
Configuration Manual

MSc Research Project

Data Analytics

Shashank Sanjay Tomar
Student ID: x19213280

School of Computing

National College of Ireland

Supervisor: Dr. Paul Stynes & Dr. Pramod Pathak

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Shashank Sanjay Tomar

Student ID: x19213280

Programme: Data Analytics

Year: 2021-2022

Module: MSc Research Project

Supervisor: Dr. Paul Stynes & Dr. Pramod Pathak

Submission Due Date: 16/12/2021

Project Title: Summarizing Newspaper Articles using Optical Character Re-
cognition and Natural Language Processing

Word Count: 2415

Page Count: 17

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shashank Sanjay Tomar

Date: 27th January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Shashank Sanjay Tomar
x19213280

1 Introduction

This configuration manual presents a step-by-step walkthrough of the research, as well as
information on the hardware and software used to implement it. By following this guide,
any user can replicate the conducted research.

2 Hardware and Software Specification

2.1 Hardware Specifications

There were primarily two instances of hardware used, one a local machine equipped
with a GPU, and the other a cloud-based IDE (Google Colab PRO). By doing this,
this research could train the models simultaneously, reducing implementation time and
enhancing efficiency. The table 1 describing their specifications is provided below.

Table 1: Hardware Specifications

Name Description
Local Machine Asus G14
OS Windows 11 (V. 21H2)
CPU AMD Ryzen 4900H
RAM 16 GB DDR4
GPU RTX 2060 MaxQ (6 GB)
Google Colab PRO 32GB of RAM, Tesla P100 GPU (16 GB)

NOTE: One needs to subscribe to Google colab Pro in order to use the higher GPUs
listed in the table 1. Also, the specifications of the hardware provided by colab pro are
dynamic and can change according to the user’s usage.

2.2 Software Specifications

A number of software tools, IDEs, frameworks, and libraries were used in addition to the
hardware mentioned above. Detailed information is provided in the following table 2.

1



Table 2: Software Specifications

Name Description
Language Python 3.7
IDEs Jupyter Notebook & Google Colab Pro
Image Data Annotation VGG Image Annotator
Base Models and Weights MaskRCNN (COCO Dataset) & bert-base-uncased
Text Extraction Engine Tesseract.exe
Spell-Grammar Check Microsoft Bing API
Text-To-Speech gTTS (Google)
Model Creation Tensorflow, Keras, Pytorch
Evaluation Tensorboard, ROUGE etc.
Miscellaneous Tasks Libraries like Matplotlib, NumPy, JSON, Requests, Regex etc.

3 Data Collection and Transformation

3.1 Dataset 1: Newspaper Images

For the first dataset, the research acquires images from the ”Times of India” newspaper
for the January 18 issue. The steps are as follows:

Step 1: Data Download
This step began with downloading a zip file of dataset from the Archive website 1. This
folder contained three different versions of each newspaper image (“-C”: Complete Image,
“-P”: Only Pictures, “-T”: Only Text). Next, the images were moved from separate date
publication folders to one in a single folder. File names that ended in ”-P” or ”-T” were
ignored and deleted since they exclusively contained only the ”Picture” or ”Text” data
of the newspaper. The reason for doing this was that we wanted our model to be trained
on real-life situations where there are both pictures and text in a newspaper.

Step 2: Data Selection & Cleaning
After obtaining images of the complete newspaper pages containing, both text and pic-
tures, the researchers had to manually go through each one of them to remove any images
that contained only advertisements since the goal of the research was to summarize news
articles. Having done so, the dataset was left with 182 images, each representing a news-
paper page. These images were then split into 70:20:10 ratios for train, validation, and
test data.

Step 3: Data Annotation
The research uses VGG image Annotator to manually annotate a boundary box around
various articles after the dataset was split into three separate sets.

• Images from the train dataset were imported into the VGG annotator tool by
clicking on the ”Add Files” button, and two classes (Rectangle Article and Non
Rectangle Article) were added in the ”Region Attributes” section as can be seen in
Figure 1.

• Using the ”Polygon” region shape, a boundary box around a news article was made
and then a corresponding class was selected through a dropdown menu, as shown
in the figure 2.

1Times of India Jan-18 Dataset: https://archive.org/details/TOIDELJAN18

2

https://archive.org/details/TOIDELJAN18


Figure 1: Importing Images and adding Annotation Classes

Figure 2: Bounding Box Class Selection

3



• After all the article boundary boxes were annotated with the corresponding class
(Rectangle/Non-Rectangle), a JSON file containing all these annotations was down-
loaded using ”Annotation”-”Export Annotations (as JSON)”, as shown in the figure
3 below.

Figure 3: Downloading JSON File

• The same annotation steps were performed on the validation dataset, and each
JSON file was saved in its respective folder (Train Annotation JSON in the Train
Image Folder, Validation Annotation JSON in the Validation Image Folder).

3.2 Dataset 2: CNN-DailyMail Dataset

Huggingface repository provides an easy method to access this article-summary pairs
dataset2 using its ”dataset” python package. The dataset is downloaded via the following
script (Fig. 4) and then stored in the local cache. As it is downloaded in the cache, it
is directly accessible from the cache for subsequent dataset requests. Additionally, the
train, validation, and test data splits were already available in the huggingface repository.

Figure 4: Downloading CNN-DailyMail Dataset

2CNN-DailyMail Dataset: https://huggingface.co/datasets/cnn_dailymail

4

https://huggingface.co/datasets/cnn_dailymail


4 Experiment Setup

4.1 Experiment 1 : Article & Column Segmentation using MaskR-
CNN

This experiment was implemented to segment the article and column images from the
newspaper images. The steps followed for this experiment were:

Training Phase
Step 1: The MaskRCNN base model by Matterport Inc. also used by Almutairi and
Almashan (2019) was downloaded from Github 3. Since, this research used transfer
learning, the base MaskRCNN (COCO Dataset) weight4 was also downloaded. Both the
“maskrcnn” (Github) folder and the “mask rcnn coco.h5” weight were kept in the same
folder as the jupyter notebook.

Step 2: As the next step, a few libraries were installed, custom configurations such as
setting the ROOT Dierectory, Dataset path, base weight path, confidence detection level
etc. were set as can be seen in the figure 5.

Figure 5: Configuration Settings

3Matterport Inc. MaskRCNN base: https://github.com/matterport/Mask_RCNN
4MaskRCNN trained on COCO Dataset Weight: https://github.com/matterport/Mask_RCNN/

releases/download/v2.0/mask_rcnn_coco.h5

5

https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5
https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5


Step 3: Next, a custom class was defined, containing methods to load the custom article
annotations, masks as can be seen from the figure 6.

Figure 6: Loading Custom Dataset and Mask

Step 4: Once, the custom annotation and mask loading methods were defined, a Mask
RCNN model training method was created, using the specifications seen in the figure
7. This trained a custom MaskRCNN Model based on the newspaper image data using
transfer learning on MaskRCNN (COCO Dataset) weight.

6



Figure 7: MaskRCNN Training

Step 5: Once, the article segmentation model was trained. It was time to move on
to training a second Mask RCNN model to segment the columns from those identified
article segmentation. This was done by training yet another model on Stage 2 Dataset,
by performing annotations on article images by following similar annotation steps as
mentioned in the subsection 3.1 . Figure 8 showcases an example of the same.

Figure 8: Stage 2 Dataset Annotation for Column Segmentation MaskRCNN Model

Step 6: After the creation of the Stage 2 dataset with annotated article images, with
column annotations. Aforementioned Step 1 to Step 4 were implemented again, to pro-
duce Stage 2 MaskRCNN model to identify the columns after the Stage 1 MaskRCNN
model would identify the articles from newspaper. However, this was done after making
sure, the dataset directory was changed to ”Stage 2 Dataset” as can be seen in the figure
9.

7



Figure 9: Dataset directory: Stage 2 Dataset (Column Segmentation)

Testing/Inference Phase
Step 1: Once, both the Stage 1(Article Segmentation) and Stage 2(Column Segment-
ation) MaskRCNN Models were trained, an inference was made by using our custom
trained model weights and boundary boxes and masks were displayed on the test news-
paper images as can be seen in Figure 10(Article Segmentation) and Figure 11(Column
Segmentation).

Figure 10: Stage 1 Model: Article Segmentation

Figure 11: Stage 2 Model: Column Segmentation

Step 2: The Stage 1 model inference was run on all the test images of newspaper to
segment articles and then Stage 2 model inference was run on those article images to
segment them into column images. The cropped Article and Column Images were stored

8



within distinct folders(combined on the basis of newspaper print date), using the code in
figure 12.

Figure 12: Cropping Segmented Article/Column Images

4.2 Experiment 2 : Text Extraction using Tesseract

Step 1: The researchers installed libraries such as OpenCV and PyTesseract and changed
the path of PyTesseract command to point to the installed executable of Tesseract.exe.
In addition to that, a few set of image pre-processing methods were defined to grayscale
and threshold an image, which can be seen in the figure 13.

Figure 13: Installing PyTesseract,OpenCV, NeatText and Image Pre-Processing Methods

9



Step 2: The next step was to have all the extracted column images go through the
tesseract engine in order to extract the text and then concatenate to form the textual
content on a single article. This was done using the code shown in the figure 14.

Figure 14: Extracting Text using Tesseract

Step 3: The researchers then cleaned the extracted text using their own code and used
the Spelling and Grammar Check API by Microsoft Bing by making a request call using
an API KEY as can be seen in the figure 15. This Microsoft Bing API Key was generated
by hosting a service through Azure Portal. Due to the scope of the study not being to
demonstrate how to use a service, the Microsoft documentation website 5 can be consulted
for that.

Figure 15: Text Cleaning and Spelling-Grammar Check

5Bing API Documentation: https://docs.microsoft.com/en-us/azure/cognitive-services/

bing-spell-check/overview

10

https://docs.microsoft.com/en-us/azure/cognitive-services/bing-spell-check/overview
https://docs.microsoft.com/en-us/azure/cognitive-services/bing-spell-check/overview


4.3 Experiment 3 : Text Summarization by BERT-NLP

This experiment was implemented to generate an audio and text summary from the ex-
tracted article text. The steps followed for this experiment were:

Training Phase
Step 1: The researchers installed libraries like ”Datasets”, ”gTTS”, ”rouge score” and
”transformers”, set a few basic configurations, and then downloaded ”bert-base-uncased”
base BERT model. In addition, training parameters such as batch size to be 16, maximum
encoder length to be 512 etc. were set, as shown in the figure 16.

Figure 16: Configuration and Parameter Settings

Step 2: After mapping the train and validation data to match the model inputs, re-
searchers moved on to the next step. The “base-bert-uncased” model was warm started
and the parameters for a ”bert2bert” model were set as can be seen from the figure17.

Figure 17: Warm Starting the bert-base-uncased Model

11



Step 3: Moving forward to the stage of tuning and training the custom BERT-NLP
Summarization model. As can be seen from the figure 18, the parameters such as log-
ging step, eval step, batch size per device, etc. were set and the model was trained.

Figure 18: BERT-NLP Model Training

Testing/Inference Phase
Step 1: As soon as the BERT-NLP Summarization model was trained and the final
checkpoint was achieved, the model was run on the clean extracted text from the art-
icles in the previous experiment and the summary was saved in the corresponding article
folder, using the code in the figure 19.

Figure 19: BERT-NLP Model Inference Generating Summaries

12



Step 2: By using the Microsoft Bing API, the generated summary was yet again put
through spelling and grammar check, using a similar code snippet as shown in the figure
15. The cleaned text summary was saved as a text file in corresponding article folders.

Step 3: To conclude the experiments and generate a final audio summary from the
cleaned text summary, python’s gTTS (Google text-to-speech interface) package was
used, as shown in the figure 20.

Figure 20: Generating Audio Summaries

5 Evaluation

Since the technologies used in each experiment were different, the evaluation criteria and
metrics associated with each experiment were chosen accordingly.

5.1 Evaluation of Experiment 1 : Article & Column Segment-
ation using MaskRCNN

Tensorboard is one of the most popular tools for evaluating deep learning models. It
is a visualisation tool that tracks and plots loss training and validation loss curves. As
part of this research, the Bounding Box and Mask losses were analyzed with each epoch.
Tensorboard can be started in the following steps:

• As can be seen in the figure 21, enter the command (tensorboard –logdir logs Directory path)
in the terminal of your environment by replacing the “logs Directory path” with
the path where the trained weights are stored.

Figure 21: Environment Terminal

13



• After this, Tensorboard can be accessed by visiting ”http://localhost:6006/” through
a browser as seen in the figure 22.

Figure 22: Tensorboard

• In the figure 23, an example of the custom Stage 1(Article Segmentation) MaskRNN
model’s validation and training loss curves is showcased.

Figure 23: Stage 1(Article Segmentation) MaskRNN model’s loss curves

14



5.2 Evaluation of Experiment 2 : Text Extraction using Tesser-
act

The average confidence score of every recognition by tesseract was used to evaluate the
quality of the text recognition. Using the Bing API, a second evaluation was performed
by calculating the number of changes suggested by the spelling and grammar check. The
code snippet for these evaluations and the results are shown below in the figure 24.

Figure 24: OCR Confidence Score and SpellCheck Recommendation Count

5.3 Evaluation of Experiment 3 : Text Summarization by BERT-
NLP

ROUGE has been suggested by many researchers in the previous literature, like Moratanch
and Chitrakala (2017) and Allahyari et al. (2017), as an evaluation criterion to assess the
quality of a generated summary against a reference summary (human generated). A
method for generating ROUGE 2 metrics to be used with the validation data while tran-
ing the BERT-NLP model is shown in the figure 25.

15



Figure 25: Validation ROUGE-2 metrics method

ROUGE-2, ROUGE-1, and ROUGE-L scores were also calculated for the test split
of the CNN DailyMail dataset. There were 11,490 article-summary pairs in this split,
with the summaries written by professional journalists. The figure 26 illustrates the key
results and the code used to create them.

Figure 26: ROUGE-2, ROUGE-1 and ROUGE-l metrics on test data

6 Important Notes

The following section provides a few key points to consider when implementing the re-
search or running the provided code along with the dataset.

6.1 Flow of Jupyter Notebooks

To ensure smooth operation of the entire study, the sequence of the Jupyter Notebooks is
imperative. Hence, the notebooks containing Python code should be run in the following
order:

16



1. Train MaskRCNN Custom Dataset.ipynb

2. Test Mask RCNN Stage1 Stage2.ipynb

3. OCR Clean Text Generation.ipynb

4. NLP Text Summarization BERT Audio Generation.ipynb

6.2 Ideal Folder Structure

The ideal folder structure would look like the one shown in the Figure 27 after imple-
menting the entire study.

Figure 27: Folder Structure

References

Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B. and
Kochut, K. (2017). Text summarization techniques: a brief survey, arXiv preprint
arXiv:1707.02268 .

Almutairi, A. and Almashan, M. (2019). Instance segmentation of newspaper elements
using mask r-cnn, 2019 18th IEEE International Conference On Machine Learning And
Applications (ICMLA), IEEE, pp. 1371–1375.

Moratanch, N. and Chitrakala, S. (2017). A survey on extractive text summarization,
2017 international conference on computer, communication and signal processing (IC-
CCSP), IEEE, pp. 1–6.

17


	Introduction
	Hardware and Software Specification
	Hardware Specifications
	Software Specifications

	Data Collection and Transformation
	Dataset 1: Newspaper Images
	Dataset 2: CNN-DailyMail Dataset

	Experiment Setup
	Experiment 1 : Article & Column Segmentation using MaskRCNN
	Experiment 2 : Text Extraction using Tesseract
	Experiment 3 : Text Summarization by BERT-NLP

	Evaluation
	Evaluation of Experiment 1 : Article & Column Segmentation using MaskRCNN
	Evaluation of Experiment 2 : Text Extraction using Tesseract
	Evaluation of Experiment 3 : Text Summarization by BERT-NLP

	Important Notes
	Flow of Jupyter Notebooks
	Ideal Folder Structure


