5 we display the diagnostic plots for the AdaBoost model. The model displays an
AUC of 86.2%, equivalent to the Logistic Regression model. Accuracy is also quite high at
93.6%. When we consider Precision (57.3%) and recall (24.6%) we see behaviour similar
to the other ensemble models. The KS Plot indicates a compression of the distribution
for the two classes which we will see later.

Figure 5: Diagnostic Plots for AdaBoost Model
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5.1.7 Neural Network Model

Figure 6: Diagnostic Plots for Neural Network Model

In Figure 6 we display the diagnostic plots for the Neural Network model fitted to the
data. Performance here, with an AUC of 85.3%, is between the two Logistic models.
Accuracy, at 85.1%, is also inferior to other candidate models.

5.1.8 NaiveBayes Model

Naive Bayes is the simplest model we have fitted, and as might be expected, perform-
ance is lower than other candidates, An AUC of 82.8% is obtained. Accuracy of 90.1%,
precision (35%) and recall (53.6%). Overall the model behaves similarly to the logistic
regression, with a greater tendency to assign a case as a default than other classifiers
being evidenced in the precision and recall.

5.2 Model Explainability

5.2.1 Logistic Regression

As a standard Linear model Logistic Regression can be explained in terms of the para-
meter weights associated with each factor. However this approach is model specific and
cannot be used to compare different types of models, for example to enable management
understanding. Therefore we consider feature importance calculated using SHAP, using
a Linear Explainer. This approach instead considers the marginal contribution that each
feature makes to the model. When we apply a SHAP approach to the Logistic model
we see the feature importance shown in Figure 7. There are some difference between
the two methods Saarela and Jauhiainen (2021), however the most prominent drivers are
consistent across the two approaches, with Utilization of Unsecured Lines still the most
important factor .
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Figure 7: Feature Importance and Violin Plot for Logistic Regression Model

We can also see how individual observations combine to contribute to overall import-
ance, with the effect being illustrated in the violin plot. This illustrates both the impact
of the driver but also directionally how the variable influences the outcome.

Figure 8: Local SHAP explanation for first two cases in Test dataset

Given we have this information it is also possible to explain the outcomes for individual
observations. In Figure 8 we can see the waterfall plots for the first two datapoints of
the Test dataset. From these we can see the contribution of drivers to the individual
outcomes, providing local explainability. This is due to SHAP’s unified approach to
explainability, utilising local interpretability equivalent to LIME.
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5.2.2 XGBoost

A similar approach is applied to the XGBoost model using SHAPs TreeExplainer al-
gorithm. While different explainers reduce generality slightly they will improve the speed
and accuracy of the overall results. Based on this analysis, illustrated in Figure 9 we can
see that XGBoost is selecting a different range of key features, with the factors Numbero-
fRealEstateLoansandLines and NumberofDependants being the top two model driver for
this model. This flexibility to compare explanations enable business logic to be brought
to bear in model selection as well as supporting algorithmic fairness by enabling models
that over weight more controversial factors to potentially be identified and rejected. Once
again this can also be extended to local explainability, with Figure 10 illustrating the ex-
planations for the first two cases of the test dataset. Unsurprisingly these are different
to what we see for the Logistic regression model

Figure 9: SHAP Model explanation for XGBoost model

Figure 10: Local SHAP explanation for first two cases in Test dataset using XGBoost
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5.2.3 Random Forest

The same tree explainer within SHAP can be applied within Random Forest. Note that
due to the extremely long computation time encountered we restricted the fit to the first
1,000 values of the dataset. However this is sufficient to demonstrate the viability of the
technique. Local explainability is also again possible, utilising a similar approach to that
taken for XGBoost.

5.2.4 AdaBoost

Adaboost requires the use of SHAPs kernel explainer to produce explainability estimates.
Given the slower speed of this approach, which fits a regression estimator locally to the
data to produce its estimates, only a sample of the dataset was used.

Based on this analysis, illustrated in Figure 11 we can see that AdaBoost again selects
a different range of key features, with the factors DebtRatio and NumberofUnsecuredLines
being the top two model driver for this model. Based on this insight a business may wish
to preferentially consider models that for example rely on long term stable macroeconomic
factors.

Figure 11: SHAP Model explanation for AdaBoost model

The same approach was extended to all models. Naive Bayes and Neural Net were
fitted similarly, uing the Linear and DeepExplainers respectively. We encountered dif-
ficulties with producing explainability for the Scorecard model. This is related to the
way the model is created by the OptBinning library. and While it may be surmountable
we were unable to resolve within this research. However we note that by definition the
scorecard is trivially explainable on a standalone basis.

5.3 Model Complexity

The complexity of the model is considered through the prediction latency - the time
taken to fit the test dataset. For logistic regression we obtain a Bulk prediction latency
of 4.3x10−8 seconds based on fitting 30 bulk repeats. An average atomic prediction
latency of 6.1x10−4 seconds is obtained. The prediction latency of the Binned scorecard
model is considerably higher than that of the Logistic regression model. Atomic latency
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is 2.9x10−3 and Batch predictive latency is 6.6x10−7. This is potentially due to the
extra processing required to assign the appropriate binning to the data. In Figure 12 the
Atomic Latency is illustrated. It is clear that the Random Forest and logitBoost models
have both the greatest Predictive Latency and the highest volatility for the Predictive
Latency. When we remove the most extreme performers we can see that the XGBoost
model performs relatively well in terms of Predictive Latency.

The Batch Predictive Latency is also assessed. This consists of fitting the full dataset
and assessing the average fit time per observation. We expect some efficiencies due to
fitting the data in bulk. The process is repeated 30 times to allow for variance in the
process. The outcomes are illustrated in Figure 13. The results are somewhat similar.
Once the most extreme performers are removed we see that AdaBoost again displays
surprisingly good results.

Figure 12: Atomic Latency for all models

Figure 13: Batch Latency for models based on 30 fits

Predictive Latency appears to produce intuitive results in terms of the rank order
of the models, with the more ’complex’ machine learning approaches having a higher
latency that would reflect both the larger model structure and the complexity to arrive
at a decision. However further work is required to quantify the relationship between
Predictive Latency for different models..
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5.4 Model Risk Weighted Assets

Figure 14 displays the distribution of the predicted PD for the different models tested.
A wide range of different distributions are generated by the models. While Logistic
regression and Random Forest produce long tailed distributions the AdaBoost classifier
produces a more symmetrical form. Heavily bimodal models also feature here. The shape
of the distributions heavily influences the effect of any adjustment to the thresholds as a
model adjustment strategy. Adaboost would display the largest initial movement under
such a strategy, however the relationship between PD and RWA would imply limited
changes in capital. On the other hand Naive Bayes would see little benefit. The shape
here also reflects the confusion matrix, with some models being much more conservative
in terms of assigning defaults

Figure 14 also illustrates the impact of this in terms of the RWA percentage associ-
ated with each model. Of particular interest is that the most predictive model doesn’t
inherently lead to the lowest average RWA percentage. In particular models with higher
false negative rates will often lead to lower capital as they misclassify cases to a lower
risk. However given RWA is a non-linear function this is not guaranteed, and we see Ad-
aBoost actually leads to the highest capital requirements. Models with extreme bimodal
classification should lead to the lowest capital requirements, and this is reflected in the
models here. However this feature would likely be difficult justify to regulators.

Figure 14: Distribution of PD values and RWA percentages for each model Model
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5.5 Overall Model Assessment

Statistic Logistic Scorecard AdaBoost Random
Forest

XGBoost LogitBoostNaive
Bayes

Neural
Net

AUC 0.862 0.83 0.862 0.856 0.83 0.853 0.828 0.853
Accuracy 0.82 0.87 0.936 0.935 0.934 0.936 0.901 0.852
Precision 0.236 0.277 0..573 0.549 0..520 0.577 0.35 0.263
Recall 0.763 0.568 0.246 0.266 0.287 0.201 0.536 0.661
F1 0.357 0.372 0.344 0.358 0.370 0.298 0.424 0.377
RWA 13 0.272 0.230 0.361 0.170 0.161 0.135 0.0611 0.245
Atomic predictive Latency
mean 6.1x10−4 2.9x10−3 8.1x10−2 1.3x10−1 1.6x10−3 1.1x100 6.0x10−4 3.8x10−2

stedv 4.9x10−4 4.1x10−4 1.8x10−3 1.9x10−2 5.0x10−4 2.2x10−2 4.9x10−4 6.1x10−3

Batch predictive Latency
mean 4.3x10−8 6.6x10−7 1.1x10−4 3.7x10−4 1.3x10−6 1.3x10−4 2.3x10−7 2.7x10−5

stedv 1.5x10−8 3.5x10−8 3.1x10−6 5.2x10−6 1.0x10−7 3.0x10−6 1.8x10−8 4.9x10−7

Table 5: Compiled Model Assessment Statistics

Based on the details in the sections above, the choice of model would depend on which of
the aspects an bank would wish to prioritise and the weighting they would apply for each
aspect. The EBA guidelines, while calling out the need to consider these aspects, do not
explicitly state a threshold or priority to be applied. In Table 5 we provide a summary
of the various elements to be considered in assessing a preferred model choice.

Table 6 ranks the models under a number of criteria. It is clear than no model is best
under every criteria.

Model AUC Accuracy Explain-
ability

RWA Atomic
Prediction
Latency

Batch Pre-
diction
Latency

Logistic 1 8 y 7 1 1
Scorecard 6 6 y* 5 4 3
AdaBoost 1 1 y 8 6 6
Random Forest 3 3 y 4 7 8
XGBoost 6 4 y 3 3 4
Logit Boost 4 2 y 2 8 7
Naive Bayes 8 5 y 1 2 2
Neural Net 4 7 y 6 5 5

Table 6: Model ranking against Criteria

A simple average of the ranks would suggest Logistic regression is the preferred model
in this case, however from a banks perspective this would come at the cost of very high
RWA cost. By adjusting the weighting it is possible to select a model based on for
example, additional weight being given to capital intensive or more complex models.
In practice, in the absence of a clear statement from regulators it would be up to an
individual institution to justify the weighting to be applied to each criteria, while being
mindful of a likely regulatory push back against models with either excessively low capital
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requirements or excessively high complexity. For example AdaBoost demonstrates good
predictive performance however it is unlikely to be a preferred model due to the high
RWA driven by the clustering of predictions around a centre point. This is also likely
to require significant justification to regulators. In addition its predictive performance
comes at the cost of high latency. As such a bank may down-weight this model.

5.6 Enabling Reporting and Monitoring

Figure 15: Example of Power BI visualizations

The results of the analysis are transferred into SQL server database tables. Distinct
Tables are generated for each aspect of the research. From here a simple Power BI
dashboard can be generated using Python and R scripts to illustrate how this can be
monitored and reported to management in line with regulations. Examples of this are
shown in Figure 15

5.7 Comparison to Other Research Findings

The research indicates that Logistic Regression is the preferred model in this case. This
is consistent with the findings of Juneja et al. (2020), with AUC performance for this
model 85.8% lying within the range of 82%1 - 89% found in that research. It is perhaps
surprising to bee other methods performing less weel, however the Random Forest, when
considered in terms of Accuracy of 93% compares well to the findings of Yu (2020), which
achieved 95%. The Neural Netowrk performance falls short of that achieved by Sun and
Vasarhalyi (2021), hoever this may be reflective of the greater depth applied in the latter
model.

In addition the research aligns with the work of Kurshan et al. (2020) in that it extends
the evaluation to a wider rangwe of risk dimensions, addressing many of the challenges
raised in that paper. In line with the work ofAlonso and Carbo (2021) we also consider
capital implications as a key aspect of regulatory review.

6 Conclusion and Future Work

This research project aimed to assess the following research question:
”How can complex Machine Learning Models be assessed in a way that allows a clear

demonstration of the preferred model in terms of both understandability of the model, pure
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model performance, capital impacts and relative model complexity?”

This has been addressed by reviewing and building on the existing research in the
field [R.O 1] to explore how cutting edge machine learning models can be assessed in
a model agnostic fashion that considers explainbility, complexity and wider regulatory
concerns. The research has prepared a suitable dataset [R.O 2] and developed a range
of models to perform credit default modelling, reflective of high performers in existing
research [R.O 3-3.7]. The research has shown that In addition to the range of model
performance metrics available [R.O 4] it is possible to compare the models in terms of
their contributing features using a model agnostic approach [R.O 5]. Individual cases
can also be explained using a local explainability approach [R.O 6]. In additrion we have
incorporated a measure of the model complexity into the assessment [R.O 7], as well as
considering the implications of model choice on the underlying RWA position of the bank
[R.O 8]. A database of the generated results from the research has also been created [R.O
9], both the satisfy regulatory expectations around documentation and to enable further
visualisation and assessment and monotoring by both developers and management [R.O
10].

The research provides for an assessment of credit models that considers a full range
of regulatory aspects. Such an evaluation is required to enable these models to be widely
accepted in industry. However limitations include (i) that regulatory requirements con-
tinue to evolve and may place future additional burdens and (ii) the approach does not
consider the calibration of the model against the long-run PD.

Future work could include the assessment of other complexity measures, the incor-
poration of the model calibration into the assessment, and the development of an overall
risk metric to unify the different dimensions considered here.
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