~

"'—-
\ National
College

Ireland

Research Configuration Manual

MSc Research Project
Data Analytics

Nikhil Vaidya
Student 1D: x20245980

School of Computing
National College of Ireland

Supervisor: Prof. Qurrat Ul Ain

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Nikhil Vaidya
Student ID: x20245980
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Prof. Qurrat Ul Ain
Submission Due Date: 18/09/2022
Project Title: Research Configuration Manual
Word Count: 988
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Nikhil Vaidya

Date: 18/09/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Research Configuration Manual

Nikhil Vaidya
%20245980

1 Introduction

This configuration manual provides information on the activities and tasks carried out
during this project’s implementation phase. The hardware and software specifications
are provided in case this project needs to be duplicated in the future. The documents
detail every stage of code development and deployment. Additionally, it addresses the
prerequisites for the code to function as intended.

2 System Configuration

2.1 Hardware Configurations

Below Figure [1f depicts the hardware configuration used in ourt research.

i5-9300H CPU @ 2.40GHz 2.40 GHz

16.0 GB (
Device ID 809AOES51-C1EA-4F73-AACA-5DAS76DBCIAY
Product ID 00330-8 40030-AA460

System type 64-t

Penand touch No p:

Related links ~ Domain or workgroup System protection Advanced system settings

BE Windows specifications Copy

re Experience Pack 1000.22000.856.0

Figure 1: Hardware configurations

2.2 Software Configurations

The software configuration section is the most crucial section of the implementation. The
section highlights important software requirements for our research.

2.2.1 Google Colab Pro

Google colab pro version is used for implementing the code in this project. Google colab
is an online service that provides free computing resources such as GPU and CPU for
running the python code. All the necessary libraries are loaded in the google colab. The
dataset is saved on google drive and retrieved using the below-given code:

[] from google.colab import drive
drive.mount('/content/drive")

Mounted at /content/drive

Figure 2: Accessing Google Drive on Colab

After the code is executed, an authorization link is generated, which we have to per-
mit by clicking on the link.Figure [2| shows how the code is implemented.

Using the colab pro version, we can switch to a GPU or TPU runtime for much faster
and better resources. This feature can be implemented by changing the ” Change Runtime
Type” in the runtime menu, as shown in the figure.

Notebook settings

Hardware accelerator

GPU v @

To get the most out of Colab Pro, avoid using a GPU unless you

need one. Learn more

Runtime shape
Standard v

[[] Background execution
|:| Omit code cell output when saving this notebook

Cancel Save

Figure 3: GPU Runtime In Google Colab

2.2.2 Overleaf

Overleaf was used to create the report associated with this research project. Overleaf is
an online document creation platform that uses the Latex language to format the doc-
ument. It is widely used for various report creation and is known for its simplicity and

real-time document snapshot display. Below given figure shows the Ul of Overleaf.

< c @ https://www.overleaf.com/project/62f97bc0e427221b5ab2ed09

G Menu @ (Upgrade
Bl S W
™ figures -

= logos

= text
I declaration.tex
I sectionl.tex
[section2.tex §
I section3.tex
I sectiond.tex

I section5.tex

I sectioné.tex
+ File outline
System Configuration
Hardware Configura...
Software Configurati...
Google Colab
Other Software ...

MSCDAD_x2

arch_configuration_manual

Source Rich Text Q

- \section{systen Configuration}

\label{sec:config}

- \subsection{Hardware Configurations}

\Figurename~\ref{fig:hu_config} below shows the hardware configuration of the
system on which the code was implemented.\\

- \begin{figure}[h]

\begin{center}
\includegraphics [width = 1\textwidth] {hw_config.png}
\caption{Hardvare configurations}
\label{fig:hw_config}
\end{center}
\end{figure}

- \subsection{Software Configurations}

This section contains information about the software that were used to implement
the research, as well as their specifications.\'

- \subsubsection{Google Colab}

Google's computing infrastructure, also called as Google Colab, is used for the
project. All of the libraries have been loaded, and the model is being coded in
Google Colab. The dataset is uploaded on Google Drive which is then connected to
Google Colab using following code:\\

- \begin{figure}[h]

\begin{center}
\includegraphics[width = 0.7\textwidth] {mount.png}
\caption{Mounting Google Drive on Google Colab}
\label{fig:mount} -
\end{center}
\end{figure}

Following the execution of the command in \figurename~\ref{fig:mount}, a
hyperlink to get authorization code is displayed, and if we click on it, an

® % * 0O a :
GAb Review §8f share (@ Submit ‘D History [T] Layout Gj) - @ Chat

< Recompile -~ @ &

Figure 3: Changing Runtime Type to GPU on Google Colab

Figure 4: Overleaf

3 Data Preparation

Dataset used in this research is acquried from ISIC (International Skin Imaging Collab-

oration) lesion segmentation and classification Challengeﬂ depicted in Figure .

Featured Prediction Competition

SIIM-ISIC Melanoma Classification

|dentify melanoma in lesion images

Figure 5: ISIC Skin Lesion Challenge Dataset

Figure [7] how to upload the dataset on the google drive.

Thttps://challenge.isic-archive.com/data/

r
o
=
0

Sef

Folder

File upload

e O

Folder upload

Google Docs

o m

Google Sheets

>
>
Google Slides >
>

More

Figure 6: Dataset Upload

The dataset has two folders and two files: train and val, which are further subdivided
into four folders. And two ground truth files. After uploading and unzipping the dataset
on the drive, the folder structure required on the drive to replicate the code is depicted
in Figure [7]

My Drive > Melanoma > dataset ~ 2
Folders

B3 train B va

Files

B Training_GroundTruth.... B Test_GroundTruth.csv

Figure 7: Folder Structure

The train and val folder are further subdivided into four folders each: images and
masks, which are original data downloaded from the website. The other two folders are
imagesV2 and masksV2, which are resized images of 512x512 resolution. The train and
val folder also contains an annotation file via_region_data.json, which we created while
running the code and will be replaced when the code is rerun. The Figure |8 depicts the
train folder structure, and the same will be followed for the val folder.

A custom build function to automate the image annotation process is used in this
research. The Figure [9] depicts how the annotation function is implemented to build the

My Drive > Melanoma > dataset > train ~ a2

Folders

B3 images B3 masks B3 imagesv2 B3 masksv2

Files

B via_region_datajson

Figure 8: Train Folder Structure

annotation file in google drive named via_region_data.json.

I Creating annotation file:
- Function will read both mask and images to draw cantours
= Function will calculate the x and ¥ coordinates of the images to be stored annotation file.
= Function will traverse through the lable file (ground truth .csv) and assign labels.
= Finally the function will create a combined annotation file (via_region_data json). To be used in classification

108, eps=e.@1):

1+-_Segmentation.pag™)}

@)
2. RETR_TREE, cv2.CHATN APPROX_STMPLE)

stres for idx in range{len{contours))]

arcLengthic, True), True) for c in large_contour)

shape_attributes
tir
ttributes
= {1

. 8ll:, 8].tolise()
1]0:, @][:, 1].tolist()

h.Join(images_path, elt})

Figure 9: Annotator Function

4 Model Building

This research implements Mask R-CNN with ResNet101 and ResNet50 backbone using
a custom function to create an annotation file, which is the project’s novelty. In addi-
tion, a transfer learning technique is used to train the model with pre-trained COCO
weights. Mask R-CNN is the state-of-the-art approach for image segmentation and clas-
sification. (Huang et al.; 2020)). We have only described the ResNet101 model implement-
ation in the configuration, and the Resnet50 model will perform the same set of code.

The publicly available Mask R-CNN library is imported in this research from the GitHub
link. ﬂ We also added our code to implement the customization of our model.
Figure [10] shows how Mask RCNN is imported on google colab.

lgit clone https://www.github.com/matterport/Mask RCNN.git

Cloning into 'Mask RCNN'...

warning: redirecting to https://github.com/matterport/Mask RCHNN.git/
remote: Enumerating objects: 956, done.

remote: Total 956 (delta @), reused © (delta @), pack-reused 956
Receiving objects: 10e% (956/956), 137.67 MiB | 54.3@ MiB/s, done.
Resolving deltas: 1ee% (558/558), done.

Figure 10: Importing Mask R-CNN Model

In below given Figure , we are copying the data from google drive to the google
colab local directory to make the processing even faster.

if os.path.exists(ROOT_DIR+'/dataset/'):
shutil.copytree(DATASET_PATH_DRIVE+'/train/imagesv2/', ROOT_DIR+'/dataset/train/")
shutil.copytree(DATASET_PATH_DRIVE+'/val/imagesv2/', ROOT_DIR+'/dataset/val/")
shutil.copy(DATASET_PATH_DRIVE+'/train/via region data.json’, ROOT_DIR+'/dataset/train/')
shutil.copy(DATASET_PATH_DRIVE+'/val/via_region_data.json', ROOT_DIR+'/dataset/val/")

Figure 11: Copying Data to Google Colab Local Repository

Figure [5)) shows the LesionISICDataset() class which is used to load the dataset and
create train and test data.

Create skin lesion class
class LesionISICDataset(utils.Dataset):
#Load_lesion9@ function to load the dataset
def load lesion(self, dataset_dir, subset):
self.add_class("Lesion”, 1, "benign")
self.add_class("Lesion”, 2, "malignant")
self.class_name_to_ids = {'benign':1, malignant’:2}

assert subset in ["train", "val"]
dataset_dir = os.path.join(dataset_dir, subset)

annotations = json.load(open(os.path.join(dataset_dir, "via_region_data.json")))
annotations = list(annotations.values())

annotations = [a for a in annotations if a['regions']]

for a in annotations:
if type(a['regions’]) is dict:
polygons = [r[’shape_attributes’] for r in a['regions'].values()]
class_names = [list(r['region_attributes']['name'].keys())[@] for r in a['regions'].values()]
else:
polygons = [r[’shape_attributes'] for r in a['regions']]
class_names = [list(r['region_attributes']['name'].keys())[@] for r in a['regions'1]

image_path = os.path.join(dataset_dir, a['filename'])
image = skimage.io.imread(image_path)
height, width = image.shape[:2]

self.add_image(
"Lesion”,
image_id=a['filename'],
path=image_path,
width=width, height=height,

Figure 12: Skin Dataset Class

Figure depicts how the trainData and valData are prepared, which will be used
in model training.

Zhttps://github.com/matterport/Mask RCNN

#Create training dataset

trainData = LesionISICDataset()
trainData.load lesion(DATASET PATH, "train™)
trainData.prepare()

#Create validation dataset

valData = LesionISICDataset()
valData.load lesion(DATASET_PATH, "wval™)
valData.prepare()

Figure 13: Prepare Dataset

The below-given figure depicts the augmentation performed on our dataset before

implementing it in the model train phase.

Augmentation performed om the lesion images
augmen = iaa.Sequential ([
iaa.0OneOof ([## rotate
iaa.-Affine(rotate=8),
iaa.Affine(rotate=908),
iaa.Affine(rotate=188),
iaa.AffFine(rotate=2792),
1.
ima.Fliplr(@.5),
iaa.Flipud{(@.5),
iaa.OneOF{ [
iaa-Multiply((e.S, 1.1)D,
iaa.ContrastNormalization((@.2, 1.1)),
1.
daa.0Oneof ([## blur or sharpen
iaa.GaussianBlur(sigma=(2@.@, @.1)),
iaa.Sharpenf{alpha=(&.a, .13,
1.
1>y

Figure 14: Augmentation

Figure below depicts the config used in Resnet101. Except for the parameters
listed below Rest of the parameters are default present in the mrcnn config.

Resnet101 Backbone Model

[1 class LesionsConfig(Config):

nfiguration file for training lession dataset and override some default hyperparameters

IMAGES_PER_GPU = 1

Class Number Including back ground
NUM CLASSES = 1 + 2 #BG + benign + malignant

RPN_ANCHOR_SCALES = (8, 16 , 32, 64, 128)

Number steps per epoch, validation step and images dimension
STEPS_PER_EPOCH = 300

VALIDATION_STEPS = 150

IMAGE_MIN_DIM = 512

LMAGE_MAX_DIM = 512

Figure 15: ResNet101 Config

The model is then trained for a total number of 30 epochs with a learning rate decay
method. 0.001, 0.0001 and 0.0005. The below-given figure depicts the model training

Config Initialization for training
config = LesionsConfig()
config.display()

DEVICE = "/gpu:@"

Model initiation and loading the coco weights
model_rsnt101_trn = modellib.MaskRCNN(mode="training", config=config, model dir=L0GS_DIR)
model_rsnt101_trn.load weights(COCO_MODEL, by name=True, exclude=["mrcnn_class_logits”, "mrcnn_bbox_fc", "mrcnn_bbox”, "mrcnn_mask™])

with tf.device(DEVICE):
model_rsnt101_trn.train(trainData, valData, epochs=2, layers="heads", learning_rate=config.LEARNING_RATE,augmentation=augmen)
history = model_rsnt101_trn.keras_model.history.history

Run the model with all the layers
model_rsnt101_trn.train(trainData, valData, epochs=14, layers="all", learning_rate=config.LEARNING_RATE/10,augmentation=augmen)
new_history = model_rsnt1@l_trn.keras_model.history.history

for i in new_history: history[i] = history[i] + new_history[i]

Figure 16: Resnet Model Training

After the model is trained, the value of the best epoch is calculated and assigned to
the custom weight parameter to run the code in inference mode mentioned in Figure .

select trained model

dir_names — next(os.walk(model rsntl®@l_trn.model_dir))[1]
key — config.MAME.lower ()

dir_names = filter(lambda f: F_ startswith(key), dir_names)
dir_names = sorted(dir_names)

fps =[]

Pick lasl direclory

for dir_names:

ame — os.path.join(model rsntl@l_trn.model_dir, o)
inding last checkpoint
= next(os.walk(dir name))l 11
filter(lambda F: f.startswith('mosk_rcnn®), checkpoints)
checkpoints = sortod(checkpoints)
#print(checkpoints)
if not chackpoints:
print(No weight files in {} .Fformat(dir_name))
checkpoint = os.path.join(dir_name, checkpoints[best_epochl)
fps.append(checkpoint)

model _palh_cusl = sorled(Mps)[-1]

print('Weight path for best epoch is: {}'.format(model path cust))
<custom_WEIGHTS_PATH — model_path_cust

print(Assiging path to custom WEIGHTS_PATH param.......",custom WEIGHTS_PATH)

Figure 17: Custom Weight

After the custom weights are assigned, the Resnet101 model is again run with the
inference mode. Figure |18]) below is the code for running the model in inference mode.

creating Inference config

class InferenceConfig(lLesionsConfig):
GPU_COUNT = 1
IMAGES_PER_GPU = 1

config_inf = InferenceConfig()
config_inf.display()

Running model in inference mode

model_rsnt181_inf = modellib.MaskRCNN(mode="inference", model_dir=LOGS_DIR,
config=config_inf)

Loading the custom trained weights
print("Loading weights ", custom_WEIGHTS_PATH)
model_rsnt101_inf.load_weights(custom WEIGHTS_PATH, by_name=True)

Figure 18: Inference

After the model is run in the inference mode, the evaluation is done based on three
metrics mAP (mean average precision), mAR (mean average recall), and fl-score. The
proposed model can achieve a 78.6% mAP score, which suggests that the model is a good
fit. Figure depicts the code for the same.

hntime

mAP, mAR, F1_score = evaluate_model(trainData, medel_rsnt181_inf, InferenceConfig)
print("Training mAP: %.3f" % mAP)

print("Training mAR: %.3f" % mAR)

F1 score = (2 * mAP * mAR)/(mAP + mAR)

print('F1 Score for training data: ', F1 score)

mAP_val, mAR_val, F1_score_val = evaluate_model(valData, model rsnt181_inf, InferenceConfig)
print("Validation mAP: %.3f" % mAP val)

print("Validation mAR: %.3f" % mAR_val)

F1_score_val = (2 * mAP_val * mAR_val)/(mAP_val + mAR_val)

print('F1 Score for validation data: ', F1_score val)

Figure 19: Evaluation

Finally, after the evaluation is completed, model prediction is made. Below given
figure shows the code snippet for the same. Here we have used the predict() function to
predict the classification and the function to visualize the predicted image.

#Run detection over same image

print("inage id is :",image_id)

image, image meta, gt_class_id, gt_bbox, gt_mask =\
modellib. load_image gt(valData, InferenceConfig, image_id)

info = valDsta.imsge_info[image_id]

Run the detection model

results = model_rsnt101_inf.detect([image], verbose=l)

Displayin the results

x = get_ax(1)

r = results[o]

ax = plt.gea()

visualize.display_instances(image, r['rois'], r['masks'], r['class ids'], valData.class_names, r['scores'], ax=ax, title="Predictions")
log("gt_class_id", gt_class_id)

1og("gt_bbox", gt_bbox)

log("gt_mask”, gt_mask)

Figure 20: Prediction on Validation Dataset

The notebook and all the other artifacts are provided in the ICT solution’s appropriate
section.

References

Huang, C., Yu, A., Wang, Y. and He, H. (2020). Skin lesion segmentation based on mask
r-cnn, 2020 International Conference on Virtual Reality and Visualization (ICVRV),
pp. 63-67.

	Introduction
	System Configuration
	Hardware Configurations
	Software Configurations
	Google Colab Pro
	Overleaf

	Data Preparation
	Model Building

