===y

)
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Data Analytics

Stephanie Whelan
Student ID: 19140649

School of Computing
National College of Ireland

Supervisor: Dr. Catherine Mulwa

‘-
National College of Ireland \ National

MSc Project Submission Sheet College i
c Project Submission Shee Ireland
School of Computing
Student Name Stephanie Whelan
Student ID 19140649
Programme MSc Top-up Data Analytics
Year 2022
Module MSc Research Project
Lecturer Dr. Catherine Mulwa
Submission Due Date 15/08/2022
Project Title Predicting River Water Quality Parameters using Supervised
Machine Learning Technigues: UK
Word Count 2884
Page Count 43

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: = ... 14/08/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, m

both for your own reference and in case a project is lost or mislaid. Itis
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Predicting River Water Quality Parameters usiIQg
Supervised Machine Learning Techniques: U

Stephanie Whelan
19140649

1 Hardware Requirements and Technologies Used

Table 1: Device and Operating Specifications

Processor AMD Ryzen 7 4700U with Radeon Graphics 2.00 GHz
Installed RAM 16.0 GB (15.4 GB usable)

System Type 64-bit operating system, x64-based processor
Windows Edition Windows 10 Home

Windows Version 21H1

Windows Operating System Build | 19043.1826

Windows Experience Windows Feature Experience Pack 120.2212.4180.0

The main programming languages that were used to complete this research include R
Programming Language and Python. Both technologies will need to be downloaded and
configured on a local system to replicate the output. A list of the technologies used is shown
below:

e R

e R Studio

e Python

e Anaconda and Jupyter Notebook

2 R Programming Language

R Programming language was used for pre-processing of the data including data
cleaning and manipulation.

2.1 Downloading R
Search https://cran.r-project.org/bin/windows/base/ on any web browser and click on

‘Download R-4.2.1 for Windows’ (if you are running this on a windows computer) and the file
will begin to download. The steps taken are shown in Figure 1 - Figure 9 below.

https://cran.r-project.org/bin/windows/base/
https://www.stats.bris.ac.uk/R/bin/windows/

ownload R-4.2.1 for Windows

README on the Windows binary distribution
New features in this version

(79 megabytes, 64 bit

This build requires UCRT, which 1s part of Windows since Windows 10 and Windows Server 2016. On older systems, UCRT has to be installed manually from here.

If you want to double-check that the package you have downloaded matches the package distributed by CRAN., vou can compare the mdSsum of the .exe to the fingerprint on thg

Frequently asked questions

¢ Does R run under my version of Windows?

* How do [update packages in my previous version of R?

Please see the R FAQ for general information about R and the R Windows FAQ for Windows-specific information.

Other builds

* Patches to this release are incorporated in the r-patched snapshot build.
¢ A build of the development version (which will eventually become the next major release of R) is available in the r-devel snapshot build.

e Previous releases

Note to webmasters: A stable link which will redirect to the current Windows binary release is
=CRAN MIRROR ~/bin/windows/base/release. html.

Figure 1

Double click on the downloaded file shown in Figure 2 in the bottom left to begin the
installer.

¢ Patches to this release are incorporated in the r-patched snapshot build.
¢ A build of the development version (which will eventually become the next major release of R) is available in the r-dey

e Previous releases

Note to webmasters: A stable link which will redirect to the current Windows binary release is
=CRAN MIRROR>/bin/windows/base/release.html.

Last change: 2022-06-23

R-4.2.1-win (2).exe

Figure 2

Follow the steps shown in Figure 3 to Figure 9 below to finish installing the software.

r‘i’l Setup - R for Windows 4.2.1

Information

Please read the following important information before continuing. @

When you are ready to continue with Setup, click Next.

GMU GEMERAL PUBLIC LICENSE A~
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GHU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software

[[gy PR S [

Y ——

Y | My 1 Sy

Mext ancel

Figure 3

I'i’l Setup - R for Windows 4.2.1

Select Destination Location

Where should R for Windows 4.2.1 be installed? \Q

[EI Setup will install R for Windows 4.2.1 into the following folder.

To continue, click Mext. If you would like to select a different folder, click Browse.

C:\Program Files\R\R-4.2.1

Browse...

Bi Next ancel

Figure 4

ri’l Setup - R for Windows 4.2.1

Select Components —
Which components should be installed? @

Select the components you want to install; clear the components you do not want to
install. Click Next when you are ready to continue.

User installation

b
Main Files 89.7 MB
64-bit Files 64.5 MB
Message translations 9.0 MB

Current selection requires at least 166.2 MB of disk space.

Figure 5
chy Setup - R for Windows 4.2.1 - x
Startup opftions ==
Do you want to customize the startup options? @

Please specify yes or no, then click Next.

(O Yes (customized startup)

@ Mo (accept defaults)

Bac| MNext ancel

Figure 6

I'i’l Setup - R for Windows 4.2.1 — X

Select Start Menu Folder =
Where should Setup place the program's shortcuts? @

a—— Setup will create the program's shortcuts in the following Start Menu folder.
A

To continue, click Next. If you would like to select a different folder, click Browse.

|H Browse...

[] pon't create a Start Menu folder

Figure 7
by Setup - R for Windows 4.2.1 - x
Select Additional Tasks =
Which additional tasks should be performed? @

Select the additional tasks you would like Setup to perform while installing R for
Windows 4.2.1, then click Next.

Additional shortcuts:

Create a desktop shortcut

D Create a Quick Launch shortcut
Registry entries:

Save version number in registry
Associate R with .RData files

Bi Next ancel

Figue8 ~—~10u —

is, Setup - R for Windows 4.2.1 -

Completing the R for Windows
4.2.1 Setup Wizard

Setup has finished installing R for Windows 4.2.1 on your
computer. The application may be launched by selecting the
installed shortcuts.

Click Finish to exit Setup.

Figure 9

2.2 Downloading R Studio

R Studio is an integrated development environment (IDE) for R. RStudio was
downloaded from www.rstudio.com/products/rstudio/download/. The wversion that was
downloaded for the completion of this project was the Free version of RStudio Desktop circled
in red on Figure 10 below. The next step was to download the appropriate version of RStudio
for the operating system being used. Figure 11 shows the version that was downloaded for the
completion of this project circled in red. Figure 12 to Figure 15 shows the steps that were
completed to download RStudio.

http://www.rstudio.com/products/rstudio/download/

C @ rstudio.com/products/rstudio/download/ @ f w0 @ (e :

Learn more about RStudio Team

RStudio Desktop RStudio Desktop Pro RStudio Server RStudio Workbenche

\Commercial License Open Source License Commercial License

Free $4,975

Iyear

Open Source License

Free

(5 Named Users)

Learn more Evaluation | Learn more

Learn more Learn more

Integrated Tools for R
Priority Support

Access via Web Browser
RStudio Professional Drivers

Connect to RStudio
Workbench @ remotely

Enterprise Security

Figure 10: RStudio Desktop Download.

RStudio DeSktOp 2022.07.0+548 -release Notes &

1. Install R. Rstudio requires R3.3.0+ 2.

2. Download RStudio DGSktOp, Recommended for your system:

e e R e
sl DOWNLOAD RSTUDIO FOR WINDOWS

2022.07.0+548 | 190.14MB

Requires Wingow

All Installers

Linux users may need to import RStudio's public code-signing key & prior to installation, depending on the operating system's security policy.

RStudio requires a 64-bit operating system. If you are on a 32 bit system, you can use an older version of RStudio.

0s Download Size SHA-256

Figure 11: RStudio Desktop Download for Windows

ke W7 1 oW 7 &J 1T\J ~ NNTITAST INULTO |7,

(47 RStudio Setup —

Welcome to RStudio Setup

Setup will guide you through the installation of RStudio.

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Next to continue.

Next > Cancel

Figure 12

F.UT . UT IS0 -Release Notes 4

{47 RStudio Setup —

, Choose Install Location
Choose the folder in which to install RStudio.

Setup will install RStudio in the following folder. To install in a different folder, dick Browse
and select another folder. Click Next to continue.

Destination Folder

{ Browse... -

Space required: 772.0 MB
Space available: 313.9 GB

p's public code-signing key £ prior to installation, depending on the operat|

Figure 13

I T . UT IO -Release NOtes 4

{7 RStudio Setup — X

s Choose Start Menu Folder
J Choose a Start Menu folder for the RStudio shortcuts.

Select the Start Menu folder in which you would like to create the program's shortcuts. You
can also enter a name to create a new folder,

RS tudiol

1 Accessibility A
| Accessories

| Administrative Tools

| Anaconda3 (64-bit)

| DBeaver Community

| Java

| Java Development Kit

f JetBrains

|Maintenance

|McAfee

| Microsoft Office Tools v

[Jpo not create shortcuts

< ancel

Figure 14

{47 RStudio Setup i

Completing RStudio Setup

RStudio has been installed on your computer.

Click Finish to close Setup.

s nublic code-sionine kev &2 nrior to installation denendine on the anet

Figure 15

The first file “Water Quality - Data Clean Up Final’ can now be run using RStudio.

2.2.1 Data Pre-processing using RStudio

The following packages shown in Figure 16 were loaded into RStudio to allow for data
manipulation, the creation of visualisations and to identify NA values.

#loading necessary packages
install.packages("corrplot")
install. packages ("dplyr™)
install.packages (" lubridate”]
install.packages("naniar™)
install. packages("tidyr™)
install.packages("tidyverse"]
install.packages("visdat")|

Tibrary(naniar)
Tibrary(ggplot2)
Tibrary(tidyr)
Tibrary(dplyr)
Tibrary(visdat)
Tibrary(lubridate)
Tibrary(tidyverse)
Tibrary(corrplot)

Figure 16: Libraries required for data pre-processing

The two datasets that were used for this research include the
UK _Lowland_River_Chemistry data.csv and weather.csv. The datasets were originally
opened using excel and they were explored. They were then loaded into RStudio using the
read.csv function. These two datasets will need to be placed in the working directory of the
machine. The working directory for this project is shown in Figure 17 below.

#loading in my 2 datasets
water <-read.csv(file="Uk_Lowland_river_chemistry_data.csv", head=TRUE, sep=",")
weather <- read.csv(file="weather.csv", head=TRUE, sep=",")

Figure 17: Loading the datasets into RStudio

Once the datasets were loaded, the data types were viewed, and the NA values were
viewed using the visdat package. A visualisation showing the amount of missing data in each
column and the percentage of missing data in the entire water quality dataset was created.
Figures 18 and 19 below show that 46% of the data is missing in the dataset. The sum of NA
values in each column was also calculated so that the number of NA values in each column
could be viewed.

#First the data was opened in excel and viewed, there are quite a lot of Na values
#Check for missing data

#we can see that 46% of the dataset is missing which is a huge amount
visdat::vis_miss(water, warn_large_data = F)

sapply(water, function(x) sum(is.na(x)))

Figure 18: Viewing NA values in the Water Quality Dataset.

10

2500 S =
o
|
o
© -
£ 5000 _
2 == o ad.
D — = — [.
F = i
7500 — - -
— n L.
3 s ES=i
- u EF——
Missing Present
(46%) (54%)

Figure 19: Plotting NA values in the Water Quality Dataset.

As there were 80 variables in the dataset, the decision was made to remove any
column with over 6,000 NA values. Once this was done, 8.1% of the dataset contained
missing data. The distribution of the columns still containing NA values was calculated and
evenly distributed columns had their NA values replaced with the Mean, while skewed
columns had their NA values replaced with the Median. The steps taken are shown in Figure
20 below.

#replace NA values with the mean on normally distributed columns

water3 <- water]|
water3$Temperature..C. [is.na(water3iTemperature..C.)] <- mean(water3$Temperature..C., na.rm = TRUE)

#as there is only 1 NA in the day and month columns we will remove that row so that it does not get replaced with the mean

water3 <- water3[!is.na(water3imonth),]
water3 =- water3[!is.na(water3fpay),]

#replace NA values with the median on skewed columns

water3 <- water3 ¥=%
mutate_if(is.numeric, function(x) ifelse(is.na(x), median(x, na.rm = T), x))

Figure 20: Replacing NA values with the mean and median in selected columns.

A new column was created called Date, which merged the Day, Month Year columns
into one date format Y-M-D. This was done so that it could be used to join the water quality
dataset to the weather dataset. The steps taken to do this, are shown in Figure 21 below.

#create a new data column from the day, month, year columns
water3idate <- as.Date(with(water3, pastel(vear, Month, Day,sep="-"1}), "¥y-HEm-%d")
water3idate

11

Figure 21: Creating a new date column.

As shown in Figure 22 below, the date column in the weather dataset was reformatted

using the Lubridate package so that it was Y-M-D to match the water quality dataset, this is
so that the two separate datasets could be merged using the column.

#reformatting the date column to ¥-M-D 30 so that it matches the date column in the weather data set
weather $date = ymd(weather fdate)

Figure 22: Reformatting the Date column in the Water Quality dataset.

The water quality and weather dataset were merged using an inner_join on the date

column. The dplyr package from the wider tidyverse package. The steps taken to do this are
shown in Figure 23.

vl s o

T m

Tibrary(tidyverse)

merged <- inner_join{weatherl,water3,by=c("date”])]

str{merged)

Figure 23: Mering the weather and water quality dataset.

Figure 24 shows the final dataset was saved to the working directory using write.csv
function.

#finally write the final dataset to my directory

write.csv(merged,"c: /users/35386/Desktop/Msc Data analytics/Data/used data/merged-final2.csv”, row.names = FALSE)

Figure 24: Writing the final dataset to the working directory.

3 Python Programming Language
3.1 Downloading Anaconda and Jupyter Notebook

Anaconda was downloaded from https://www.anaconda.com/ which is shown in
Figure 25. The version downloaded is suitable for a Windows machine.

12

https://www.anaconda.com/

_) ANACONDA. Products Pricing Solutions Resources Partners Blog Company

Data science technology for
a better world.

Anaconda offers the easiest way to perform Python/R data science and
machine learning on a single machine. Start working with thousands of

open-source packages and libraries today.

For Windows

Python 3.9 « 64-Bit Graphical Installer » 594 MB
Get Additional Installers

LN I

Figure 25

Once downloaded, double click the file in the bottom left corner of the screen to begin the
installer shown in Figure 26.

Q Thank you for N
Date downloading y fOr

Sign up for Anaconda Nucleus to
get started.

/
/7

This free Jupyter notebook teaches you how to
use Pandas, Scikit-learn, and Matplotlib.

(Launch Notebook

Anaconda3-2022.0..exe ~

Figure 26

Figures 27 - 33 show the steps taken to download Anaconda.

13

) Anaconda3 2022.05 (64-bit) Setup =

Welcome to Anaconda3 2022.05
(64-bit) Setup

Setup will guide you through the installation of Anaconda3
2022.05 (64-bit).

Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your

) ANACONDA.

computer.
Click Next to continue.
Vezed”
Next >
Figure 27
) Anaconda3 2022.05 (64-bit) Setup = X
» License Agreement
"1.) ANACONDA. please review the license terms before installing Anaconda3
2022.05 (64-bit).

Press Page Down to see the rest of the agreement.

Copyright 2015-2022, Anaconda, Inc.

All rights reserved under the 3-clause BSD License:

This End User License Agreement (the "Agreement”) is a legal agreement between you
and Anaconda, Inc. ("Anaconda”) and governs your use of Anaconda Distribution (which
was formerly known as Anaconda Individual Edition). v

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Anaconda3 2022.05 (64-bit).

Anaconda, Inc, - .
(e)

Figure 28

14

D Anaconda3 2022.05 (64-bit) Setup

- >
o Select Installation Type
’1_) ANACONDA. piease select the type ofinstallation you wouid lie to perform for
Anaconda3 2022.05 (64-bit).
Install for:
(®) Just Me (recommended)

(O All Users (requires admin privileges)

Anaconda, Inc,

<Back Next> |) Cancel

Figure 29

2 Anaconda3 2022.05 (64-bit) Setup — x
Choose Install Location
Choose the folder in which to install Anaconda3 2022.05 (64-bit).

i_) ANACONDA

Setup will install Anaconda3 2022.05 (64-bit) in the following folder. To install in a different
folder, dick Browse and select another folder. Click Next to continue.

Browse...

Space required: 3.5GB
Space available: 292.9GB

Anaconda, Inc,

<Back ([Next> |) cancel

Figure 30

15

0 Anaconda3 2022.05 (64-bit) Setup — X

P Advanced Installation Options
L) ANACONDA. Customize how Anaconda integrates with Windows

Advanced Options
[JAdd Anaconda3 to my PATH environment variable

Not recommended. Instead, open Anaconda3 with the Windows Start
menu and select "Anaconda (64-bit)". This "add to PATH" option makes
Anaconda get found before previously installed software, but may
cause problems requiring you to uninstall and reinstall Anaconda.

[Register Anaconda3 as my default Python 3.9
This will allow other programs, such as Python Tools for Visual Studio

PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda as the primary Python 3.9 on the system,

Anaconda, Inc,
| <Back (/—ﬂnstal| | Cancel
SN—— —

Figure 31

2 Anaconda3 2022.05 (64-bit) Setup —

. Installation Complete
"1_) ANACONDA Setup was completed successfully.

Completed

Show details

Anaconda, Inc.

< Back Next > Cancel

Figure 32

16

) Anaconda3 2022.05 (64-bit) Setup —

Completing Anaconda3 2022.05
(64-bit) Setup

Thank you for installing Anaconda Distribution.

Here are some helpful tips and resources to get you started.
We recommend you bookmark these links so you can refer
back to them later.

Anaconda Distribution Tutorial

Getting Started with Anaconda

") ANACONDA.

< Back Finish Cancel

Figure 33

Jupyter Notebook can be accessed from the Anaconda Navigator shown in Figure 34 below.

) Anaconda Navigator

{2) ANACONDA NAVIGATOR

haanels

Figure 34

3.2 Modelling using Jupyter Notebook

Once the RStudio code above is run, a new dataset named merged-final2.csv will be
saved into the relevant working directory. This is the dataset that will be used for further

17

exploratory data analysis and modelling. There are five Jupyter Notebook files for this
research, each one has the code to run each of the five machine learning models. Each model
was used to predict four water quality parameters. To replicate this analysis, you will need to
replace the parameter within each file - this is explained in further detail below.

The five files that need to be uploaded to Jupyter Notebook and ran are listed below:

WATER QUALITY - EDA & DT FINAL.ipynb
WATER QUALITY - Random Forest FINAL.ipynb
WATER QUALITY - XGBOOST FINAL.ipynb
WATER QUALITY - SVM FINAL.ipynb

WATER QUALITY - MLR FINAL.ipynb

vk N e

3.2.1 Modelling Decision Trees

The required libraries for building a Decision Tree model are listed below in Figure 35. The
scikit-learn package was used for building the model, evaluating the model, scaling the data
and performing Gridsearch.

import os

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

from sklearn.tree import DecisionTreeRegressor

from sklearn.model selection import train_test split
import sklearn.metrics as metrics

from sklearn.model selection import GridSearchCV, cross _val score
from sklearn.preprocessing import StandardScaler
from matplotlib import pyplot

Figure 35: Libraries required for implementing the model.

Figure 36 shows the working directory used for this research. Figure 37 shows the data
being loaded into Python.

import os|
os.getcwd()

os.chdir('C: /Users/35386/Desktop/Msc Data Analytics/Data/Used data')

os.getcwd()

Figure 36: Set the correct working directory.

18

Load the data into the notebook

WQ = pd.read_csv("merged-final2.csv")
print(WQ)

Figure 37: Load the dataset from the working directory using pandas.

The data was first split into input and output columns using the parameter Dissolved
Sodium. The Data was then scaled as the dataset contains many different measurements. The
data was then split into 80% training and 20% testing data. Finally, the model was fit using
DecisionTreeRegressor from scikit-learn. The steps taken are shown in Figure 38.

split data into input and output columns
X = WQ.drop('Dissolved.Na..mg.l."', axis=1)
y = WQ.loc[:,['Dissolved.Na..mg.1."]]

#scale the data

from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()

sc_y = StandardScaler()

X = sc_X.fit_transform(X)

y = sc_y.fit_transform(y)

#Split the data into 8% training data and 2% test data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=@.20, random_state=0)

#Build the first model - Decision Tree Regression
from sklearn.tree import DecisionTreeRegressor
regressor = DecisionTreeRegressor(random_state = @)
regressor.fit(X_train, y_train)

Figure 38: Splitting, Scaling and building the decision tree model.

The model was then used to predict on the test data and the model was evaluated using
the Mean Absolute Error, Mean Squared Error, Root Mean Square Error and R-Squared. The
steps taken are shown in Figure 39.

#Predict using the test data
y_pred = regressor.predict(X_test)

#evaluate the model

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))

print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))

print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
print('R Squared:',metrics.r2_score(y_test, y_pred))

Mean Absolute Error: ©.06418450414621879
Mean Squared Error: ©.02781091559528927

Root Mean Squared Error: ©.16676605048776946
R Squared: ©.9735582890786211

Figure 39: Evaluating the decision tree model.

Hyper parameter tuning using GridSearchCV was applied to the model to identify the
best performing parameters. As shown in Figure 40 the best performing max depth is 10 and
the minimum sample split is 30. Figure 41 shows the new model being built with the best

19

performing parameters and finally Figure 42 shows the evaluation of the new model. The
feature importance of the new model was calculated, and the results are shown in Figure 43.
A plot of the actual Vs predicted values for the new model is shown in Figure 44.

#Apply Hyper parameter tuning
from sklearn.model_selection import GridSearchCV

model = DecisionTreeRegressor()

gs = GridSearchCV(model,
param_grid = {'max_depth': range(1, 11),
'min_samples_split': range(10, 60, 10)},
cv=5,
n_jobs=1,
scoring='neg_mean_squared_error')

gs.fit(X_train, y_train)

print(gs.best_params_)
print(-gs.best_score_)

{'max_depth': 10, 'min_samples_split': 30}
©.029788003659817902

Figure 40: Applying Hyper parameter tuning using GridsearchCV

#Apply the results to the new model
new _model = DecisionTreeRegressor(max_depth=10,
min_samples split=30)

new_model.fit(X_train, y_train)

DecisionTreeRegressor(max_depth=10, min_samples_ split=30)

Figure 41: Applying the results of hyper parameter tuning to a new model.

20

#Predict using the new model
y_pred = new_model.predict(X_test)

#evaluate the new model

print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))

print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))

print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
print('R Squared:',metrics.r2_score(y_test, y_pred))

Mean Absolute Error: ©.8716420975879898

Mean Squared Error: ©.029086893083810802
Root Mean Squared Error: ©.17053120853325082
R Squared: ©.9723508359290443

Figure 42: Evaluating the new model.

21

reg.feature_importances_

array([©.28841514, &.02087986 , ©.86045427, 6.20070%931, @.B80a42346,
B8.06619881, @.881878%99, ©.23716613, 6.86628573, @.80965548,
B8.35744473, @.14684786, ©.00220862, 6.84138292, @.80@75374,
0.98366541, ©.85687229, ©.00@01634, ©.990956235, ©.00279883,
B.98241735, ©.80126937, ©.060653842, ©.91254857, ©.805282% ,
0.80482802, 8.80849932])

Get numerical feature importances

WQ_list = 1ist(WQ.columns)

importances = list({new _model.feature_importances_)

List of tuples with variable and importance

feature_importances = [(feature, round(importance, 3)) for feature, importance in zip(WQ_list, importances)]
Sort the feature importances

feature_importances = sorted(feature_importances, key = lambda x: x[1], reverse = True)

Print out the feature and importances

[print('Variable: {:28} Importance: {}'.format(*pair)) for pair in feature_importances];

Variable: Dissolved.Mg..mg.l. Importance: 8.953
Variable: Dissolved.Na..mg.l. Importance: 8.814
Variable: Gran.Alkalinity..uEq.l. Importance: @.806
Variable: Dissolved.Ca..mg.l. Importance: 8.885
Variable: Dissolved.Ba..ug.l. Importance: 8.284
Variable: Suspended.sediments..mg.l. Importance: @.ee3
Variable: Dissolved.B..ug.l. Importance: 8.883

Variable: Dissolved.Fe..ug.l. Importance: 8.883
Variable: Disseclved.Ni..ug.l. Importance: 8.883
Variable: Dissolved.Mn..ug.l. Importance: 8.882
Variable: year Importance: g.8e1
Variable: Dissolved.Cl..mg.l. Importance: 8.881
Variable: Disseclved.li..ug.l. Importance: 8.881
variable: sunshine Importance: 8.8
Variable: mean_temp Importance: 8.8
Variable: precipitation Importance: 8.8
Variable: menth Importance: 6.2
variable: day Importance: 8.8
Variable: Temperature..C. Importance: 8.8
Variable: Dissolved.K..mg.l. Importance: 8.@

Variable: Dissolved.504..mg.1.504. Importance: 8.8
Variable: Dissolved.NO3..mg.l1.NO3. Importance: 8.8
Variable: TDP..ug.l.P. Importance: 8.8

Variable: pH Importance: 8.@

Variable: Electrical.conductivity..uS.cm. Importance: 8.8
Variable: Dissolved.Cr..ug.l. Importance: 8.2

Variable: Dissolved.Sr..ug.l. Importance: B8.@

Figure 43: Calculating the feature importance for the new model.

22

plot actual Vs predicted - Lline chart
plt.figure(figsize=(15,8))
pyplot.plot(y_test, label='Expected')
pyplot.plot(y_pred, label='Predicted")
pyplot.legend()

pyplot.show()

—— Expected
Predicted

0 250 500 750 1000 1250 1500 1750
Figure 44: Plotting the actual Vs Predicted values for Decision Tree Model.
Figure 38 to 44 details the decision tree model predicting the parameter ‘Dissolved Sodium’.

To find the results for the three remaining parameters they will need to replace ‘Dissolved
Sodium’ in the file and the file run again.

split data into input and output columns
X = WQ.drop('Dissolved.MNa..mg.1l."', axis=1)
y = WQ.loc[:,['Dissclved.Na..mg.1l."]]

Figure 45

The location where the variable name will need to be replaced is shown above in Figure 45.
3.2.1.1 Testing Parameters

The parameters to replace Dissolved Sodium in the file are Dissolved Nitrate, Gran
Alkalinity and Electrical Conductivity. Their variable names in the dataset are listed below in

Table 1 and this is the name that should be used in the code:

Table 1: Variables that should be used to replace Dissolved Sodium in the code.

Dissolved.NO3..mg.l.NO3.

23

Gran.Alkalinity..ueq.l.

Electrical.conductivity..uS.cm.

3.2.2 Modelling Random Forest

Random Forest was applied to the model using the scikit-learn library. The data was
split into training and testing datasets, scaled and evaluated also using the scikit-learn library.
Hyper parameter tuning was carried out using RandomizedSearchCV from the scikit-learn
library. The steps taken are shown in Figure 47 - Figure 51.

import numpy as np

import matplotlib.pyplot as plt

import pandas as pﬂ

from sklearn.preprocessing import StandardScaler

from matplotlib import pyplot

from sklearn.model selection import train_test split
from sklearn.ensemble import RandomForestRegressor
from sklearn.model selection import RandomizedSearchCV
import sklearn.metrics as metrics

Figure 46: Libraries required for implementing the model.

Run the code to load the data into Jupyter Notebook using pandas. Split the data into output
and input columns, scale the data and then split the data into 80% training and 20% testing.

import os
os.getowd()
os.chdir('C:/Users/35386/Desktop/Msc Data Analytics/Data/Used data')

os.getowd()

Logd the Pandas Libraries with alias 'pd’
WQ = pd.read_csv("merged-final2.csv")

print(WQ)

split data inte input and output columns

#split the dataset into 75& training and 258 testing
X = WQ.drop('Dissolved.Na..mg.1l.', axis=1)

y = WQ.loc[:,['Dissolved.Na..mg.1."']]

#scale the data

sc_X = StandardScaler(
sc_y = StandardScaler(
X = sc_X.fit_transform
y = sc_y.Tit_transform

X)
¥l

Using Skicit-learn to split data into training and testing sets

from sklearn.model_selection import train_test_split

5plit the data into training and testing sets

train_X, test_X, train_y, test y = train_test_split(X, y, test_size = 8.28, random_state = 42)

24

Figure 47: Splitting and Scaling the data

Hyper parameter tuning was carried out on the Random Forest model to achieve a
higher performance. The best parameters for Max Features, Max Depth, Minimum Sample
Split, Minimum Sample Leaf and Bootstrap were calculated and are shown in Figure 48. The
best performing parameters were then used when fitting the model as shown in Figure 49. The
model was then evaluated as shown in Figure 50 — Figure 51.

#hyperparameter tuning using gridsearch

n_estimators = [5,20,50,100] # number of trees in the forest

max_teatures = ['auto’, "sqrt'] # number of features in consideration at every split
max_depth = [int(x) for x in np.linspace(1@, 120, num = 12)] # maximum number of Llevels allowed in each decision tree
min_samples_split = [2, 6, 10] # minimum sample number to split a node
min_samples_leaf = [1, 3, 4] # minimum sample number that can be stored in a leaf node
bootstrap = [True, False] # method used to sample data points

random_grid = {'n_estimators': n_estimators,

‘max_features’: max_features,

‘max_depth’: max_depth,

'min_samples split': min_samples_split,

‘'min_samples_leaft’: min_samples_leaf,

'bootstrap': bootstrap}

Importing Random Forest regressor from the sklearn.ensemble

from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor()

from sklearn.model_selection import RandomizedSearchCV
rf_random = RandomizedSearchCV(estimator = rf,param_distributions = random_grid,
n_iter = 100, cv = 5, verbose=2, random_state=35, n_jobs = -1)|

rf_random.fit(train_X, train_y)

Figure 48: Hyper Parameter Tuning using gridsearch.

#print the best performing parameters

print ('Random grid: ', random grid, '\n")

print the best parameters

print ('Best Parameters: ', rf_random.best_params_, ' \n')

Random grid: {'n_estimators': [5, 20, 5@, 100], 'max_features': ['auto', 'sgrt'], 'max_depth': [1@, 20, 30, 48, 50, 60, 70O,
8@, 99, 1e@, 11@, 128)], 'min_samples_split': [2, 6, 1@], 'min_samples_leaf': [1, 3, 4], 'bootstrap': [True, False]}

Best Parameters: {'n estimators': 100, 'min samples split': 2, 'min samples leaf': 1, 'max features': ‘"auto', 'max depth':
9@, 'bootstrap’': True}

#model with the best parameters used

randmf = RandomForestRegressor(n estimators = 160, min samples split = 2, min samples leaf= 1, max features = ‘auto’, max der
randmf.fit(train_X, train_y.ravel())

»
RandomForestRegressor(max_depth=120)

predictions = randmf.predict(test X)

Figure 49: Using the model with the best performing parameters.

25

#evaluate the model

import sklearn.metrics as metrics

print('Mean Absolute Error:', metrics.mean_absolute_error(test_y, predictions))

print{*Mean Sguared Error:', metrics.mean_squared_error{test_y, predictions})

print{'Root Mean Sguared Error:', np.sgrit{metrics.mean_sgquared_error{test_vy, predictions}))
print('R Squared:',metrics.r2_score(test_y, predictions))

Mean Absolute Error: @.0442842644355252%
Mean Squared Errcor: 8.015410766706340158
Rooct Mean Squared Error: 8.12414318917644591
R Squared: 8.9858853238519386

Get numerical fFeoture importances

importances = list(reandmf.feature_importances_)

[ist of tuples with vorioble and importance

feature_importances = [(feature, round(importance, 3)) for feature, importance in zip(WQ list, importances)]
Sort the fegture importances by most important first

feature_importances = sorted({feature_importances, key = lambda x: x[1], reverse = True)

Print out the feature and importances

[prinmt('Variable: {:38} Importance: {}'.format({*pair)) for pair in feature_importances];
Variable: Dissclved.Mg..mg.l. Importance: @.928
Variable: Dissolved.Ma..mg.l. Importance: @.0826
Variable: pH Importance: 8.814
Variable: Dissclved.Cl..mg.l. Importance: @.885%
Wariable: Electrical.conductivity..uS.cm. Importance: @.983
Variable: Diszsolved.Cr..ug.l. Importance: @.003
Variable: Dissolwved.K..mg.l. Importance: @.882
Variable: Dissolved.Ca..mg.l. Importance: @.082
Variable: Dissolved.N03..mg.1.NO3. Importance: @&.082
Variable: Suspended.szediments..mg.l. Importance: @.082
Variable: Diszsolved.B..ug.l. Importance: @.092
Variable: Dissclved.Mn..ug.l. Importance: @.882
Variable: Temperature..C. Importance: @.881
Variable: Dissolved.S04..mg.1.504. Importance: @.081
Variable: TDP..ug.l.P. Importance: ©.881
Variable: TP..ug.l.P. Importance: .81
Wariable: Gram.Alkalinity..uEg.l. Importance: @.881
Variable: Dissclved.Ba..ug.l. Importance: @.881
Variable: Dissclved.Fe..ug.l. Importance: @.881
Variable: Dissolved.Li..ug.l. Importance: @.081
Variable: sunshine Importance: 8.0
Variable: mean_temp Importance: .8
Variable: precipitation Importance: 8.0
Variable: month Importance: @.8
Variable: day Importance: @.8
Variable: year Importance: 2.8
Variable: Dissolved.Ni..ug.1l. Importance: 8.0

Figure 50: Evaluating the model and finding feature importance.

26

#plot actual Vs predicted - Line chart

plt.figure(figsize=(15,8))
pyplot.plot(test_v, label='Expected")
pyplot.plot(predictions, label='Predicted')
pyplot.legend()

pyplot.show()

—— Expected
Predicted

0 50 500 70 1000 1250 1500 1750

Figure 51: Plotting the actual VS predicted values in a line plot.
3.2.2.1 Testing Parameters
Similar to the Decision Tree model the parameter ‘Dissolved Sodium’ will need to be

replaced and the file ran again for each parameter. The location in the code that the new
parameter will need to be used is shown in Figure 52 below.

split data into input and output columns
X = WQ.drop(' 'Dissolved.Ma..mg.1l.', axis=1)
y = WQ.loc[:,['Dissolved.Na..mg.1."']]

Figure 52

The location where the variable name will need to be replaced is shown above in Figure
52. The parameters to replace Dissolved Sodium in the file are Dissolved Nitrate, Gran
Alkalinity and Electrical Conductivity as shown in Table 2. Their variable names in the dataset
are listed below and this is the name that should be used in the code:

Table 2: Variables that should be used to replace Dissolved Sodium in the code.

Dissolved.NO3..mg.l.NO3.

Gran.Alkalinity..ueq.l.

Electrical.conductivity..uS.cm.

27

3.2.3 Modelling Extreme Gradient Boosting

Extreme gradient boosting model was applied to the dataset using the xgboost library,
this was installed using !pip install xgboost. The scikit-learn library was used to split the
dataset into training and testing, scale the data and evaluate the final model. The packages
used to apply the model are shown in Figure 53 below. The steps taken are shown in Figure
54 - Figure 58.

import numpy as np

import pandas as pd

'pip install xgboost

import matplotlib.pyplot as plt

from sklearn.model _selection import train_test_split
import sklearn.metrics as metrics

from sklearn.preprocessing import StandardScaler
from matplotlib import pyplot

Figure 53: Libraries required for implementing the model.

import os

os . getowd()

os.chdir('C: /Users/35386/Desktop/Msc Data Analytics/Data/Used data')
os . getowd()

'CoUsersi 35388 \\Desktop\\Msc Data Anzlytics'\\Data'‘Used data’

Lood the Pandas Libraries with alios "pd”’
W) = pd.read_csv("merged-final2.csv")

print (W)

Figure 54: Setting the working directory and loading the dataset.

28

split dota into input and output columns

#split the dataset into 88%¥ troining and 28% testing
X = WQ.drop('Dissolved.Na..mg.1l.', axis=1)

v = WQ.loc[:,['Dissolved.Na..mg.1."]]

#scale the data

from sklearn.preprocessing import StandardScaler
sc_X = Standardscaler()

sc_y = Standardscaler()

X = sc_X.fit_transform{X)

vy = sc_vy.fit_transform{y)

Using Skicit-Learn to split dota inte troining and testing sets
from sklearn.model_selection import train_test_split
#5plit the dota into training and testing sets

split dota into train and test sets

seed = 7

test_size = 8.28

¥_train, X_test, v_train, y_test = train_test_split(¥, v, test _size=test_size, random_state=seed)

SR i e g g e e b e e e i
s Xghoost Regression in Python Hifsss
from xghoost import XGBRegressor

define model

model = ¥GBRegressor()
#Fit the model
model.fit(X_train, v_train)

¥GBRegressor(base_score=2.5, booster='gbtree', callbacks=hone,
colsample_bylewvel=1, colsample_bynode=1, colsample_bytree=1,
early stopping_rounds=hone, enable_categorical=False,
eval_metric=None, gamma=8, gpu_id=-1, grow_policy="depthwise",
impartance_type=None, interaction_constraints='",
learning_rate=8.300800812, max_bin=256, max_cat_to_onehot=4,
ma¥_delta_step=@, max_depth=56, max_leaves=08, min_child_weight=1,
missing=nan, monotone_constraints="'{)"', n_estimators=188, n_jobs=@,
num_parallel_tree=1, predictor='auto', random_state=8, reg_alpha=@,
reg_lambda=1l, ...)

make predictions for test dato

yv_pred = model.predict({¥_test)
predictions = [round(value) for value in y_pred]

#evalugte the model

import sklearn.metrics as metrics

print{'Mean Absolute Error:", metrics.mean_sbsolute_error(y_test, predictions))

print{'Msan Sguared Error:', metrics.mean_squared_error(y_test, predictions))

print{'Root Mean Sguared Error:', np.sgrt{metrics.mean_squared_error{y_test, predictions}))
print{'R Squared:',metrics.r?_score(y_test, predictions))

Mean Absolute Error: @.35897452855877533
Mean Squarsd Error: @,1551735659686748

Root Mean Squared Error: @.3939287618175589
R Sguared: 8.8453469722516984

Figure 55: Preparing the dataset, applying, and evaluating the model.

29

WY 1ist = 1ist{W).columns)

et numerical fFeoture importances

importances = list(model.feature_importances_)

[ist of tuples with varioble and importance

feature_importances = [(feature, round(importance, 2)) for feature, importance in zip({WQ list, importances)]
Sort the fegture importonces by most important first

feature_importances = sorted(feature_importances, key = lambda x: x[1], reverse = True)

Print out the feature and importances

[print('Variable: {:18} Importance: {}'.format({*pair)) for pair in feature_importances];

Variable: Dissolved.Mg..mg.l. Importance: ©.8999999761581421
Variable: Disszolved.Ma..mg.l. Importance: 8.8199999509552965164
Wariable: @ran.Alkalinity..uEq.l. Importance: 2.819999999552965164
Wariable: Dissolved.Ca..mg.l. Importance: @.889939990776482582
Variable: Dissolved.Cl..mg.l. Importance: @.889995959776482582
Variable: Disszolved.Ba..ug.l. Importance: 8.8899959950776482582
Variable: Dissolved.Mi..ug.l. Importance: 9.809999900776482582
Wariable: sunshine Importance: 2.8

Variable: mean_temp Importance: 2.8

Variable: precipitation Importance: @.@

Variable: month Importance: 8.8
Variable: day Importance: 2.9
Variable: year Importance: 8.8

Variable: Temperature..C. Importance: @.@

Variable: Dissolved.K..mg.l. Importance: 8.8
Variable: Dissolved.S0d..mg.1.504. Importance: 9.8
Variable: Dissolved.NO3..mg.l.NO3. Importance: 9.8
Variable: TDP..ug.l.P. Importance: @.8

Variable: pH Importance: 2.9

Variable: Electrical.conductivity..u5.cm. Importance: @.8
Variable: Suspended.sediments..mg.l. Importance: 8.8
Variable: Dissolved.B..ug.l. Importance: .8
Variable: Disszolved.Cr..ug.l. Importance: 8.8
Variable: Dissolved.Fe..ug.l. Importance: 8.8
Variable: Disszolved.Li..ug.l. Importance: @.8
Variable: Disszolved.Mn..ug.l. Importance: @.8
Variable: Disszolved.Sr..ug.l. Importance: 8.8

Figure 56: Calculating the feature importance.

30

M | #plot the results of the predicted values and the actuagl values
plt.scatter(y_test,y_pred);
plt.xlabel('Actual');
plt.ylabel('Predicted');

Actual

M |#plot actual Vs predicted - Line chart

plt.figure{figsize=(15,8))
pyplot.plot(y_test, label='Expected')
pyplot.plot(y_pred, label='Predicted')
pyplot. legend()

pyplot.show()

—— Expected
—— Predicted

[50 500 750 1000 1250 1500 1750

Figure 57: Plotting the results of the predicted Vs actual values.

3.2.3.1 Testing Parameters

Similar to previous models the parameter ‘Dissolved Sodium’ will need to be replaced
and the file ran again for each parameter.

split data into input and output columns
X = WQ.drop('Dissolved.MNa..mg.1l."', axis=1)
y = WQ.loc[:,['Dissolved.Na..mg.1l."]]

Figure 58

31

The location where the variable name will need to be replaced is shown above in Figure 58.

The parameters to replace Dissolved Sodium in the file are Dissolved Nitrate, Gran Alkalinity
and Electrical Conductivity and are shown in Table 3. Their variable names in the dataset are
listed below and this is the name that should be used in the code:

Table 3: Variables that should be used to replace Dissolved Sodium in the code.

Dissolved.NO3..mg.l.NO3.

Gran.Alkalinity..ueq.l.

Electrical.conductivity..uS.cm.

3.2.4 Modelling Support Vector Machine

Support Vector Machine model was applied to the data using the scikit-learn library.
The data was split into training and testing, scaled and evaluated also using the scikit-learn
library. The packages used to apply the model are shown in Figure 59 below. The steps taken
are shown in Figure 60 - Figure 64.

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import sklearn.metrics as metrics

from matplotlib import pyplot

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.svm import SWVR

Figure 59: Libraries required for implementing the model.

import os

os.getcwd()

os.chdir({'C:/Users/35386/Desktop/Msc Data Analytics/Data/Used data’)
os.getcwd()

"C:\\Users\\35386\\Desktop\\Msc Data Analytics\\Data\\Used data’

Load the Pandas Libraries with alias 'pd’

WQ = pd.read_csv{"merged-finalZ.csv")

print(wQ)

Figure 60: Setting the working directory and loading the dataset.

32

split doto into input and output columns
X = WQ.drop('Dissolved.Ma..mg.1l."', axis=1)
vy = WQ.loc[:,['Dissolved.Ma..mg.1."'1]

#scale the data

sc_¥ = StandardScaler()
sc_y = Standard5scaler()
X = sc_X.fit_transform{X)
y = sc_y.fit_transform{y)

Splitting to training and testing data

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 8.28, random_state = 4)

#Fitting 5VR on the dotoset
from sklearn.svm import SWR
svr = SVR(kernel = 'rbf')
svr.fit(X_train, y_train)

Figure 61: Splitting, scaling and fitting the Support Vector Machine model.

svr_pred = svr.predict(¥_test)
svr_pred= syr_pred.reshape(-1,1)

print{"MAE:", metrics.mean_absolute_error{y_test, svr_pred})
print{*M5E:", metrics.mean_squared_error(y_test, svr_pred))
print{*RMSE: "', np.sgrt{metrics.mean_sguared_error(y_test, svr_pred))}
print{'R Squared:',metrics.r2_score(y_test, svr_pred))

MAE: @.8779484159534628384

MSE: 9.083845162335768743
RM5E: @.19%68939554854599084

R Squared: ©.95200163126565934

Figure 62: Predicting and Evaluating the model.

33

dplot octwal Ve predicted - scotter plol

plt . figure(figsize=(15,8))
plt.scatter(y _test,swr_pred, c="red")
plt.xlabel{ "y Test")

plt.ylabel('Predicted ¥")

plt . show()
5 -
- *an
. .
- L]
* -
-
4 * .
L)
- -
1 - " . -
. L -
- L -.
& 3 -]]
g -
-
1] -
09]
-1
2
-2 b i i &

¥ Tixsl

dplot actwal Vs predicted - Lime chort

plt. figure(figsize=(15,8))
pyplot_plot(y_test, label='Expected’)
pyplot_plot{swr_pred, label="Predicted’)
pyplot. legend()

pyplot. showl)

—— Expacted
Predicbed

=z

[=) 500 =0 000 1250 1500 175D

Figure 63: Plotting the actual Vs predicted values.

3.2.4.1 Testing Parameters

Similar to previous models the parameter ‘Dissolved Sodium’ will need to be replaced
and the file ran again for each parameter.

34

+H:
L

plit data into input and output columns
WQ.drop({ ' 'Dissolved.Ma..mg.l.', axis=1)
WQ.loc[:,['Dissolved.Na..mg.1."]]

-
nn

Figure 64

The location where the variable name will need to be replaced is shown above in Figure
64. The parameters to replace Dissolved Sodium in the file are Dissolved Nitrate, Gran
Alkalinity and Electrical Conductivity and are shown in Table 4. Their variable names in the
dataset are listed below and this is the name that should be used in the code:

Table 4: Variables that should be used to replace Dissolved Sodium in the code.

Dissolved.NO3..mg.l.NO3.

Gran.Alkalinity..ueq.l.

Electrical.conductivity..uS.cm.

3.2.5 Modelling Multiple Linear Regression

The Multiple linear Regression model was applied to the dataset using the Scikit-learn
library, the data was also split into training and testing, scaled and evaluated using the same
library. The packages used to apply the model are shown in Figure 65. A diagnostic was applied
to the model using the statsmodels.stats library to view the Durbin-Watson statistic. The steps
taken to apply the model and to test the assumptions are shown in Figure 66 to Figure 76 below.

import numpy as np

import pandas as pd

from sklearn.model selection impert train_test split
from sklearn.linear model import LinearRegression
import matplotlib.pyplot as plt

import seaborn as sns

from matplotlib impert pyplot

from sklearn.preprocessing impeort StandardScaler
import sklearn.metrics as metrics

from statsmodels.stats impeort diagnostic

Figure 65: Libraries required for implementing the model.

35

import os
os.getcwd()

os.chdir('C:/Users/35386/Desktop/Msc Data Analytics/Data/Used data')

os.getcwd()

'C:\\Users\335386\\Desktop'\\Msc Data Analytics\\Data'\Used data’

Load the Pandas libraries with alias 'pd’
WQ = pd.read csv("merged-final2.csv")

print (WQ)

Figure 66: Setting the working directory and loading the dataset.

split data into input and output columns

#split the dataset into 80% training and 28% testing
X = WQ.drop('Dissolved.Na..mg.l.", axis=1)

y = WQ.loc[:,['Dissolved.Na..mg.1l."']]

#scale the data

from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()

sc_y = StandardScaler()

X = sc_X.fit_transform(X)

y = sc_y.fit_transform(y)

Using Skicit-Learn to split data into training and testing sets

seed = 7

test_size = 9.20

X_train, X _test, y train, y_test = train_test_split(X, y, test_sizeztest size, random_state=seed)

#fit the model to the data

linreg=LinearRegression()
linreg.fit(X_train,y train)

LinearRegression()

#predict the results

y_pred=linreg.predict(X_test)
y_pred

Figure 67: Preparing the data to fit and predict with the Multiple Linear Regression Model.

36

Fevatuate the model

import sklearn.metrics as metrics

print('Mean Absolute Errcor:', metrics.mean_absolute error(y test, y pred))

print('Mean Squared Error:', metrics.mean_squared error(y test, y pred))

print('Root Mean Squared Error:', np.sgqrt{metrics.mean_squared error(y test, v pred)))
print('R Squared:',metrics.r2_score(y test, y_pred))

Mean Absolute Error: 8.8949853921663585

Mean Squared Error: 8.827942285380383852
Root Mean Squared Error: 8.16715%22148373785
R Squared: ©.972151528324728

Figure 68: Evaluating the Multiple Linear Regression Model.

It is important to note that Multiple Linear Regression has several assumptions that must be
met, these assumptions are shown below, and the code used is shown in Figure 69 to 76.

Assumption 1: There is a linear relationship between the dependent and independent variables.

#Assumption 1: There is a Llinear relationship between the dependent and independent variables.
visualize the relationship between the features and the response using scatterplots
p = sns.pairplot(WQ, x_vars=z['sunshine', 'mean_temp', 'precipitation', 'month', 'day', 'vear', 'Temperature..C.', 'Dissolved.

3

Figure 69: Visualisation of the response variable and independent variable using scatterplots.

Assumption 2: The data should not show multicollinearity which is when the independent
variable is correlated with another independent variable.

#find the residuals
residual = y_test - y_pred

X_train = pd.DataFrame(X_train)

#Assumption 2: The data should not show multicollinearity which is when the independent variable is correlated with another 1
#VIF > 1@ - high VIF indicates high multicollinearity

from statsmodels.stats.outliers_influence import variance_inflation_factor

vif = [variance_inflation_factor(X train.values, i) for i in range(X_train.shape[1])]
pd.DataFrame({'vif':vif[0:]}, index = X_train.columns).T

0 1 2 3 4 5 -] 7 8 9 .. 17 18 19 20

vif 1386647 2600474 1.085226 1.187578 1.013872 2359422 2515918 7.748729 11.920543 6435131 .. 1.134776 9.940352 2320277 1.12239 1.25021

Figure 70: VIF Score for each variable.

37

Table 5: VIF values above 10 in the dataset

Variable VIF

Dissolved Sodium 41.204560338553364

Dissolved Chlorine 23.879478473810476

Dissolved Sulphate 11.140613350667332

Total Dissolved Potassium 53.853347933113184

Assumption 3: Homoscedasticity which means that the residuals have a constant variance.

Assumption 3 - Homoscedasticity which means that the residuals have a constant variance.

#residuals vs predicted p
#residuals seem to cluster which shows that Homoscedasticity may exist
plt.scatter(y_pred, residual)

<matplotlib.collections.PathCollection at @xl4ac4ccddeo:

L)
1 b . .
. L .i: .
0 o’ o
'.f
LY ‘
= [.
-2
=3 .
5 2 4 6 8

#Assumption 3 Continued -autocorrelation - all points after the first point should be within the blue shaded area,
#1f any points are outside, autecorrelation is present
#0ne point is outside which suggests agutocorrelation here

import statsmodels.api as sm
import statsmodels.tsa.api as smt

act = smt.graphics.plot_acf(residual, lags=4@ , alpha=0.85)

Autocorrelation

08

06

0.4

02

00 vt ™ o e ‘l‘bl"i'- "va.‘v--,‘ -"'

I:.’ 5 10 1“: }‘ID ?“5 0 "]I') d}]

Figure 71: Homoscedasticity and autocorrelation of the residuals.

Assumption 4: Multivariate Normality which occurs when the distribution of the residuals
are normal.

38

#Assumption 4: Multivariate Normality which accurs when the distribution of the residuals are normal.
#matplotlib inline

import seaborn as sns

sns.distplot(residual)

C:\Users\35386\Anaconda3\1lib\site-packages\seaborn\distributions.py:2551: FutureWarning: ~distplot”™ i
and will be removed in a future version. Please adapt your code to use either “displet™ (a figure-le
r flexibility) or “histplot™ (an axes-level function for histograms}).

warnings.warn(msg, Futurelarning)

<AxesSubplot:ylabel="Density’'»

Figure 72: Multivariate Normality of the residuals.

Assumption 5: Observations should be independent of each other.

#Assumption 5 - that the observations should be independent of each other using the Durbin-Watson test
from statsmodels.stats import diagnostic
import statsmodels.api as sm
model = sm.OLS(y, X).fit()
predictions = linreg.predict(X_test)
print_model = model.summary(}
print(print_model)
0OLS Regression Results

Dep. Variable: y R-squared (uncentered): 8.572
Medel: 0OLS Adj. R-squared (uncentered): 8.572
Method: Least Squares F-statistic: 1154.
Date: Sun, 14 Aug 2022 Prob (F-statistic): .68
Time: 168:54:16 Leg-Likelihood: -9433.7
No. Observations: 9498 AIC: 1.889e+084
Df Residuals: 9479 BIC: 1.897e+84
Df Model: 11
Covariance Type: nonrobust

coaf std err t P>t [e.025 @.975]
x1 8.5841 2.812 49.177 g.8e0 @.561 0.607
x2 8.9187 08.a818 56.428 a.8ae @.875 8.946
x3 -8.0449 a.a12 -3.635 a.ea8 -08.069 -@.821
x4 -8.3156 e.e17 -18.643 @.ee0 -9.249 -0.282
X5 8.8415 08.813 3.181 @.ee1 @.816 0.867
X6 -8.0283 a.aa7 -2.936 a.ea3 -8.834 -0.aa7
x7 -8.1746 a.a15 -11.489 a.ea8 -8.284 -8.145
x8 -8.8563 @.ee9 -5.879 @.ee0 -8.875 -0.@38
X8 -8.1e19 e.e1e -9.753 @.0e0 -9.122 -8.881
x18 8.1487 a.a1e 13.763 a.8ae @.121 8.161
x11 -8.2312 a.ale -23.668 a.8a0 -6.258 -8.212
Oomnibus: 5190.588 Durbin-Watson: 1.488
Prob(Omnibus): 8.e88 Jarque-Bera (JB): 281360.311
Skew: 1.288 Prob(JB): @.00
Kurtosis: 25.216 Cond. Mo. 7.46

Figure 73: Durbin-Watson test for the Multiple Linear Regression model.

#Now apply MLR again dropping the unwanted columns
WQ = WQ.drop(['Dissolved.Na..mg.l.", 'Dissolved.Cl..mg.l.", 'TDP..ug.l.P.', 'Dissolved.S04..mg.l1.504.","'sunshine’, 'mean_temg

»

Figure 74: Dropping columns from the dataset.

39

split data into imput and output columns

#split the dataset into 88% training and 28% testing
X = WQ.drop('Dissolved.NO3..mg.1.NO3.", axis=1)

y = WQ.loc[:,['Dissclved.NO3..mg.1.NO3. "]]

#scale the data

from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()

sC_y = StandardScaler()

X = sc_X.fit_transform(X)

y = sc_y.fit_transform(y)

Using Skicit-Learn to split data inteo traeining and testing sets

seed = 7
test_size = 8.208

#fit the model to the data

linreg=LinearRegrassion()
linreg.fit(X_train,y_train)

LinearRegression()

#predict the results

y_pred=linreg.predict(X_test)
y_pred

X_train, X_test, y_train, y test = train_test split(X, vy, test size=test size, random_state=seed)

Figure 75: Splitting, Scaling and fitting the new model on the new dataset.

#evaluate the model

import sklearn.metrics as metrics

print({'Mean Absolute Error:', metrics.mean_absolute error(y test, y pred)})

print{‘'Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))

print({'Root Mean Sguared Error:', np.sgrit(metrics._mean_squared error{y test, y pred)))
print({'R Squared:’',metrics.r2_score(y_test, y_pred))

Mean Absolute Error: ©.4278127883216817
Mean Squared Error: 8.39787588594518185
Root Mean Squared Error: @.6387739737370641
R Squared: ©.55@5846937857332

Figure 70: Evaluating the new model.
3.2.5.1 Testing Parameters

Similar to the previous models the parameter ‘Dissolved Sodium’ will need to be replaced
and the file ran again for each parameter.

split data into input and output columns
X = WQ.drop(' 'Dissolved.Ma..mg.1l.', axis=1)
y = WQ.loc[:,['Dissolved.Na..mg.1."']]

Figure 76

40

The location where the variable name will need to be replaced is shown in Figure 76 above.

The parameters to replace Dissolved Sodium in the file are Dissolved Nitrate, Gran Alkalinity
and Electrical Conductivity and are shown in Table 6. Their variable names in the dataset are
listed below and this is the name that should be used in the code:

Table 6: Variables that should be used to replace Dissolved Sodium in the code.

Dissolved.NO3..mg.l.NO3.

Gran.Alkalinity..ueq.l.

Electrical.conductivity..uS.cm.

References

Cran.r-project.org. 2022. Download R-4.2.1 for Windows. The R-project for statistical
computing.. [online] Available at: <https://cran.r-project.org/bin/windows/base/> [Accessed
01 August 2022].

Rstudio.com. 2022. Download the RStudio IDE. [online] Available at:
<https://www.rstudio.com/products/rstudio/download/> [Accessed 1 August 2022].

Anaconda. 2022. Anaconda | The World's Most Popular Data Science Platform. [online]
Available at: <https://www.anaconda.com/> [Accessed 1 August 2022].

41

