—

\\ .
National
Collegeof

[reland

Configuration manual

MSc Research Project
MSc in Data analytics

Vibha Vaid
Student ID: x20205635

School of Computing
National College of Ireland

Supervisor: Dr. Giovani Estrada

‘-
National College of Ireland \ National

_ o Collegeof
MSc Project Submission Sheet
Ireland
School of Computing

Student Name: Vibha Vaid
Student ID: x20205635
Programme: MSc in data analytics 2021-2022
Module: MSc Research project
Supervisor: Dr. Giovani Estrada

Submission Due

Date: 19/09/22
Project Title: A novel CNN architecture for classification of galaxies
Word Count: 761 Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple O
copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assighments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Mannual

Vibha Vaid
x20205635

19th September 2022

1 Introduction

This document will depict the information about the dataset, the software and hardware
specification, tools, libraries, and code that is required to execute the models implemented
in the research project “ A novel CNN architecture for the classification of galaxies”

2 Hardware configuration

This section showcase the hardware configuration of the system used in this research

Operating System: Windows 11
Processor: Intel(R) Core(TM) i3-8145U CPU @ 2.10GHz 2.30 GHz
Installed RAM: 12.0 GB (11.8 GB usable)
System Type: 64-bit operating system, x64-based processor
Hard Disk: 1TB

3 Environment Setup

Google collab This research aim in developing a novel CNN architecture for the classi-
fication of galaxies. A total of 5 models are built and are compared against each other
in terms of accuracy, precision, and recall. The models are tested on how accurately can
it classify the galaxies. The programming language used in the creation of the model
is python. All the codes are executed using google collab integrated development. The
code is downloaded in ipynb notebooks. The python notebook can be easily downloaded
and uploaded to GitHub. 1.The main advantage of google collab is that it gives access
to GPU which makes the compilation faster. Go to runtime -; change runtime -; select
GPU/TPU

Notebook settings

Hardware accelerator

GPU ~ @

To get the most out of Colab, avoid using a GPU unless you need

one. Learn more

Want your notebook to keep running even after you

close your browser? Upgrade to Colab Pro+

|:| Omit code cell output when saving this notebook

Cancel Save

Figure 1: Changing runtime

2. All the cell in the collab notebook can be exected by ctrl+enter or pressing the
run key

3.1 Google drive

The dataset used in this research is taken from kaggle so there are two ways of aacessing
the datasetfl]
1. Using the kaggle api the data can be accessed from the web

[1] ! pip install kagele

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-uheels/public/sinple/
Requirement already satisfied: kaggle in /usr/local/lib/pythons.7/dist-packages (1.5.12)

Requirement already satisfied: tadm in fusr/local/lib/python3.7/dist-packages (from kaggle) (4.64.8)
Requirement already satisfied: six>=1.16 in /usr/local/lib/python3.7/dist-packages (from kaggle) (1.15.8)

Requirement already satisfied: python-dateutil in /usr/local/lib/python3.7/dist-packages (from kaggle) (2.8.2)
Requirement already satisfied: urllib3 in /usr/lecal/lib/python3.7/dist-packages (from kaggle) (1.24.3)

Requirement already satisfied: certifi in /usr/local/lib/python3.7/dist-packages (from kaggle) (2022.6.15)

Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from kaggle) (2.23.8)

Requirement already satisfied: python-slugify in /usr/local/lib/pythen3.7/dist-packeges (from kaggle) (6.1.2)

Requirement already satisfied: text-unidecode»-1.3 in /usr/local/lib/python3.7/dist-packages (from python-slugify->kaggle) (1.3)
Requirement already satisfied: chardet<d,>=3.6.2 in /usr/local/lib/python3.7/dist-packages (from requests->kaggle) (3.6.4)
Requirement already satisfied: idnac3,>=2.5 in fusr/local/lib/python3.7/dist-packages (from requests->kaggle) (2.18)

New Section

[2] ! mkdir ~/.kaggle3e

© ! o kagele.json ~/.kaggle1/

Figure 2: Accessing kaggle API

2. By installing the data in the drive and then mounting the data from the drive

Thttps://drive.google.com/

] from google._colab import drive
drive.mount('/content/drive")

Mounted at /content/drive

Figure 3: Mounting the drive

3.2 Data preparation

The data to be used in this research is downloaded from kaggleﬂ which is a part of the
galaxy zoo project and the dataset is downloaded in a ZIP file. The zip file is divided into
five separate folders images_training, solutions_training, images_test, all_ones_benchmark,
all_zeros_benchmark, central_pixel_benchmark. Images_training contains 61,578 images in
JPG format.

4 Code execution steps

The code file submitted contains the 5 different files which have 5 different neural network
and the name of the file is given such that it can be identified easily. All the four files
contains libraries required to perform the tasks, Data access to the drive, splitting of
data, data augmentation, model import if it is transfer learning and model modification
and finally the result generation followed by model evaluation.

4.1 Importing Dependent Libraries

Their are librararies of python which are installed for performing the tasks required.
Keras have built in libraries which can be used to perform function on neural network.

https://www.kaggle.com /competitions/galaxy-zoo-the-galaxy-challenge /data

import random
from PIL import Image

from cv2 import imread

import matplotlib.pyplot as plt

import time, os, sys

import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow.keras import backend as K

from tensorflow.keras import layers, metrics, losses, callbacks, regularizers
from tensorflow.python.client import device lib

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import os, random, shutil

import tensorflow as tf

import seaborn

from tensorflow import keras

from tensorflow.keras import preprocessing, layers

from tensorflow.keras.callbacks import Earlystopping

from keras_preprocessing import image

from keras.applications.mobilenet import MobileNet, preprocess_input
from tensorflow. keras.applications.mobilenet_v2 import MobileNetvz
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dropout, Dense,BatchNormalization, Flatten, MaxPool2D, LSTM, Flatten, TimeDistributed
from keras.callbacks import ModelCheckpoint, EarlyStopping, ReducelROnPlateau, Callback
from keras.layers import Conv2D, Reshape

from tensorflow.keras.utils import Sequence

from keras.backend import epsilon

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

from tensorflow.keras.layers import GlobalAveragePooling2d

Figure 4: Importing libraries

4.2 Data Access from Drive and Data Split

Depending on the descison tree, the galaxies are divided into 3 classes elliptical, spiral
and lenticular.

elliptical galaxy = dataframe[(dataframe['Q1.1°]>8.7) & (dataframe[’'Q7.1']»8.4)]['GalaxyID'].tolist()
lenticular_galaxy = dataframe[(dataframe['Q1.1']>8.7) & (dataframe['Q7.2']>0.4)][GalaxyID'].tolist()
spirals_galaxy - dataframe[(dataframe['Q1.2°]>8.7) & (dataframe['02.1"]>8.4)][6alaxyID'].tolist()
print(‘Sum of total number of elliptical : *, len(elliptical galaxy))

print(sum of total number of lenticular : ', len(lenticular_galaxy))

print(°sum of total number of spiral: * len(spirals_galaxy))

Sum of total number of elliptical : 7311

Sum of total number of lenticular : 6625
Sum of total number of spiral: 4635

Figure 5: Importing libraries

The data in each class is split into 80% train and 20% validation data.

images(/content/images_training revi’, '/content/galaxy-zoo-clean/data/’, 'elliptical’, elliptical galaxy, @.3@)
images(/content/images_training revi’,’/content/galaxy-zoo-clean/data/', 'lenticular’, lenticular galaxy, .8@)
images("/content/images_training revi®, ‘/content/galaxy-zoo-clean/data/', 'spiral’, spirals_galaxy, ©.80)

print(‘Elliptical:*, len(os.listdir(os.path.join("/content/galaxy-zoo-clean/data’, ‘train’, 'elliptical'})))
print(‘Total train lenticular:®, len(os.listdir(os.path.join("/content/galaxy-zoo-clean/data’, train’, ‘lenticular’))))
print(‘Total train spiral:’, len(os.listdir(os.path.join('/content/galaxy-zoo-clean/data’, train’, 'spiral’))))

print(‘Total validation elliptical:’, len(os.listdir(os.path.join('/content/galaxy-zoo-clean/data’, ‘validation’, ‘elliptical’})))
print(‘Total validation lenticular:’, len(os.listdir(os.path.join('/content/galaxy-zoo-clean/data’, ‘validation’, ‘lenticular’})))
print(‘Total validation spiral:’, len(os.listdir(os.path.join(’/content/galaxy-zoo-clean/data’, validation', 'spiral’))))

/content/galaxy-zoo-clean/data/train
elliptical done!
Jcontent/galaxy-zoo-clean/data/train
lenticular done!
/content/galaxy-zoo-clean/data/train
spiral done!

Elliptical: 5848

Total train lenticular: 5388

Total train spiral: 37e8

Total validation elliptical: 1463
Total validation lenticular: 1325
Total validation spiral: 927

Figure 6: Spliting data into train and test

4.3 Data augmentation

Data augmentation is performed using the ImageDataGenerator class. Imagedata gener-
ator can be used to shift, rotate, brighten and zooms the images. In this research, it is
used to recale, rotate, widhth and height shift, horizontal flip is performed.

#data augmentation
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.8/255,
rotation_range=25,
width_shift_range=.15,
height_shift_range=.15,
horizontal_flip=True,
zoom_range=8.2)
validation_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.8/255.)

train_generator = train_datagen.flow_from_directory(train_directory,
target_size=(224,224),
batch_size=BS,
shuffle=True,
class_mode="categorical")
validation_generator = train_datagen.flow_from directory(validation_directory,
target_size=(224,224),
batch_size=BS,
shuffle=True,
class_mode="'categorical’)
train_steps = np.ceil(train_generator.samples / train_generator.batch_size)
val_steps = np.ceil(validation_generator.samples / validation_generator.batch_size)

Found 14856 images belonging to 3 classes.
Found 3715 images belonging to 3 classes.

Figure 7: Performing data augmentation

4.4 Model building

To build the models transfer learning techniques are used which are trained ont he image
net dataset. Vggl9, densenetl121,inceptionv3 are used as a base model and layers are
added to the given models. Keras API is used to import the VGG19, densenet121,
inceprtion v3.

fron tensorflow.keras.applications.inception_v3 import Inceptionv3

base_model_inceptionv3 = InceptionV3(input_shape=(224,224,3),
include_top-False,
weights="imagenet")

Downloading data from https://stor leapis. com/tensorflou/keras- applications/inception_v3/inception v3_ueights_tf_dim ordering_tf kernels notop.hs
87916544/87918968 [==: - 1s @us/step
87924736/87910968 [== - 1s ous/step

Figure 8: Inceptionv3 import from keras

From tensorflow.keras.layers import Inputlayer, Dense, Flatten, BatchNormalization, Dropout, Activation
inceptionva_model-Sequential()

inceptionva_model.add(base_model_inceptionv3)

inceptionva_model.add(GlobalAveragePooling2D()),
inceptionva_model.add(Dropout(@.2))
inceptionva_model.add(Flatten())
inceptionva_model.add(BatchNormalization())
inceptionva_model.add(Dense(1624,kernel_initializer="he_uniform’))
inceptionva_model.add(BatchNormalization())
inceptionva_model.add(Activation(’relu’))
inceptionva_model.add(Dropout(@.2))
inceptionva_model.add(Dense(1624,kernel_initializer="he_uniform’))
inceptionva_model.add(BatchNormalization())
inceptionva_model.add(Activation(’relu’))
inceptionva_model.add(Dropout (@.8))
inceptionva_model.add(Dense(3,activation="softmax"))
inceptionva_model. summary()

Figure 9: Layers added to the model

model = tf.keras.models.Sequential([
first convolution layer, input is an 180x180 image x3 colors
tf.keras.layers.Conv2D(64, (3,3), activation="relu", input_shape=(188, 188, 3)),
tf.keras.layers.Conv2D(64, (3,3), activation="relu’,input_shape=(18@, 180, 3)),

tf.keras.layers.MaxPooling2D(2, 2),

second convolution layer

tf.keras.layers.Conv2D(64, (3,3), activation="relu'),
tf.keras.layers.Conv2D(64, (3,3), activation="relu'),

tf.keras.layers.MaxPooling2D(2,2),

third convolution layer

tf.keras.layers.Conv2D(128, (3,3), activation='relu'},
tf.keras.layers.Conv2D{64, (3,3), activation="relu'),
tf.keras.layers.MaxPooling2D(2,2),

fourth convolution layer

tf.keras.layers.Conv2D(128, (3,3), activation='relu'},
tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),

flatten the image pixels

tf.keras.layers.Flatten().,
tf.keras.layers.Dropout(e.7),

512 neuron fully connected hidden layer
tf.keras.layers.Dense(512, activation='relu"),
tf.keras.layers.Dense(3, activation="softmax')

Figure 10: Layers of CNN model built

4.5 Model compilation

The models are compiled using categorical_crossentropy as it is multiple class classific-
ation. The metrics used are accuracy, AUC, Precision, Recall and adam optimiser is
used.

base_learning_rate = 8.08801

inceptionv3_model.compile(loss="categorical crossentropy’,
metrics=["accuracy’, 'AUC', 'Precision’, 'Recall’],
optimizer=tf.keras.optimizers.Adam(learning_rate=base learning_rate))

Figure 11: Model compilation

4.6 Generation of results

The results are generated using the fit function to get the appropriate results.

model_history=inceptionv3_model .fit(train_generator,
validation_data=validation_generator,
epochs = 28)

Figure 12: Model compilation

4.7 Model Evaluation

The model is evaluated using the accuracy, precision and recall. The graph of the training
and validation accuracy, precision and recall are plotted against the epoch.

acc = model_history.history['accuracy']
val_acc = model_history.history['val_accuracy']

loss = model_history.history['loss’]
val_loss = model_history.history[val_loss']

epochs_range = range(len(acc)) # range for the number of epochs

plt.figure(figsize=(16, 8))

plt.subplot(1, 2, 1)

plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label="validation Accuracy')
plt.legend(loc="lower right")

plt.title(' Training and validation Accuracy')

plt.subplot(1, 2, 2)

plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='validation Loss')
plt.legend(loc="upper right")

plt.title('Training and validation Loss')
plt.savefig('./plots-v2.png")

plt.show()

Figure 13: Code for accuracy and loss

Training and Validation Accuracy Training and Validation Loss

— Taining Loss
Validation Loss

—— Taining Accuracy
Validation Accuracy

00 25 50 5 100 125 150 175 oo 25 50 5 10 us 150 s

Figure 14: Training and validation accuracy and loss

recall=model_history.history['recall’]
val_recall=model_history.history['val_recall']

precision=model_history.history['precision’]
val_precision=model_history.history['val_precision']

epochs_range = range({len(acc))

plt
plt
plt
plt
plt
plt

=

[t}

plt
plt
plt
plt
plt
plt

]

plt

0325
0300
o875
0850
o825
0800
or7s
0750

0725

figure(figsize=(16, 8))

.subplot(1, 2, 1)

.plot(epochs_range, recall, label='Training Recall")
.plot(epochs_range, val_recall, label='Validation Recall’)
.legend(loc="1lower right")

.title('Training and Validation Recall')

.subplot(1, 2, 2)

.plot({epochs_range, precision, label='Training Precision’)
.plot(epochs_range, val_precision, label='Validation Precision’)
.legend(loc="upper right")

.title('Training and validation Precision')
.savefig('./plots-v2.png")

.show()

Figure 15: Code for plotting recall and precision

Training and Validation Recall Training and Validation Precision

— Taining Precision
Validation Precision

— aining Recall
Validation Recall

00 25 50 s 100 s 150 s 00 25 50 5 100 s 150 s

Figure 16: Training and validation recall and precision

