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1 Introduction

This configuration manual presents a step-by-step walkthrough of the research, as well as
information on the hardware and software used to implement it. By following this guide,
any user can replicate the conducted research.

2 Hardware and Software Specification

2.1 Hardware Specifications

There were primarily two instances of hardware used, one a local machine equipped
with a GPU, and the other a cloud-based IDE (Google Colab PRO). By doing this,
this research could train the models simultaneously, reducing implementation time and
enhancing efficiency. The table [1] describing their specifications is provided below.

Table 1: Hardware Specifications

Name Description
Local Machine Asus G14
OS Windows 11 (V. 21H2)
CPU AMD Ryzen 4900H
RAM 16 GB DDR4
GPU RTX 2060 MaxQ (6 GB)
Google Colab PRO | 32GB of RAM, Tesla P100 GPU (16 GB)

NOTE: One needs to subscribe to Google colab Pro in order to use the higher GPUs
listed in the table [l Also, the specifications of the hardware provided by colab pro are
dynamic and can change according to the user’s usage.

2.2 Software Specifications

A number of software tools, IDEs, frameworks, and libraries were used in addition to the
hardware mentioned above. Detailed information is provided in the following table [2]



Table 2: Software Specifications

Name Description
Language Python 3.7
IDEs Jupyter Notebook & Google Colab Pro

Image Data Annotation

VGG Image Annotator

Base Models and Weights

MaskRCNN (COCO Dataset) & bert-base-uncased

Text Extraction Engine

Tesseract.exe

Spell-Grammar Check

Microsoft Bing API

Text-To-Speech

gTTS (Google)

Model Creation

Tensorflow, Keras, Pytorch

Evaluation

Tensorboard, ROUGE etc.

Miscellaneous Tasks

Libraries like Matplotlib, NumPy, JSON, Requests, Regex etc.

3 Data Collection and Transformation

3.1 Dataset 1: Newspaper Images

For the first dataset, the research acquires images from the ”"Times of India” newspaper
for the January 18 issue. The steps are as follows:

Step 1: Data Download
This step began with downloading a zip file of dataset from the Archive website [ This
folder contained three different versions of each newspaper image (“-C”: Complete Image,
“P”: Only Pictures, “-T”: Only Text). Next, the images were moved from separate date
publication folders to one in a single folder. File names that ended in ”-P” or ”-T” were
ignored and deleted since they exclusively contained only the ”Picture” or ”Text” data
of the newspaper. The reason for doing this was that we wanted our model to be trained
on real-life situations where there are both pictures and text in a newspaper.

Step 2: Data Selection & Cleaning
After obtaining images of the complete newspaper pages containing, both text and pic-
tures, the researchers had to manually go through each one of them to remove any images
that contained only advertisements since the goal of the research was to summarize news
articles. Having done so, the dataset was left with 182 images, each representing a news-
paper page. These images were then split into 70:20:10 ratios for train, validation, and
test data.

Step 3: Data Annotation
The research uses VGG image Annotator to manually annotate a boundary box around
various articles after the dataset was split into three separate sets.

e Images from the train dataset were imported into the VGG annotator tool by
clicking on the ”Add Files” button, and two classes (Rectangle Article and Non
Rectangle Article) were added in the ”"Region Attributes” section as can be seen in

Figure

e Using the "Polygon” region shape, a boundary box around a news article was made
and then a corresponding class was selected through a dropdown menu, as shown
in the figure [

!Times of India Jan-18 Dataset: https://archive.org/details/TOIDELJAN18


https://archive.org/details/TOIDELJAN18
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e After all the article boundary boxes were annotated with the corresponding class
(Rectangle/Non-Rectangle), a JSON file containing all these annotations was down-
loaded using ” Annotation”-” Export Annotations (as JSON)”, as shown in the figure
Bl below.
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Figure 3: Downloading JSON File

e The same annotation steps were performed on the validation dataset, and each
JSON file was saved in its respective folder (Train Annotation JSON in the Train
Image Folder, Validation Annotation JSON in the Validation Image Folder).

3.2 Dataset 2: CNN-DailyMail Dataset

Huggingface repository provides an easy method to access this article-summary pairs
datasetEl using its "dataset” python package. The dataset is downloaded via the following
script (Fig. E[) and then stored in the local cache. As it is downloaded in the cache, it
is directly accessible from the cache for subsequent dataset requests. Additionally, the
train, validation, and test data splits were already available in the huggingface repository.

train_data - datasets.load_dataset("cnn_dailymail”, "3.0.@", split-"train")
val_data - datasets.load_dataset("cnn_dailymail”, “3..@", split-"validation[:1e%]")

Reusing dateset cnn_dailymail (C:\Users\shash\.cache\huggingface\datasets\cnn_dailymail\3.e.8\3.0.8\0128610a44e10f25b4af6689441
€72af862085282d26399642f7db38fa7535682)
Reusing dateset cnn_dailymail (C:\Users\shash\.cache\huggingface\datasets\cnn_dailymail\3.e.8\3.0.8\0128610a44e10f25b4af6689441
€72af862085282d26399642f7db38fa7535682)

Figure 4: Downloading CNN-DailyMail Dataset

2CNN-DailyMail Dataset: https://huggingface.co/datasets/cnn_dailymail


https://huggingface.co/datasets/cnn_dailymail

4 Experiment Setup

4.1 Experiment 1: Article & Column Segmentation using MaskR-
CNN

This experiment was implemented to segment the article and column images from the
newspaper images. The steps followed for this experiment were:

Training Phase

Step 1: The MaskRCNN base model by Matterport Inc. also used by |Almutairi and|
[Almashan| (2019) was downloaded from Github [] Since, this research used transfer
learning, the base MaskRCNN (COCO Dataset) weighﬁ was also downloaded. Both the
“maskrenn” (Github) folder and the “mask_rcnn_coco.h5” weight were kept in the same
folder as the jupyter notebook.

Step 2: As the next step, a few libraries were installed, custom configurations such as
setting the ROOT Dierectory, Dataset path, base weight path, confidence detection level
etc. were set as can be seen in the figure [5]

import os

import sys

import json

import datetime

import numpy as np

import skimage.draw

import cv2

from mrcnn.visualize import display instances
import matplotlib.pyplot as plt

from mrcnn.config import Config

from mrcnn import model as modellib, utils

Setting Configs

ROOT_DIR = os.getcwd()
#Mask RCNN Training for Stage 1 (Identifying Articles from a Newspaper Page)
DataSet_DIR= os.path.join(ROOT_DIR, "Dataset™)

#Mask RCNN Training for Stage 2 (Identifying Columns from various Articles)
#DataSet DIR=os.path.join(ROOT_DIR, "Dataset Stage2™)

# Import Mask RCNN

sys.path.append (ROOT_DIR) # To find local version of the Library
# Path to troined weights file of mask_rcnn_coco os the Base Model
CO0CO_WEIGHTS_PATH = os.path.join(ROOT_DIR, “"mask_rcnn_coco.h5")

# Directory to save logs

DEFAULT_LOGS DIR = os.path.join(ROOT_DIR, "logs")

class CustomConfig(Config):
"""Configuration for training on the custom dataset.
Derives from the base Config class and overrides some values.

# Give the configuration g recognizable name

MAME "object™

#Setting Images per GPU

IMAGES_PER_GPU = 2

# Number of classes

NUM_CLASSES = 1 + 2 # Background + Rectangle Article, Non-Rectangle Article

#5et the Steps as 131 (Stoge 1 Training) and 52(Stage 2 Training)
# Number of training steps per epoch

STEPS_PER_EPOCH = 131

# Skip detections with < 85% confidence

DETECTION_MIN_CONFIDEMNCE = @.85

Figure 5: Configuration Settings

3Matterport Inc. MaskRCNN base: https://github.com/matterport/Mask_RCNN
4MaskRCNN trained on COCO Dataset Weight: https://github.com/matterport/Mask_RCNN/
releases/download/v2.0/mask_rcnn_coco.hb
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https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5
https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5

Step 3: Next, a custom class was defined, containing methods to load the custom article
annotations, masks as can be seen from the figure [6]

class CustomDataset(utils.Dataset):

def load_custom(self, dataset_dir, subset,annctationFilePath):

# Adding two classes

self.add_class({"cbject", 1, "Rectanglearticle")

celf.add_class({"cbject", 2, "MonRectangleArticle")

# Troin or validation dotaset

assert subset in ["train”, "val"]

dataset_dir = os.path.join{dataset_dir, subset)

# e mostly care about the x and y coordinagtes of each region

annotationsl = json. load({cpen{annctationFilerath))

# print{annotations1)

annotations = list{annotationsi.values{))

annotations = [a for a in annotations if a[ ‘regions"]]

# Adding images

for a in annctations:
polygons = [r['shape_attributes'] for r in a[ 'regions']]
objects = [s['region_attributes']["'Mames'] for s im a[ 'regions']]
print("cbjects:",objects)
name_dict = {"RectangleArticle”: 1,"MonRectanglearticle™: 2}
# key = tuple{name_dict)
num_ids = [name_dict[a] for a in cbjects]
print{“numids",num_ids)
image path = os.path.join{dataset_dir, a['filename'])
image = skimage.ic.imread(image_path)
height, width = image.shape[:2]

self.add_image(
"object”,
image id=a['filename'],
path=image_path,
width=width, height=height,
polygons=polygons,
num_ids=num_ids
%

def load_mask(self, image_id}:

image_info = self.image_info[image id]

if image imfo["scurce™] != "cbject™:
return super{self._ class_ , self}.load_mask{image_id)

info = self.image_info[image_id]

if info["source™] 1= "object™:
return super{self._ class_ , self}.load mask{image_id)

num_ids = info[ “num_ids']

mask = np.zeros([info["height"], info["width"], len{infe["pclygons"131,

ditype=np.uints}

for 1, p im enumerazte{imfo[ "polygons"]):
rr, €C = skimage.draw.polygon({p['all_pcints_v'], p['all_pocints_x"]1}
mask[rr, cc, 1] = 1

num_ids = np.array({num_ids, dtype=np.int32}

return mask, num_ids

def image_reference(self, image_id):
"""return the path of the image.
info = self.image_info[image_id]
if info["source™] == "object":
return info[“path”]
else:
super(self._ class_ , self).image_reference({image_id)

Figure 6: Loading Custom Dataset and Mask

Step 4: Once, the custom annotation and mask loading methods were defined, a Mask
RCNN model training method was created, using the specifications seen in the figure
[7 This trained a custom MaskRCNN Model based on the newspaper image data using
transfer learning on MaskRCNN (COCO Dataset) weight.



def train(model,DataSet DIR):
# Training dataset.
dataset_train = CustomDataset()
dataset_train.load_custom(DataSet _DIR, "train",os.path.join{DataSet_DIR,"train‘demo_json.json™))
dataset_train.prepare()

# Validation dataset
dataset_val = CustomDataset()
dataset_val.load_custom(DataSet_DIR, "wval",os.path.join(DataSet_DIR,"val\demo_val_json.json™))
dataset_val.prepare()
print("Training network heads")
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=28,
layers="heads"')

config = CustomConfig()
model = modellib.MaskRCNN(mode="training"”, config=config,
model_dir=DEFAULT LOGS DIR)
weights_path = COCO_WEIGHTS_PATH
if not os.path.exists{weights_path):
utils.download_trained_weights(weights_path)

model. load_weights(weights_path, by_name=True, exclude=[
"mrcnn_class_logits", "mrcnn_bbox_fc”,
"mrcnn_bbox™, “mrenn_mask™])

#Training the Model

train{model,DataSet_DIR)

Figure 7: MaskRCNN Training

Step 5: Once, the article segmentation model was trained. It was time to move on
to training a second Mask RCNN model to segment the columns from those identified
article segmentation. This was done by training yet another model on Stage 2 Dataset,
by performing annotations on article images by following similar annotation steps as
mentioned in the subsection [3.1]. Figure |8 showcases an example of the same.
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Figure 8: Stage 2 Dataset Annotation for Column Segmentation MaskRCNN Model

Step 6: After the creation of the Stage 2 dataset with annotated article images, with
column annotations. Aforementioned Step 1 to Step 4 were implemented again, to pro-
duce Stage 2 MaskRCNN model to identify the columns after the Stage 1 MaskRCNN
model would identify the articles from newspaper. However, this was done after making

sure, the dataset directory was changed to ”Stage 2 Dataset” as can be seen in the figure
9l



Setting Configs

ROOT_DIR = os.getcwd()
#Mask RCNN Training for Stage 1 (Identifying Articles from a Newspaper Page)
#DataSet DIR= os.path. join(ROOT_DIR, "Dataset™)

#Mask RCNN Training for Stage 2 (Identifying Columns from various Articles)
DataSet_DIR=os.path.join(ROOT_DIR,"Dataset_Stage2")

Figure 9: Dataset directory: Stage 2 Dataset (Column Segmentation)

Testing/Inference Phase

Step 1: Once, both the Stage 1(Article Segmentation) and Stage 2(Column Segment-
ation) MaskRCNN Models were trained, an inference was made by using our custom
trained model weights and boundary boxes and masks were displayed on the test news-
paper images as can be seen in Figure (Article Segmentation) and Figure (Column
Segmentation).
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no right over govt land’

__, dents, who alleged that DDA ac-

Figure 11: Stage 2 Model: Column Segmentation

Step 2: The Stage 1 model inference was run on all the test images of newspaper to
segment articles and then Stage 2 model inference was run on those article images to
segment them into column images. The cropped Article and Column Images were stored



within distinct folders(combined on the basis of newspaper print date), using the code in

figure [12]

#Running Detection on ALl Images under test folder and Cropping the Identified Article Blocks into results Folder
for file in os.listdir(test folder):

path_to_new_image = os.path.join(test_folder, file)

imagel = mpimg.imread(path_to_new_image)

# Run object detection

print(len([imagel]))

resultsl = model.detect([imagel], verbose=1)

# Display results

ax = get_ax(1)

rl = results1[0]

visualize.display_instances(imagel, rl['rois'], rl['masks’], ri['class_ids'],

dataset.class_names, ri['scores'], ax=ax, title="Predictions for "+file)

#Cropping Boundaries of the Article Blocks

imageFile=path_to_new_image

i=8
for r in r1['rois']:
x = r[@8]-15
y = r[1]-15
if x«<@:
x=8
if y<a:
y=0

width = r[2]+3@

height = r[3]+3@

image = cv2.imread(imageFile)

crop_img = image[x:width, y:height]

segmentFileMame = r Article ¥d.png"%i

temp=file.split('TOTDEL')[1]

temp=temp.split('.')[@]

temp="TOIDEL " +temp

segmentFileNsme=temp+"_"+segmentFileName

if not os.path.isdir(os.path.join(ROOT_DIR,"Articles”,temp)):
os.makedirs(os.path.join(ROOT_DIR, “Articles”,temp))

cv2.imwrite(os.path.join(ROOT_DIR,"Articles”,temp, segmentFileName),crop_img)

i+=1

Figure 12: Cropping Segmented Article/Column Images

4.2 Experiment 2 : Text Extraction using Tesseract

Step 1: The researchers installed libraries such as OpenCV and PyTesseract and changed
the path of PyTesseract command to point to the installed executable of Tesseract.exe.
In addition to that, a few set of image pre-processing methods were defined to grayscale
and threshold an image, which can be seen in the figure [13|

# conda install -c conda-forge opencv
# conda inst ¢ conda-forge pytesseract
# pip install neattext

import cv2

import pytesseract

import numpy as np

import os

import neattext as nt
import re

import requests

import json

from statistics import mean

#5ET THE TESSERACT EXE PATH
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe’

Image Processing Methods

# get grayscale image
def get_grayscale(image):
return cv2.cvtColer(image, cv2.COLOR_BGR2GRAY)

# noise removal
def remove_ncise(image)
return cv2.medianBlur(image,1)

#thresholding

def thresholding(image):
return cv2.threshold(image, 8@, 255, cv2.THRESH_TOZERO)[1]

Figure 13: Installing PyTesseract,OpenCV, NeatText and Image Pre-Processing Methods



Step 2: The next step was to have all the extracted column images go through the
tesseract engine in order to extract the text and then concatenate to form the textual
content on a single article. This was done using the code shown in the figure [T4]

for subFolder in os.listdir(articles folder):

for subArticleFolder in os.listdir(os.path.join(articles folder,subFolder)):
if not (" in subArticleFolder) or (“png" in subArticleFolder):
text=""

if os.path.isfile(os.path.join(articles_folder,subFolder, subArticleFolder, "OCRedText. txt")):
os.remove(os. path. join(articles_folder,subFolder, subarticleFolder, "OCRe =)

for columnFile in os.listdir(os.path.join(articles_folder,subFolder, subArticleFolder)):
OCR_img-cv2.imread(os.path. join(articles_folder,subFolder, subArticleFolder,columnFile))
#Image Processing
OCR_img=processImage (0CR_img)
extracted_text=pytesseract.image_to_string(0CR_img)
text=text+” "+extracted_text
#Getting the Confidence Score Data
tesseractData-pytesseract.image_to_data(OCR_img,output_type-pytesseract.Output.DICT)
confscore-list(np.float_(tesseractData['conf 1))
confScore=1list(filter((-1.8)._ne_, confScore))
confidenceScoreL ist.append (mean(confScore))

with open(os.path. join(articles_folder,subFolder, subArticleFolder, "OCRedText. txt"), 'w') as f:
f.urite(text)

Figure 14: Extracting Text using Tesseract

Step 3: The researchers then cleaned the extracted text using their own code and used
the Spelling and Grammar Check API by Microsoft Bing by making a request call using
an APILKEY as can be seen in the figure 15 This Microsoft Bing API Key was generated
by hosting a service through Azure Portal. Due to the scope of the study not being to
demonstrate how to use a service, the Microsoft documentation website ] can be consulted
for that.

def cleanText(text):

character

onlycharacterList=|
for char in onlyCharacterli

text=text.replace(char,"
while ".." in text:

for word in cnlylord

text=re.sub(r' | text)

P
for char in onlyAlphalist:
text=re.sub(r'\b’+charsr'\b"," ', text)
docx=nt.TextFrame(tert)
docx. remove_multiple spaces().text
docx. remove_emails().text
text=docx. text

SR R R L I, N0 R T Y, K 2]

return text

Preliminary Bing Spell Check API Call Method

numofReplacements=e

def spellcheck(text):
global numofreplacements
api_key =
endpoint
example_tex
data = {'te
paranms - {'
headers =

form-urle : api_key,}

Jsan_ se[
textToBerReplaced=item[ 't
scoreList=[]
for suggestion in item['suggest

scoreList.append (suggestion|
for suggestion in item['sugge:

textreplacingiwith)

textToBeReplaced=textToBeReplaced.replace("

textToBereplaced-textToBeReplaced.replace(”

numofReplacementss=1

example_text=re.sub(r'\b'+textToBereplaced+r’'\b', textReplacingwith, example_text)
return example_text

Figure 15: Text Cleaning and Spelling-Grammar Check

°Bing API Documentation: https://docs.microsoft.com/en-us/azure/cognitive-services/
bing-spell-check/overview
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4.3 Experiment 3 : Text Summarization by BERT-NLP

This experiment was implemented to generate an audio and text summary from the ex-
tracted article text. The steps followed for this experiment were:

Training Phase
Step 1: The researchers installed libraries like ”Datasets”, "gT'T'S”, "rouge_score” and
"transformers”, set a few basic configurations, and then downloaded ”bert-base-uncased”
base BERT model. In addition, training parameters such as batch size to be 16, maximum
encoder length to be 512 etc. were set, as shown in the figure

RODT_DIR=0s.getcnd()
articles_folder-os.path. join(ROOT_DIR, "Articl
Checkpoint_output_Dir=os.path.join(ROOT_DIR,"NLE

clab_Train®)
Training BERT for NLP Text Summarization

Setting the Base Model as "BERT"

gertTokenizerfast.from_pretrained("bert-base-uncased”)
bos_token - tokenizer.cls_token
zer.2o0s_token = tokenizer.sep_token

Getting CNN-DailyMail Dataset for Training the Text-Summarization Model

train_data - datasets.load_dataset("cnn_dailynail”,
val_data - datasets.load_dataset("cnn_dailymail”, "2.9

.e", split="tr
", split

seusing dstaset cnn_dailymail (C:\Usersishash\.cache\huzgingface\datasets\cnn_dailymailiz.o.e\z.e.8\p128610a44e1872504af 6689451
©€722786205282d26393642F7db38F 7535502 )
Reusing dstaset cnn_dailymail (C:\Users\shash\.cache\huzgingface\datasets\cnn_dailymaili2.0.8\Z.e.8\p12861054481872504a 6689441
©€722786205282d26393642F 7db38Fa7535502)

Setting the Batch Size and Process the Data to the Medel

batch_size=16

encoder_nmax_length-512

e dota to the model inputs
o_madel_inputs (batch):

1e"], padding="
hts"], padding
= inputs.input_ids
ask”] - inputs.attention_mask
outputs.input_ids
<'] - outputs.attention_mask
. input_ids.copy()
[[-188 if token == tokenizer.pad_token id else token for token in labels] for labels in batch["labels"]]

length”, truncation=True, max_length-encoder_max_length)
max_length”, truncation-True, max_length-decoder_max_length)

bateh[“decol
baten[*
batch[*
batch["labels
return batch

Figure 16: Configuration and Parameter Settings

Step 2: After mapping the train and validation data to match the model inputs, re-
searchers moved on to the next step. The “base-bert-uncased” model was warm started
and the parameters for a "bert2bert” model were set as can be seen from the figurdl7]

Warm Starting the Encoder-Decoder Model

: ing the Base BERT Model
bertabert = Encoderdecodermodel. from_encoder_decoder_pretrained(

g.crossattentio y.weight', ‘bert.encader.layer.8.crossattention .key.bias’, 'bert.encoder.layer.g.crossattentio
n.self.value.weight', 'bert.encoder.layer.s.crossattention.self.value.bias’, 'bert.encoder.layer.s.crossattention.output.den
ht', 'bert.encoder.layer.s.crossattention.output.dense.bias®, 'bert.encoder.layer.E.crossattention.output. Layerorm.w
*bert.encoder. layer.s.crossattention.output.Layerorm.bias®, 'bert.encoder.layer.s.crossattention.self.query.ueigh
t', ‘bert.encoder.layer.s.crossattention.self.query.bias’, ‘bert.encoder.layer.9.crossattention.self.key.weight’, 'bert.enco
der.layer.9.crossattention.self.key.bias*, *bert.encoder.layer.s.crossattention.self.value.weight', 'bert.encoder.layer.s.cr
ossattention.self.value.bias®, 'bert.encoder.layer.s.crossattention.output.dense.weight’, 'bert.encoder.layer.s.crossattenti
*bert.encoder. layer.s.crossattention.output.Layerorn.weight', 'bert.encoder.layer.9.crossattention.o
. 'bert.encoder.layer.18.crossattention.self.query.weignt®, ‘bert.encoder.layer.1@.crossattention.self.
query.bias’, ‘bert.encoder.layer.1e.crossattention.self.key.weight, 'bert.encoder.layer.18.crossattention.self.key.biss',
*bert.encoder.layer.18.crossattention.self.value.ueight', ‘bert.encoder.layer.10.crossattention.self.value.bias’, 'bert.enco
Ger.layer.16.crossattention.output.dense.weight®, ‘bert.encoder.layer.18.crossattention.output.dense.bias’, 'bert.encoder.la
yer.18.crossattention.output.Layertorn.weight', ‘bert.encader.layer.1@.crossattention.output.Layertorm.bias', 'bert.encoder.
1ayer.11.crossattention.self.query.weight’, ‘bert.encoder.layer.11.crossattention. self.query.bias’, 'bert.encoder.layer.11.c
rossattention.self.key.weight’, 'bert.encoder.layer.11.crossattention.self.key.biss', 'bert.encoder.layer.1l.crossattention.
self.value.weight, ‘bert.encoder.layer.11.crossattention.self.val *, 'bert.encoder.layer.11.crossattention.output.den
se.weight’, ‘bert.encoder.layer.11.crossattention.output.dense.bia rt.encoder. layer.11. crossattention. output. Layertor
m.weight', 'bert.encoder.layer.11.crossattention.output.Layernorm. bias®

You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.

.config.decoder_:
bertabert.config.eos_token_id
bertabert.config.pad_token
bertabert.config _:
bertabert.config.max_length
bertabert.config.min_length -
bertabert.config.no_repeat_ngram_size - 3
bertabert.config.early_stopping
bertabert.config. length_penal
bertabert.config.num_beams

tokenizer.bos_token_id
eos_token_id
-pad_token_id
.config.decoder.vocab_size

Figure 17: Warm Starting the bert-base-uncased Model
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Step 3: Moving forward to the stage of tuning and training the custom BERT-NLP
Summarization model. As can be seen from the figure the parameters such as log-
ging_step, eval_step, batch size per device, etc. were set and the model was trained.

Fine-Tuning the Encoder-Decoder Model

ng Traiming Porameters
g_args = Seq2seqirainingArguments(
output_dir-checkroin tput_bir,
evaluation_strategy: =
per_device_train_batch,
per_device_eval_batch_:
predict_with_generate-True,
logging_steps-10¢2,
save_steps=1a008,
eval_steps=8868,
warmup_steps=208@,
overurite_output_dir=True,
save_total_limit=108,
fple=True,

Training Model

: |trainer = Seq2SeqTrainer(

rtobert,

tokenizer,
args=training_args,
compute_metrics=compute_metrics,
train_dataset-train_data,
eval_dataset-val_data,

)
trainer. train()

Jfusr/local/1ib/python3.6/dist-packages/datasets/arrow_dataset.py:835: UserWiarning: The given NusPy array is not writesble, and
PyTorch does not support non-writeable tensors. This means you can write to the underlying {supposedly non-writezble) wumpy arr
ay using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor.
This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tenso
r_numpy. cpp: 141. )

return torch.tensor(x, **format_kwargs)
Jusr/lecal/lib/python2.e/dist-packages/torch/optim/lr_scheduler.py:123: uservarning: Detected call of "1r_scheduler.step()” bef
ore “optimizer.step()’. In PyTorch 1.1.8 and later, you should call them in the opposite order: "optimizer.step()’ before "1r_s
cheduler.step()”. Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more d
etails at https://pytorch.org/docs/stable/optim. htmlsh adjust-learning-rate

“https: //pytorch.org/docs/stable/optim. himl#how-to-adjust-learning-rate”, UserWiarning)

[53835/53835 24:11:31, Epoch 3/3]

Step TrainingLoss Validation Loss Rouge? Precision Roupe? Reeall Roupe2Fmessure  Runime Samples Per Second

8000 2.050200 2301458 0.002700 0145800 0113700 525445800 2545000
15000 2511700 2534151 0.104200 0135300 0120700 534.801200 2500000
24000 2.359700 0.110000 0.163100 0127200 544.302700 2456000
32000 2283400 0.107100 0.158000 0124100 553118300 2374000
40000 2.105800 2388423 0110400 0161700 0127100 545211800 2452000
48000 2080000 2383725 0.108700 0158600 0122800 557.875000 2307000

: Trainoutput(global_step-53835, training_loss-2.55253871103%0834, metrics={'train_runtime': 87112.8612, 'train_samples_per_secon

Figure 18: BERT-NLP Model Training

Testing/Inference Phase
Step 1: As soon as the BERT-NLP Summarization model was trained and the final
checkpoint was achieved, the model was run on the clean extracted text from the art-
icles in the previous experiment and the summary was saved in the corresponding article
folder, using the code in the figure

def generate summary(text,model dir):
device = torch.device('cuda® if torch.cuda.is_available() else ‘cpu’)
#CHECK THE CHECKPOIN
tokenizer = BertTokenizerFast.from_pretrained(model_dir)
model = EncoderDecoderModel.from_pretrained(model_dir).to(device)
inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt"}
input_ids = inputs.input_ids.to(device)
attention_mask = inputs.attention_mask.to(device)
output = model.generate(input_ids, attention_mask=attention_mask)
return tokenizer.decode(output[@], skip_special_tokens=True)

for subFolder in os.listdir(articles folder):
for subArticleFolder in os.listdir(os.path.join{articles_folder,subFolder)):
if not ("jpg" in subArticleFolder) or ("png" in subArticleFolder):
with open(os.path.join{articles_folder,subFolder, subArticleFolder, "Clean_Spell Check Text.txt")) as f:
text = f.read()
print("Generating Summary for: ",subFolder,subArticleFolder,”Clean_Spell_Check Text.txt")
text-generate_summary(text,os.path.join(CheckPoint Output_Dir, "checkpoint-FINA
with open(os.path.join(articles_folder,subFolder,subArticleFolder, "Summary.txt"), 'w') as furite:
flirite.write(text)

Generating Summary for: TOIDEL-2818-81-81-15-C Article @ Clean_Spell Check Text.txt
Generating Summary for: TOIDEL-2818-81-81-15-C Article_1 Clean_Spell_Check_Text.txt
Generating Summary for: TOIDEL-2018-01-81-15-C Article_2 Clean_Spell_Check_Text.txt
Generating Summary for: TOIDEL-2018-01-81-15-C Article_3 Clean_Spell_Check_Text.txt
Generating Summary for: TOIDEL-2818-01-81-15-C Article 4 Clean_Spell_Check Text.txt
Generating Summary for: TOIDEL-2818-81-82-4-C Article @ Clean_Spell Check Text.txt

Figure 19: BERT-NLP Model Inference Generating Summaries
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Step 2: By using the Microsoft Bing API, the generated summary was yet again put
through spelling and grammar check, using a similar code snippet as shown in the figure
115l The cleaned text summary was saved as a text file in corresponding article folders.

Step 3: To conclude the experiments and generate a final audio summary from the
cleaned text summary, python’s gTTS (Google text-to-speech interface) package was
used, as shown in the figure [20]

def g

AudioSummary (text, filePath):

cking if it Exists, Then Delete

if{os.path.isfile{os.path.join{filePath,"AudioSummary.mp3"}})):
os.remove{os.path.join(filePath, "AudicSummary .mp3"))

# Longuage in which you want to convert

language = ‘en’

myobj = gTTS(text=text, lang=language, slow=False)

# Saving the converted gudio in g mp3 file named

myobj.save{os.path. join(filePath, "AudicSummary.mp3"™))

join(filePath, "AudioSummary.mp3”))
for subFolder in os.listdir(articles_folder):
for subArticleFolder in os.listdir(os.path.join(articles_folder,subFolder}}:
if not ("jpg" in subArticleFolder) or ("png" in subArticleFolder):
with open(os.path.join(articles_folder,subFolder,subArticleFolder, "Clean_Summary.txt")) as f:

text = f.read()

print("Generating Audio of Clean Summary for: ",subFolder,subArticleFolder,"Clean_Summary.txt™)

generatedudioSummary (text,os.path.join(articles folder,subFolder,subArticleFolder))

Generating Audic of Clean Summary for: TOIDEL-2818-01-01-15-C Article @ Clean_Summary.txt
Generating Audioc of Clean Summary for: TOIDEL-2818-81-81-15-C Article_1 Clean_Summary.txt
Generating Audic of Clean Summary for: TOIDEL-2818-81-01-15-C Article 2 Clean_Summary.txt
Generating Audic of Clean Summary for: TOIDEL-2818-81-81-15-C Article 3 Clean_Summary.txt
Generating Audic of Clean Summary for: TOIDEL-2818-81-01-15-C Article 4 Clean_Summary.txt

Figure 20: Generating Audio Summaries

5 Evaluation

Since the technologies used in each experiment were different, the evaluation criteria and
metrics associated with each experiment were chosen accordingly.

5.1 Evaluation of Experiment 1 : Article & Column Segment-
ation using MaskRCNN

Tensorboard is one of the most popular tools for evaluating deep learning models. It
is a visualisation tool that tracks and plots loss training and validation loss curves. As
part of this research, the Bounding Box and Mask losses were analyzed with each epoch.
Tensorboard can be started in the following steps:

e Ascan beseen in the ﬁgure enter the command (tensorboard —logdir logs_Directory_path)
in the terminal of your environment by replacing the “logs_Directory_path” with
the path where the trained weights are stored.

--bind_all

Figure 21: Environment Terminal
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e After this, Tensorboard can be accessed by visiting "http://localhost:6006/” through
a browser as seen in the figure

;i TensorBoard

& (¢]

TensorBoard

[7] Show data download links QFilter tags (regular
|8 1gnore outliers in chart scaling

Tooltip sorting method: default

othing

RELATIVE

2 4 6 8B 10 12 14 16 18

epoch_mrcnn_bbox_loss
TOGGLE ALL RUNS
epoch_mrcnn_bbox loss

045 |
035
025 ]
05 4
0.05 -

4 6 B 10 12 14 16 18

epoch_mrcnn_class_loss

epoch_mrcnn_mask_loss

epoch_rpn_bbox_loss

Figure 22: Tensorboard

e In the ﬁgure an example of the custom Stage 1(Article Segmentation) MaskRNN
model’s validation and training loss curves is showcased.

Training MRCNN Validation MRCNN
Boundary Box and Mask Boundary Box and Mask
Losses Losses

©epoch_mrenn_bbox_loss epoch_val_mrenn_bbox_loss

024

Validation RPN Boundary

022 4 Box Losses

02

— — T T
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16
epoch_mrcnn_mask_loss
02

018 -

016

—— ——T —
0 2 4 6 8 10 12 14 16 18

0.14
0.12 4

014

0.08

—_—
2 4 6 8 10 12 14 16 18

—TT—T— 71—
0 2 4 6 8 10 12 14 16 18

Figure 23: Stage 1(Article Segmentation) MaskRNN model’s loss curves
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5.2 [Evaluation of Experiment 2 : Text Extraction using Tesser-
act

The average confidence score of every recognition by tesseract was used to evaluate the
quality of the text recognition. Using the Bing API, a second evaluation was performed
by calculating the number of changes suggested by the spelling and grammar check. The
code snippet for these evaluations and the results are shown below in the figure [24]

for subFolder in os.listdir(articles_folder)
for subArticleFolder in os.listdir(os.path.join(articles_folder,subFolder)):
if not ("jpg" in subArticleFolder) or ("png" in subArticleFolder):

text=""

if os.path.isfile(os.path.join(articles_folder,subFolder,subArticleFolder, "OCRedText.txt")):
os.remove(os.path.join(articles_folder,subFolder, subArticleFolder, "OCRedText.txt"))

for columnFile in os.listdir(os.path.join(articles_folder,subFolder,subArticleFolder)):
OCR_img=cv2.imread(os.path.join(articles_folder,subFolder,subArticleFolder,columnFile))
#Image Processing
OCR_img=processImage(OCR_img)
extracted_text=pytesseract.image_to_string(OCR_img)
text=text+" "+extracted_text
#Getting the Confidence Score Data
tesseractData=pytesseract.image_to_data(OCR_img,output_type=pytesseract.Output.DICT)
confScore=list(np.float_(tesseractData['conf']))
confScore=list(filter((-1.9).__ne__, confScore))
confidenceScorelList.append(mean(confScore))

with open(os.path.join(articles_folder,subFolder,subArticleFolder,"OCRedText.txt"), 'w') as f:
f.urite(text)

print("The Mean Confidence score of the OCR on Articles with image processing is: “,mean(confidenceScorelList))

The Mean Confidence score of the OCR on Articles with image processing is: 82.79506867655532

numOfReplacements=0
def spellCheck(text):
global numOfReplacements
api_key =
endpoint = “https://api.bing.microsoft.com/v7.8/SpellCheck"
example_text = text
data = {'text': example_text}
params = {'mkt':'en-us’', 'mode’: "proof'}
headers = {'Content-Type': 'application/x-www-form-urlencoded', 'Ocp-Apim-Subscription-Key': api_key, }
response = requests.post(endpoint, headers=headers, params=params, data=data)
json_response = response.json()
#Printing JSON Response
#print(json.dumps(json_response, indent=4))
if json_response['flaggedTokens']!=[]:
#Iterating through the JSON Response to replace the flagged Spelling Mistakes
for item in json_response['flaggedTokens']:
textToBeReplaced=item[ "token']
scoreList=[]
for suggestion in item['suggestions’]:
scorelist.append(suggestion['score’])
suggestion in item['suggestions']:
if suggestion['score’]==max(scorelList):
textReplacingWith=suggestion[ ‘suggestion’]
#example_text=example_text.replace(textToBeReplaced, textReplacingiith)
textToBeReplaced=textToBeReplaced.replace("(","")
textToBeReplaced=textToBeReplaced.replace(™)","")
numOfReplacements+=1
example_text=re.sub(r’'\b'+textToBeReplaced+r'\b",textReplacinghiith,example_text)
return example_text

for

print("The total number of Replacements made: ",numOfReplacements)

The total number of Replacements made: 4802

Figure 24: OCR Confidence Score and SpellCheck Recommendation Count

5.3 Evaluation of Experiment 3 : Text Summarization by BERT-
NLP

ROUGE has been suggested by many researchers in the previous literature, like Moratanch
and Chitrakalal (2017)) and [Allahyari et al.| (2017)), as an evaluation criterion to assess the
quality of a generated summary against a reference summary (human generated). A
method for generating ROUGE 2 metrics to be used with the validation data while tran-
ing the BERT-NLP model is shown in the figure
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rouge = datasets.load metric("rouge")
def compute_metrics(pred):
labels_ids = pred.label_ids
pred_ids = pred.predictions
pred_str = tokenizer.batch_decode(pred_ids, skip special_tokens=True)
labels_ids[labels_ids == -18@] = tokenizer.pad_token_id
label str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)
rouge_output = rouge.compute(predictions=pred str, references=label_str, rouge types=["rouge2"])["rouge2"].mid
return {
"rouge? precizion": round{rouge output.precision, 4),
"rouge2_recall™: round(rouge_output.recall, 4),
"rouge2_fmeasure”: round(rouge_output.fmeasure, 4),

i

Figure 25: Validation ROUGE-2 metrics method

ROUGE-2, ROUGE-1, and ROUGE-L scores were also calculated for the test split
of the CNN DailyMail dataset. There were 11,490 article-summary pairs in this split,
with the summaries written by professional journalists. The figure [26]illustrates the key
results and the code used to create them.

Evaluation of the Trained Model

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = EncoderDecoderModel.from_pretrained(os.path.join(CheckPoint_Output_Dir,"checkpoint-Final"))
model.to("cuda")
#Loading the Test Data
test_data - datasets.load_dataset("cnn_dailymail”, "3.0.0", split="test")
batch_size = 32
#Mapping the Data
def generate_summary(batch):
inputs = tokenizer(batch[“article"], padding="max_length”, truncation=True, max_length=512, return_tensors="pt")
input_ids = inputs.input_ids.to("cuda”
attention_mask = inputs.attention_mask.to("cuda")
outputs = model.generate(input_ids, attention_mask=attention_mask)
output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True)
batch[“pred”] = output_str
return batch
#Getting the Results
results = test_data.map(generate_summary, batched=True, batch_size=batch_size, remove_columns=["article"])
#Getting the Predictions and Actual Summaries
pred_str = results["pred"”
label_str = results["highlights"]
#Computing Rouge Scores
rouge_output = rouge.compute(predictions=pred_str, references-label_str, rouge_types=["rouge2"])["rouge2"].mid
print(rouge_output)

Calculating Rouge-2

#Computing Rouge Scores
rouge_output = rouge.compute(predictions=pred_str, references-label_str, rouge_types=["rouge2"])["rouge2"].mid
print(rouge_output)

Score(precision=08.17675207497792284, recall=0.1998203482045854, fmeasure=0.18215824329209357)
Calculating Rouge-1 and Rouge-|
rouge = Rouge()

rouge.get_scores(pred_str, label_str, avg=True)

{'rouge-1': {'f': ©.2743262484042596,
'p': 0.26891272128875564,
r': ©.20333046580389286},
‘rouge-1': {'f': ©.2578642069309123,
'p': 0.25183493007656427,
‘r': 0.2758238025053934}}

Figure 26: ROUGE-2, ROUGE-1 and ROUGE-] metrics on test data

6 Important Notes

The following section provides a few key points to consider when implementing the re-
search or running the provided code along with the dataset.

6.1 Flow of Jupyter Notebooks

To ensure smooth operation of the entire study, the sequence of the Jupyter Notebooks is
imperative. Hence, the notebooks containing Python code should be run in the following
order:
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1. Train_MaskRCNN_Custom_Dataset.ipynb
2. Test_Mask_ RCNN_Stagel_Stage2.ipynb
3. OCR_Clean_Text_Generation.ipynb

4. NLP_Text_Summarization BERT _Audio_Generation.ipynb

6.2 Ideal Folder Structure

The ideal folder structure would look like the one shown in the Figure [27] after imple-
menting the entire study.

Column Images Divided
by Article Number

ColumnOpng  Column tpng  ColumnZpng  Column 3.png Summerytxt

OCRedTextitxt

Every Article Folder Contains:
1. Audio & Text Summaries

2. Column Images

3. Clean and Original Versions
of Text and Summary

Articles Divided by
Newspaper Print Date

Root Folder

Figure 27: Folder Structure
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