ﬁ

\\
National

College of
Ireland

Configuration Manual

MSc Research Project
MSc. Data Analytics

Prashant Digambar Waghela
Student ID: x20207786

School of Computing
National College of Ireland

Supervisor: Prof. Vladimir Milosavljevic

Student Name:
Student ID:
Programme:
Module:
Lecturer:
Submission Due

Date:

Project Title:

Word Count:

"ﬁ
\ National

National College of Ireland

Collegef
MSc Project Submission Sheet Ireland
School of Computing
PRASHANT DIGAMBAR WAGHELA
X20207786
MSc. Data Analytics Year: 2021-22

MSc. Research Project
Prof. VLADIMIR MILOSAVLIEVIC

15% August 2022

MULTIMODAL FAKE NEWS AND TAMPERED IMAGE DETECTION USING
TRANSFORMER AND CNN-BASED ALGORITHMS

2014 Page Count: 11

I hereby certify that the information contained in this (my submission) is information pertaining to research I
conducted for this project. All information other than my own contribution will be fully referenced and listed in
the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the
Referencing Standard specified in the report template. To use other author's written or electronic work is
illegal (plagiarism) and may result in disciplinary action.

Signature:

Date:

Prashant Digambar Waghela

15t August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including m

multiple copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, m
both for your own reference and in case a project is lost or mislaid.
It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be
placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Prashant Digambar Waghela
Student ID: x20207786

1 Introduction

The project configuration manual provides step-by-step instructions that researchers need to
follow to successfully implement this project. It provides information about various system
specification requirements along with the necessary steps that need to be remembered before
running all the scripts.

2 System Specification

The first section covers the hardware, software, and library specification details on which this
research project was implemented.

2.1 Hardware Used for the Project Implementation

CPU 8-core CPU (Apple M1 Chip)

GPU Integrated 8-core GPU with 2.6 teraflops of throughput
RAM 16GB of LPDDR4X-4266 MHz SDRAM

SSD 256GB

Operating System macOS

2.2 Libraries Used

Libraries Required |Pandas, NumPy, Keras, TensorFlow, Matplotlib, Sci-Kit
Learn

2.3 Software Requirements

Software Required | Google Colab, Jupyter Notebook, Anaconda Navigator |

3 Data Source

The dataset used in this project was private in nature and proper permission was taken from
Sharma, D.K. and Garg, S., (2021) wherein GitHub access was provided to download the
data. An ethics declaration form for the same has already been submitted to the academic
institution.

4 Image Data Preparation

Note: The ‘InitialDataClean_ImageFolderCreation.ipynb’ and ‘Image
Data_Preprocessing.ipynb’ needs to be strictly run on the local Jupyter Notebook
environment.

_
Jjupyter
\‘.IIII"/

Important Code Snippets in ‘InitialDataClean_ImageFolderCreation.ipynb’

This is the first python notebook that needs to be run to download the images in the local
folder.

#Read the ‘.tsv’ file from the local system and convert it into a pandas

data frame

import pandas as pd

df =

pd.read table('/Users/prashantwaghela/Desktop/FakeNewsDataset/multimodal on
ly samples/multimodal data.tsv')

print (df.head())

#Dropping unwanted columns

df=df.drop (['author',

'clean title', 'created utc', 'hasImage', 'id', 'linked submission id', 'num
_comments', 'score', 'subreddit', 'upvote ratio','3 way label','6 way labe
1'], axis=1)

#Column renaming, removal of N/A rows, and index resetting

df.columns = ['domain', 'img url', 'news title', 'is fake']
df=df.dropna ()
df=df.reset index()

The above 3 codes were needed for the initial cleaning of the data frame. The below code is a
custom script to download images through URLs and store them in the local system within
train and test folders.

#Image Folder creation by URL checking and storing them in the local
system

import urllib.request

arr_remove=[]

def download image (i,url, file path):
file name = 'image-{}.Jjpg'.format (i)

2

full path = '{}{}'.format (file path, file name)

try:
urllib.request.urlretrieve (url, full path)
print ('{} saved.'.format (file name))

except urllib.error.HTTPError as e:
urllib.error.HTTPError == 'HTTP Error 404: Not Found'
arr remove.append (i)
i+=1
print ('{}"'.format (e))

return None

FileName='finaldata file.csv'

urls=pd.read csv (FileName)
print (urls)

for i, url in enumerate(urls.values) :

if((1i <= 0.8*len(df)) & (df.iatf[i,4] == 0.0)):

FilePath=
'/Users/prashantwaghela/Desktop/FakeNewsDataset/multimodal only samples
/images/train/fake/"'

elif((1i <= 0.8*len(df)) & (df.iat[i,4] == 1.0)):

FilePath=

'/Users/prashantwaghela/Desktop/FakeNewsDataset/multimodal only samples
/images/train/true/"

elif((i > 0.8*len(df)) & (df.iatf[i,4] == 0.0)):

FilePath=
'/Users/prashantwaghela/Desktop/FakeNewsDataset/multimodal only samples
/images/test/fake/"'

elif ((1i > 0.8*len(df)) & (df.iat[i,4] == 1.0)):

FilePath=

'/Users/prashantwaghela/Desktop/FakeNewsDataset/multimodal only samples
/images/test/true/"
download image (i, url[3], FilePath)

5 Step?2

Important Code Snippets in ‘Image Data_Preprocessing.ipynb’

from PIL import Image
Image.MAX IMAGE PIXELS = 1000000000
import os

import pandas as pd

#Image pre-processing by Resizing and storing in the local system

files testt=os.listdir ("/Users/prashantwaghela/Desktop/FakeNewsDataset/
multimodal only samples/images/test/true/")

files testf=os.listdir ("/Users/prashantwaghela/Desktop/FakeNewsDataset/
multimodal only samples/images/test/fake/")

files traint=os.listdir("/Users/prashantwaghela/Desktop/FakeNewsDataset
/multimodal only samples/images/train/true/")

files trainf=os.listdir("/Users/prashantwaghela/Desktop/FakeNewsDataset
/multimodal only samples/images/train/fake/")

extensions=["'jpg', 'jpeg', "JPEG']

The below ‘for loop’ is useful in resizing the images to a standard size of ‘200 x 200’ and it
needs to be iterated for all the above-defined variables files_testf, files_traint, and files_trainf

for i in files testt:
ext=1i.split('.") [-1]
if ext in extensions:

im=Image.open ("/Users/prashantwaghela/Desktop/FakeNewsDataset/multimoda
1 only samples/images/test/true/"+ 1)
im resized=im.resize ((200,200))

filepath="/Users/prashantwaghela/Desktop/FakeNewsDataset/multimodal onl
y samples/images resized/test resized/true resized/" + 1
im resized.convert ('RGB') .save (filepath)

6 Permanently Move Images to Google Drive

The above code sections will provide us with the downloaded and resized images that are
usable for model implementation. Since a multimodal algorithm is used, the RAM and GPU
requirements are higher and hence, the model could not be trained on the local system. Thus,
the downloaded image folders and the clean data frame need to be moved into a Google
Drive location.

7 Migration to Google Colab Pro

&0

PRO

This part of the project covers the necessary steps to implement the unique multimodal
algorithms on the Google Colab Pro Notebook. This step is chosen because of the high RAM
and GPU requirements for the model training phase.

First, mount the Colab notebook with Google Drive so that the data frame and all the images
could be accessed for the model-building process.

from google.colab import drive
drive.mount ('/content/drive')

We need to add a custom ‘for loop’ to create a new column which consists of all the uploaded
google drive image paths.

old filelength=38520
train split val = 29699 #This value is 80% of entire dataset length
FilePath arr=[]
img number arr=[]
for 1 in range (0, len(df)):
if((1i <= train split val) & (df.iat[i,5] == 0)):

FilePath arr.append('/content/drive/MyDrive/images resized/train resize
d/fake resized/image-' + str(df.iat([i,1]) + '.jpg')
img number arr.append(df.iat[i,1])
elif ((i <= train split val) & (df.iatf[i,5] == 1)):

FilePath arr.append('/content/drive/MyDrive/images resized/train resize
d/true resized/image-' + str(df.iat([i,1]) + '.jpg')
img number arr.append(df.iat[i,1])
elif ((i > train split val) & (df.iat[i,5] == 0)):

FilePath arr.append('/content/drive/MyDrive/images resized/test resized
/fake resized/image-' + str(df.iat([i,1]) + '.jpg')
img number arr.append(df.iat[i,1])
elif ((i > train split val) & (df.iat[i,5] == 1)):

FilePath arr.append('/content/drive/MyDrive/images resized/test resized
/true resized/image-' + str(df.iat([i,1]) + '.jpg')
img number arr.append(df.iat[i,1])

The next important thing is to clean the text data and for that, we have used NLTK libraries
which is visible from the below code snippet.

#Importing necessary libraries

from tensorflow.keras.layers import Embedding

from tensorflow.keras.preprocessing.sequence import pad sequences
from tensorflow.keras.models import Sequential

from tensorflow.keras.preprocessing.text import one hot

from tensorflow.keras import layers

voc size=10000

import nltk

import re

from nltk.corpus import stopwords
nltk.download ('stopwords')

#News text is cleaned using regular expression which removes special
characters from the text.

#Porter Stemming is used to remove stop words from the text to simplify
it for the model.

from nltk.stem.porter import PorterStemmer
ps = PorterStemmer ()

corpus = []

for i in range(0, len(merged df)):

print (i)

news = re.sub('["a-zA-Z0-9]"', ' ', merged df.iat[i,5])
news = news.lower ()

news = news.split ()

news = [ps.stem(word) for word in news if not word in

stopwords.words ('english')]
news = ' '.join (news)

corpus.append (news)

The implementation of all the above steps will provide the pre-processed image and text data
set which could now be utilised for the model training phase.

7.1 NPZ Array Creation

One custom requirement of a multimodal algorithm with different input data streams is that it
needs an n-dimensional NumPy array where a single index would provide the model with the
text, image and target column data for that specific data row. It basically simplifies the way in
which multimodal data could be accessed. To implement this we need to save ‘.npz’ files on
Google Drive which contains this set of information in a single index. The next code snippet
will help us in implementing the same.

import cv2
npz paths = []

for i, row in df final.iterrows():
picture path = row['Path']
print (i)
npz path = picture path.split('.')[0] + '.npz'
npz paths.append(npz path)

pic bgr arr cv2.imread (picture path)

cv2.cvtColor (pic bgr arr, cv2.COLOR BGR2RGB)

pic _rgb arr

preprocessed news = row['preprocessed newsText']
news = np.array (preprocessed news)

fake = row['is fake']
np.savez compressed(npz path, pic=pic rgb arr, news=news, fake=fake)

The ‘npz paths’ array should be converted into a list and it should be added to the data frame

so that it could be utilised during the model building phase.

7.2 Data Splitting

A custom function to split the data into training, validation and testing sets is implemented in
the study.

def get X y(df):

X pic, X news= [], []

y=1]

for name in df['NPZ Path new']:
loaded npz = np.load(name)
print (name)
pic = loaded npz['pic']
X pic.append(pic)

news = loaded npz['news']
X news.append (news)

y.append (loaded npz['fake'])

X pic, X news = np.array(X pic), np.array(X news)
y = np.array(y)

return (X pic, X news), vy

The above-defined function if called using the data frame along with its index values will
help in achieving the data split as required for the model.

8 Model Implementation
This section will discuss the important code snippets to define the multimodal architectures.

8.1 Model 1 (BERT+CNN)

This code snippet to build the multimodal algorithm could be seen in
‘CNN_BERT _Final_Multimodal.ipynb’

The model definition for this first multimodal algorithm is as shown below. The below code
will create our unique multimodal architecture.

Define the Picture (CNN) Stream and some Conv2D layers along with Max
Pooling

img input = tf.keras.layers.Input (shape=(200, 200, 3))
x = tf.keras.layers.Conv2D (32, (3, 3), activation='relu',
input shape= (200, 200, 3)) (img input)

= tf.keras.layers.Flatten () (x)
= tf.keras.layers.Dropout (0.5) (x)
= tf.keras.layers.Dense (512, activation='relu') (x)

x = tf.keras.layers.MaxPooling2D (2, 2) (x)

x = tf.keras.layers.Conv2D (64, (3, 3), activation='relu') (x)
x = tf.keras.layers.MaxPooling2D (2, 2) (x)

x = tf.keras.layers.Conv2D (128, (3, 3), activation='relu') (x)
x = tf.keras.layers.MaxPooling2D (2, 2) (x)

x = tf.keras.layers.Conv2D (128, (3, 3), activation='relu') (x)
x = tf.keras.layers.MaxPooling2D (2, 2) (x)

X

X

X

X

= tf.keras.Model (inputs=img input, outputs=x)

Define the BERT Model

bert preprocess =

hub.KerasLayer ("https://tfhub.dev/tensorflow/bert en uncased preprocess
/3")

bert encoder =

hub.KerasLayer ("https://tfhub.dev/tensorflow/bert en uncased L-12 H-
768 A-12/4")

text input = tf.keras.layers.Input (shape=(), dtype=tf.string,
name="text")

preprocessed text = bert preprocess(text input)

outputs = bert encoder (preprocessed text)

y = tf.keras.layers.Flatten() (outputs['pooled output'])

tf.keras.layers.Dropout (0.5, name="dropout2") (y)

Yy
% tf.keras.layers.Dense (768, activation='relu') (y)
y = tf.keras.Model (inputs=[text input], outputs = [y])

Concatenate the two streams together

combined = tf.keras.layers.concatenate ([x.output, y.outputl])

z = layers.Dense (64, activation="relu") (combined)
z = layers.Dropout (0.2, name="dropout3") (z)
z = layers.Dense (64, activation="relu") (z)

Define output node of 1 categorical neuron (classification task)

z = tf.keras.layers.Dense(l, activation="sigmoid") (z)

Define the final model

model = Model (inputs=[x.input, y.input], outputs=z)

Use of Early Stopping:

The use of early stopping patience helps in avoiding data overfitting while performing model
training. The patience value can be changed as per the available system configuration.

However, the general practice is to set its value as 3.

from keras.callbacks import ModelCheckpoint, EarlyStopping

es EarlyStopping (patience=3)
cp = ModelCheckpoint ('/content/drive/MyDrive/model latest BERT CNN',
save best only=True, save weights only=True)

cb=[es, cp]

8.2 Model 2 (BERT + InceptionV3)

This code snippet to build the multimodal algorithm could be seen in
‘Inception_BERT _Final_Multimodal.ipynb’

The initial CNN stream from the above multimodal algorithm can be replaced with a pre-
trained InceptionVV3 model to identify the performance difference between the two models.

Define the Inception Stream

tf.keras.layers.Flatten () (inception.output)
= tf.keras.layers.Dropout (0.1) (x)

tf.keras.layers.Dense (512, activation='relu') (x)

XX X X

tf.keras.Model (inputs=inception.input, outputs=x)
Define the BERT Model
text input = tf.keras.layers.Input (shape=(), dtype=tf.string,

name="text"')

preprocessed text = bert preprocess(text input)

outputs = bert encoder (preprocessed text)

y = tf.keras.layers.Flatten() (outputs['pooled output'])
y = tf.keras.layers.Dropout (0.5, name="dropout2") (y)

y = tf.keras.layers.Dense (768, activation='relu') (y)

y = tf.keras.Model (inputs=[text input], outputs = [y])

Concatenate the two streams together

combined = tf.keras.layers.concatenate ([x.output, y.output])

9

z = layers.Dense (64, activation="relu") (combined)

Define output node of 1 categorical neuron (classification task)

z = tf.keras.layers.Dense(l, activation="sigmoid") (combined)

Define the final model

model = Model (inputs=[x.input, y.input], outputs=z)

8.3 Model 3 (XML_RoBERTa + InceptionV3)

This code snippet to build the multimodal algorithm could be seen in
‘CNN_XML_RoBERTa_MultiModal_Final.ipynb’

Define the Picture (CNN) Stream and some Conv2D layers along with Max
Pooling

img input = tf.keras.layers.Input (shape=(200, 200, 3))
x = tf.keras.layers.Conv2D (32, (3, 3), activation='relu',
input shape= (200, 200, 3)) (img input)

= tf.keras.layers.MaxPooling2D (2, 2) (x)

= tf.keras.layers.Conv2D (64, (3, 3), activation='relu') (x)

= tf.keras.layers.MaxPooling2D (2, 2) (x)

= tf.keras.layers.Conv2D (128, (3, 3), activation='relu') (x)
tf.keras.layers.MaxPooling2D (2, 2) (x)

= tf.keras.layers.Flatten () (x)
= tf.keras.layers.Dropout (0.2) (x)
= tf.keras.layers.Dense (512, activation='relu') (x)

KoX X X X X X X X
Il

= tf.keras.Model (inputs=img input, outputs=x)

Define the XML RoBERTa Model

xml RoBERTa preprocess =

hub.KerasLayer ("https://tfhub.dev/jeongukjae/xlm roberta multi cased pr
eprocess/1")

xml RoBERTa encoder =

hub.KerasLayer ("https://tfhub.dev/jeongukjae/x1lm roberta multi cased L-
12 H-768 A-12/1")

text input = tf.keras.layers.Input (shape=(), dtype=tf.string,
name="text")

preprocessed text = xml RoBERTa preprocess (text input)
outputs = xml RoBERTa encoder (preprocessed text)

y = tf.keras.layers.Flatten() (outputs['pooled output'])

10

y = tf.keras.layers.Dropout (0.2, name="dropout2") (y)
y = tf.keras.layers.Dense (768, activation='relu') (y)
y = tf.keras.Model (inputs=[text input], outputs = [y])

Concatenate the two streams together

combined = tf.keras.layers.concatenate ([x.output, y.output])
z = layers.Dense (64, activation="relu") (combined)

Define output node of 1 categorical neuron (classification task)

z = tf.keras.layers.Dense(l, activation="sigmoid") (z)

Define the final model

model = Model (inputs=[x.input, y.input], outputs=z)

The implementation of the BERT and XML_RoBERTa unimodal models is the same with
the absence of the CNN and Keras concatenation stream.

References

Sharma, D.K. and Garg, S., 2021. IFND: a benchmark dataset for fake news
detection. Complex & Intelligent Systems, pp.1-21.

11

	1 Introduction
	2 System Specification
	2.1 Hardware Used for the Project Implementation
	2.2 Libraries Used
	2.3 Software Requirements

	3 Data Source
	4 Image Data Preparation
	Important Code Snippets in ‘InitialDataClean_ImageFolderCreation.ipynb’
	5 Step 2
	Important Code Snippets in ‘Image Data_Preprocessing.ipynb’
	6 Permanently Move Images to Google Drive
	7 Migration to Google Colab Pro
	7.1 NPZ Array Creation
	7.2 Data Splitting

	8 Model Implementation
	8.1 Model 1 (BERT+CNN)
	8.2 Model 2 (BERT + InceptionV3)
	8.3 Model 3 (XML_RoBERTa + InceptionV3)

	References

