ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Samuel Biwei Tanga
Student ID: x20187784

School of Computing
National College of Ireland

Supervisor: Dr. Martin Alain

National College of Ireland
MSc Project Submission Sheet

School of Computing

‘——
\ National
Collegeof

Ireland

Student Name:

Samuel Biwei Tanga

Student ID: 20167784
Programme: Data Analytics

Year: 2021

Module: MSc Research Project

Supervisor:

Dr. Martin Alain

Submission Due Date:

16/12/2021

Project Title:

A Deep Learning Approach to Vehicle Make and Model
Recognition with Specification Matching

Word Count:

1712

Page Count

19

I hereby certify that the information contained in this (my submission) is

information pertaining to research I conducted for this project.

All information other

than my own contribution will be fully referenced and listed in the relevant bibliography
section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Samuel Biwei Tanga
Date: 16/12/2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) | o

Attach a Moodle submission receipt of the online project submission, to | o

each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for i
your own reference and in case a project is lost or mislaid. It is not sufficient to
keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be
placed into the assighment box located outside the office.

Office Use Only

Sighature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Samuel Biwei Tanga
X20167784

1 Introduction

This document provides comprehensive information on how to effectively replicate the
implementation aspect of the research "A Deep Learning Approach to Vehicle Make and
Model Recognition with Specification Matching™ It provides in - depth information on how
to configure the development environment and also information on software and
hardware requirements needed for implementing, executing, and testing the models used in
the research. The sections that follow this provide these processes.

2 System Configuration

The recommended software and hardware requirements are given in this section. Also given,
is the configuration used by the author.

2.1 Hardware Configuration

Table 1: Hardware configuration

Hardware Recommended Used \
Operating System e Ubuntu 16.04 or later Windows 10
e macOS 10.12.6 or

later
e Windows 7 or later
RAM At least 8GB 16GB
CPU At least Core i5 Corei7
Hard Disk At least HDD 500GB SSD 250GB

2.2 Software Requirements

Table 2: Software Requirements

Software VersionUsed
Python 3.95

pip Pip 19.0

Google Chrome 96.0

Jupyter Notebook 6.4.0

Google Colab

The Google Colab is what was used for data processing, training, and testing the models and
also presentation of results. The PyCharm IDE was used to run the python scripts for the
development of the GUI application.

2.3 Google Colab

Google colab! is an online IDE offered by google to run Jupyter notebooks. It is used mostly
for deep learning and neural networks projects. Most packages are already installed on the
google colab environment, users only need to import these packages in order to use them.
The google colab is associated with the user’s google account i.e. once a user has a google
account, they can have access to google colab. Files used in google colab are preferably
stored in a google drive. The figure below shows a google colab environment.

PRO " File Edit View Insert Runtime Tools Help Al changes savec

(0 & Untitledlipynb B comment A% share £ @

+ Code + Text v RMI(- # Editing | A

cBHPE

“ 0

Figure 1: Google Colab Environment

3 Implementation

A complete step by step set of instructions with illustrated figures on how to replicate the
project from data acquisition to generating results is shown in this section.

3.1 Data Acquisition

The dataset used for this project can be downloaded from GitHub? as shown in the Figure 2
below.

L https://research.google.com/colaboratory/
2 https://github.com/faezetta/VMMRdb

<« C @ github.com/faezetta/VMMRdb 2 % » @ (updare i)

= README.md

The distribution of images in different classes of the dataset. Each circle is associated with a class, and its
size represents the number of images in the class. The classes with labels are the ones including more

than 100 images.

Download

VMMRdb can be downloaded here.

Each image is labeled with the corresponding make, model and production
year of the vehicle.

Some models referenced in our paper on VMMRdb-3036: Resnet-50 , VGG

3.2 Data Storage

The acquired data is stored on the researcher’s google drive in order to be used with google
colab. A new folder is created in the google drive (this can be any name) which will store all
the files associated with the project as soon as processing starts. In this case the folder has
been named VehicleMarks.

& orive C— x = @ o® =@

l' New Search results o & © o : B2 ® B
» @ My Drive Relevance = VMMRdeIP X
» [0 Computers . @
Details Activity
23 shared with me —
(© Recent Who has access
+
¢ Stared [ApeepLear.. $ VMMRdb.zi.. ‘ @
E Trash
System properties
_—
¢ storage — Type Compressed Archive
v
Size 11.51 GB

54.48 GB of 100 GB used
Storage used 11.51 GB

Buy storage = VMMRdb zi... Copy of Vehi...

t Location @ My Drive
Owner me
Modified Nov 11, 2021 by me @
My Drive > ¥ VMMRdb.zip Opened Dec 7,2021 by me >

Figure 3: Google drive containing downloaded dataset

3.3 Data Preparation

The next step required is to connect the google drive to the google colab environment and
then change the working directory to the folder that was created earlier to store all project
files.

() & Vehicle Marks Detection Cropping.ipynb S B @

PRO Fle Edt View Insert Runtime Tools Help Cannotsavechanges

+Code +Tet 4 CopytoDrive Comect » A Editing A

Q [] from google.colab import drive
drive.mount('/content/drive")
O
[] import os
i}

if os.getcud() == '/content':
os.chdir('/content/drive/MyDrive/VehicleMarks")
os.getowd()

'[content/drive/MyDrive/VehicleMarks

Figure 4: Connecting google drive to colab environment

After this the libraries needed for the initial process of the project are imported.

TV e ow
o import numpy 2s np

import matplotlib.pyplot as plt

import torch

from torch import nn

from torch.utils.data import Dataloader, Dataset, Subset

import torchvision

from torchvision.models.detection import fasterrcnn_resnet5@_fpn

from torchvision.models.segmentation import deeplabv3_resnetlel

from torchvision.datasets import ImageFolder

import io

from tqdm import tqdm

fron random import shuffle

from typing import Tuple, List, Dict, Any, Optional, Callable
from zipfile import ZipFile

from collections import Counter

from PIL import Image

Figure 5: Importing Libraries

The next step is to define functions to iterate over the zipped dataset and also for selecting
files in order to create a subset before passing in the arguments for number of classes,
maximum and minimum number of images per class to be chosen. The figures 6 and 7 below
illustrate this.

() & Vehicle Marks Detection Cropping.ipynb s share £ @
-
File Edit View Insert Runtime Tools Help Cannotsave changes

PRO

<>

{x}

PRO

+ Code + Text

° class Zi

Copy to Drive v E’-?:(- 2 Editing A

4+ b e N
pDataset(ImageFolder): LBV

def init (self, root: str, return_file names: bool = False, **kwargs):
super(ZipDataset, self)._ init_ (root, **kwargs)
self.loader = lambda f: Image.open(ioc.BytesIO(ZipFile(root).read(f)))
self.return_file_names = return_file_names
def _ getitem_ (self, idx: int) -> Tuple[Any, Any]:
img_file, target = self.samples[idx]
image = self.loader(img_file)
if self.transform is not None:
image = self.transform(image)
if self.target_transform is not None:
target = self.target_transform(target)
if self.return_file_names:
return (img_file, image), target
else:
return image, target
def _ len_ (self):
return len(self.samples)
def find classes(self, root: str) -> Tuple[List[str], Dict[str, int]]:
classes = list(set(f.filename.split('/")[@] for f in ZipFile(root).filelist})
classes.sort()
® X
Figure 6: Function to iterate over images in zipped file
£ Vehicle Marks Detection Cropping.ipynb
‘ J pp g py 2% Share c i
File Edit View Insert Runtime Tools Help Cannotsave changes
. RAM Iy .
+ Code + Text # Copy to Drive v Disk - # Editing ~

<

x}

° class SelectiveDataset{ZipDataset):

def

def

o WO

init (
salf,
root: str,

min_class_elements: int,
max_class_elements: int,
max_num_classes: int,
return_file names: bool = False,
**kwargs

self.min_class_elements = min_class_elements

self.max_num_classes = max_num_classes

self.max_class_elements = max_class_elements

super(SelectiveDataset, self)._ init_ (root, return_file_names, **kwargs)

find_classes(self, root: str) -> Tuple[List[str], Dict[str, int]]:

classes = [f.filename.split("/')[@] for f in ZipFile(root).filelist if not f.filename[-1] == '/']
classes_count = Counter(classes)

classes = [key for key, val in classes_count.items() if val »= self.min_class_elements]
shuffle(classes)

classes = classes[:self.max_num_classes]

classes.sort()

class_to_idx = dict(zip(classes, range(len(classes))))

return classes, class_to_idx

Figure 7: Function to select images in zipped file

The arguments for selecting the balanced subset dataset are passed. The below figure 8 shows
the name for the new subset Cropped v3, the image size, the minimum and maximum
number of cars per class and also the number of classes.

IR NN

° args = {

'DATASET_ZIP_FILE': 'VMMRdb.zip',

'CROPPED_ZIP_FILE': 'Cropped_v3.zip’,

'IMG_SIZE': 224,

'BATCH_SIZE': 4,

'MIN_CLASS_ELEMENTS': 26, # minimum number of cars per class to keep

'MAX_CLASS_ELEMENTS': 27, # maximum number of cars per class to keep

'MAX_NUM_CLASSES': 203 # maximum number of classes to keep

[1 transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize((args['IMG_SIZE'], args[IMG_SIZE'])),
torchvision.transforms.Normalize([0.485, 8.456, ©8.406], [0.229, 0.224, 8.225])

I

dataset = SelectiveDataset(
args['DATASET ZIP_FILE'],
args['MIN_CLASS_ELEMENTS'],
args['MAX_CLASS ELEMENTS'],
args['MAX_NUM_CLASSES'],
return_file_names=True,
transform=transform

Figure 8: Parsing the arguments for the subset creation

After the arguments are passed the next step is define the function for creating the subset, one
important aspect is to ensure the images are saved in the ‘jpeg’ format. After this is done then
the create dataset function is called to create the subset. Creation of the subset runs for about

5hrs 26mins.

° def create_cropped_dataset(dataset, model, out_size, cropped_zip_file, offset=8):
device = 'cuda’ if torch.cuda.is_available() else ‘cpu’
model = medel.to(device).eval()

dataset = Subset(dataset, rangs(offset, len(dataset)))
loader = DatalLoader(dataset, batch_size=args['BATCH SIZE'])

for (names, imgs), _ in tgdm(loader):
imgs = imgs.to(device)

outs = model(imgs)

outs = imgs

!
=}

for i, out in enumerate(outs):
boxes = out['boxes'].detach().cpu().numpy().astype(np.int_)

boxes_area = (boxes[:,2] - boxes[:,8]) * (boxes[:,3] - boxes[:,1])
x_min, y min, x_max, y_max = boxes[boxes area == np.max(boxes_area)][@]

image = imgs[i, ..., y_min:y max, x_min:x max].cpu().numpy() * 255
image = out.cpu().numpy() * 255

image = image.transpose(1, 2, ©).astype(np.uint8)

image = Image.fromarray(image)

image = image.resize((out_size, out_size))

with ZipFile(cropped zip_file, 'a') as f:
byte_image = io.BytesIO{)
image.save(byte_image, format='IPEG")
f.writestr(names[i], byte_image.getvalue())

[1 if True:
create_cropped_dataset(dataset, model, args['IMG SIZE'], args['CROPPED_ZIP FILE'])
else:
offset = len(ZipDataset(args['CROPPED_ZIP_FILE']))
create_cropped_dataset(dataset, model, args['IMG SIZE'], args['CROPPED_ZIP FILE'], offset)

a%| 0/1250 [@@:8@<?, ?it/s]/usr/local/lib/python3.7/dist-packages/torch/functional.py:445: UserWarning: torch.meshgrid:

return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
100% || 12501250 [5:25:32¢00:00, 15.67s/it]

Figure 9: Creating the new susbset

3.4 Data Processing

The research created a new notebook for data processing and modelling. Each model is
created on a new notebook (This was the researcher’s choice; all the notebooks can be
merged as one). For this project, PyTorch Lighting is used. PyTorch lighting is a PyTorch
wrapper that gives full control and flexibility over codes. The trainer automates every other
thing. The figure 10 below shows the installation of the module.

& VMMR MobileNet-v2.ipynb
o Py B comment a8 Share £ i
PRO " File Edit View Insert Runtime Tools Help All changes saved
. + Code + Text Connect ~ Vs Editing ~
° Collecting pytorch_lightning + Lo B % 0 W
a Downloading pytorch lightning-1.5.5-py3-none-any.whl (525 k8)
C+ | 525 kB 9.3 MB/s

Collecting torchmetrics>=0.4.1

<> Downloading torchmetrics-@8.6.1-py3-none-any.whl (332 kB)
[T e

Collecting pyDeprecate==8.3.1

{x] Downloading pyDeprecate-@.3.1-py3-none-any.whl (1@ kB)
Requirement already satisfied: numpy>=1.17.2 in /usr/local/lib/python3.7/dist-packages (from pytorch_lightning) (1.15.5)
- Requirement already satisfied: tqdm>=4.41.@ in fusr/local/1lib/python3.7/dist-packages (from pytorch_lightning) (4.62.3)

Collecting PyYAML>=5.1
Downloading PyYAML-6.8-cp37-cp37m-manylinux 2 5_x86_64.manylinuxl_x86_64.manylinux_2 12 x86_64.manylinux201@ x86_64.whl (596 kB)
| 536 kB E1.8 MB/s
Collecting future>=0.17.1
Downloading future-@8.18.2.tar.gz (829 kB)
| 829 kB 55.4 MB/s
Collecting fsspec[http]!=2021.06.0,>=2821.085.0
Downloading fsspec-2821.11.1-py3-none-amy.whl (132 kB)
| 132 kB £7.1 MB/s
Requirement already satisfied: packaging»=17.® in /usr/local/lib/python3.7/dist-packages (from pytorch_lightning) (21.3)
Requirement already satisfied: tensorboard>=2.2.@ in /usr/local/lib/python3.7/dist-packages (from pytorch_lightning) (2.7.8)
Requirement slready satisfied: torch»=1.7.* in fusr/local/lib/python3.7/dist-packages (from pytorch_lightning) (1.18.@+culll)
Requirement slready satisfied: typing-extensions in fusr/local/lib/python3.7/dist-packages (from pytorch_lightning) (3.18.8.2)
Collecting aiohttp
Downloading aichttp-3.8.1-cp37-cp37m-manylinux_2 5 x86_64.manylinuxl x86_64.manylinux_2_12 x86_64.manylinux2918 x86 64.whl (1.1
| 1.1 MB 88.9 MB/s
Requirement already satisfied: requests in fusr/local/lib/python3.7/dist-packages (from fsspec[http]!=2021.86.8,>=2821.05.@->pytor
Requirement already ; : pyparsing!=3.8.5,>=2.8.2 in /usr/local/1ib/python3.7/dist-packages (from packaging>=17.8->pytorch_]
Requirement already : tensorboard-data-server<®.7.0,>=0.6.8 in fusr/local/lib/python3.7/dist-packages (from tensorboard>=
= Requirement already : google-auth<3,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.@->pytorch_]
Requirement already : absl-py»=8.4 in fusr/local/lib/python3.7/dist-packages (from tensorboard»=2.2.8->pytorch_lightning)
Requirement already : setuptools»=41.8.@ in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.8->pytorch_ligh
= Requirement already : google-auth-osuthlib<®.5,5=8.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard>=2.2.¢

Figure 10: Installing the Pytorch Ligthing

The required libraries for building the models are imported after installing PyTorch_Ligthing

0 & VMMRMobileNet-v2.ipynb B comment 2% share £ @

PRO File Edit View Insert Runtime Tools Help All changes saved

_ + Code + Text Connect - Vd Editing ~
- Successtully uninstalled PyYAML-3.13 -

° Attempting uninstall: future Ty eeB o PdE
Q o Found existing installation: future @.16.@

Uninstalling future-@.16.@:
Successfully uninstalled future-@.16.8

< successfully installed PyYAML-6.8 aiohttp-3.8.1 aiosignal-1.2.8 async-timeout-4.8.1 asynctest-@.13.@ frozenlist-1.2.8 fsspec-2021.

»
{x}
[1 import numpy as np
() import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

import torch

from torch import nn

from torch.utils.data import Dataloader, Dataset, Subset, random_split
import torchvision

from torchvision import models

from torchvision.datasets import ImageFolder

import pytorch_lightning as pl
from pyterch lightning.callbacks.early stopping import EarlyStopping
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint

from torchmetrics.functional import accuracy, confusion matrix

import io
from typing import Tuple, List, Dict, Any, Optional, Callable
= from zipfile import ZipFile

from PIL import Image

Figure 11: Importing other required libraries

Again, the function for iterating over the zipped data set is defined like was done for the
original dataset.

[1 class ZipDataset(ImageFolder):
def __ init_ (self, root: str, return_file names=False, return_targets=True, **kwargs):
super(ZipDataset, self)._ init (root, **kwargs)
self.loader = lambda f: Image.open(io.BytesIO{ZipFile(root).read(f)))
self.return_file_names = return_file_names

self.return_targets = return_targets

def _ getitem_ (self, idx: int) -> Tuple[Any, Any]:
img_file, target = self.samples[idx]
image = self.loader(img_file)

if self.transform is not MNone:
image = self.transform{image)

if self.target_transform is not Mone:
target = self.target_transform(target)

to_return = None

if self.return_file names:
to_return = (img_file, image)

else:

to_return = image

if self.return_targets:
to_return = (to_return, target)

return to_return

def len_ (self):

return len(self.samples)

Figure 12: Function to iterate over images in the subset zipped file

Next the Lighting module is created. All the training loop details are embedded here. The
lighting module handles running the training, validation and the test dataloaders, as well as
putting batches and computations on the right devices.

0O & VMMR MobileNet-v2.ipynb B comment 2% shere 83 @

PRO " File Edit View Insert Runtime Tools Help All changes saved

+ Code + Texti Connect - Va Editing ~

° class PLZi| + oo B g 08

Q def
zelf,
train_root: str,

et(pl.LightningDataModule):

(

<y
test root: Opticnal[str] = None,
return_file names: bool = False,
{x} batch _size: int = 1,
**kwargs
O)
super(PLZipDataset, self)._ init ()
self.batch_size = batch_size
self.train_dataset = ZipDataset(train_root, return_file_names, **kwargs)
self.test_dataset = None
if test_root iz not Nene:
self.test_dataset = ZipDataset(test_root, return_file names, **kwargs)
'Y def setup(self, st Optional[str] = None):
if stage in [None, * 1E
train_count = i elf.train_ratio * len(self.dataset))
val_count = len T) - train_count
self.train_data = se
self.train_data, s = random_split(self.dataset, [train_count, val_count]) '''
= def train dataloader(self):
return Dataloader(self.train_dataset, batch_size=self.batch_size, shuffle=True)
= def val_dataloader(self):

Figure 13: Function to iterate over images in zipped file

Next the parameters for training are parsed as arguments. Parameters such as learning rate
‘LR’, number of epochs, Image size, Patience Value and batch size.

0O & VMMR MobileNet-v2.ipynb B comment 2% shere 83 @

PRO " File Edit View Insert Runtime Tools Help All changes saved

Connect ~ # Editing ~

T Ve B R a

+ Code + Text

Q, ° args = {
"TRAIN_ROOT': 'Crop
"TEST_ROOT': 'C
© "PATIENCE': 5
"EPOCHS' : 108,
{x} "IMG_SIZE': 2
'BATCH_SIZE':
"LR': 0.0002

h

[1 transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize((args['IMG SIZE'], args['IMG_SIZE'])),
torchvision.transforms.Normalize (mean=[@.485, @.456, ©.486], std=[©.220, ©.224, 8.225])

1

dataset = PLZipDataset(
args[' TRAIN_ROOT'],
args['TEST_ROOT'],
batch_size=args["BATCH SIZE'],
transform=transforms

)

args['NUM_CLASSES'] = len(dataset.train_dataset.classes)

Figure 14: Passing in the training parameters

The next step is to create the model class, in this case the MobileNet-V2 class.
0 & VMMR MobileNet-v2.ipynb B comment 2% shae @

PRO File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text Connect ~ # Editing ~

&~ *Creating the class for the MobileNET model *

< T v o B G 08
° class CarRecognitionModel(pl.LightningModule):
{x} def _ dinit (self, num_classes: int = 1):
super(CarRecognitionModel, self)._ init_ ()

-

self.model = models.mobilenet w2(pretrained=True)
self.model.classifier[-1] = nn.Llinear(self.model.classifier[-1].in_features, num_classes)

def forward(self, x):
return self.model(x)

def training_step(self, batch, batch_idx):
imgs, labels = batch

preds = self(imgs)

loss = nn.CrossEntropyloss()(preds, labels)
self.log(loss’, loss, on_step=False, on_espoch=True)

acc = accuracy(preds, labels)
self.log(accuracy’, acc, on_step=False, on_epoch=True, prog_bar=True)

= cm = confusion_matrix(preds, labels, args['NUM_CLASSES'])

>} return {

Figure 15: Creating the class for the MobileNet vehicle recognition model

The next step is to define the training and validation step function, this functions are still
wrapped within the Vehicle recognition module. Also within this class is the optimizer
function.

€O & VMMR MobileNet-v2.ipynb B comment &% shae g3 @

PRO File Edit View Insert Runtime Tools Help All changes saved
+ Code + Text Connect ~ /' Editing ~
° def training_step(self, batch, batch_idx): T B e R
Q imgs, labels = batch
preds = self(imgs)

loss = nn.CrossEntropyloss()(preds, labels)
self.log("'loss’, loss, on step=False, on_epoch=True)

acc = accuracy(preds, labels)
O self.log('accuracy’, acc, on_step=False, on_epoch=True, prog_bar=True)

cm = confusion matrix(preds, labels, args['NUM CLASSES'])

return {
"loss’:

cm': cm

loss,

¥

def validation_step(self, batch, batch_idx):
imgs, labels = batch
preds = self(imgs)

loss = nn.CrossEntropyloss()(preds, labels)
self.log('val_loss', loss, on_step=False, on_spoch=True, prog_bar=True)

acc = accuracy(preds, labels)
self.log('val_accuracy', acc, on_step=False, on_epoch=True, prog_bar=True)

cm = confusion_matrix(preds, labels, args['NUM_CLASSES'])
return {

Figure 16: Training and Validation step function

The next step is to run the training code, embedded in this code is the callback function for
early stopping which prevents the model from being overfitted.

0O & VMMR MobileNet-v2.ipynb B comment 2% shere 83 O

PRO " File Edit View Insert Runtime Tools Help All changes saved

_ + Code + Text Connect rd Editing ~
- TV B S PHE T
Q [1 early_stopping callback = EarlyStopping{monitor="val loss', patience=5)

model checkpoint_callback = ModelCheckpoint(monitor="val loss")

< model = CarRecognitionModel(args['NUM_CLASSES'])
{x} trainer = pl.Trainer(

gpus=int{torch.cuda.is_available()}),
o callbacks=[early_stopping_callback, model checkpoint_callback],
)

trainer.fit({model, dataset)

GPU awvailable: Trus, used: True

TPU available: False, using: @ TPU cores
IPU available: False, using: @ IPUs
LOCAL_RANK: @ - CUDA VISIBLE_DEVICES: [@]

| Mame | Type | Params

2.5 M Trainable params

a Mon-trainable params

2.5 M Total params

9.836 Totzl estimated model params size (MB)

Validation sanity check 0% O/2 [00:21=7, Titis]

Jusr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/data_loading.py:117: UserWarning: The dataloader, val_dataloader @,
= f"The dataloader, {name}, does not have many workers which may be & bottleneck.”

Jusr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/dats_loading.py:117: UserWarning: The dataloader, train_dataloader,
> | f"The dataloader, {name}, does not have many workers which may be & bottleneck.”

® X

Figure 17: Training initiation

10

The figure 18 below shows the training process of the MobileNet-v2 model.

PRO

O & VMMR MobileNet-v2.ipyno B comment i shere @ @

File Edit View Insert Runtime Tocls Help All changes saved

+ Code + Text Connect ~ # Editing ~

2.5 M Trainable params

a Mon-trainable params

2.5 M Total params

9.936 Total estimated model params size (MB)

Validation sanity check: 0% 0/2[00:21=7, 7itis]

Jusri/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/data_loading.py:117: UserWarning: The dataloader, val_dataloader @,
f"The dataloader, {name}, does not have many workers which may be & bottleneck.”

Jusr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/dats_loading.py:117: UserWarning: The dataloader, train_dataloader,
f"The dataloader, {name}, does not have many workers which may be & bottleneck.”

Epoch 6: 6% . 200336 [00:29<07:44, 1.47s/it, los==0.152. v_num=0, val_loss=0.0923, val_accuracy=0.993, accuracy=0471]

vasdaing: 100 | 160 [04:41<00.0, 1636
vasaaing: 100% [.65 [0445-00.00, 16751
vasaaing: 100 [165 (04350000, 16151
vasdaing: 100 | 150 [0435<00.0, 15957
vasdaing: 100 | 102 [040<00.0, 16257

Jusr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py:685: Useriarning: Detected KeyboardInterrupt, attempting
rank_zero_warn("Detected KeyboardInterrupt, attempting graceful shutdown...™)
<Figure size 432x288 with @ Axes>

4 13

Figure 18: Training the MobileNet-v2 model

The next step is to load the logged trainer metrics and also write the codes for testing the
trained model with random images from the test set (in this case, 12 images were chosen) as
shown in figure 19 and 20 below. In order to chose which training checkpoint the testing will
be carried on there is a need to go into the folder created earlier in the drive where all project
files are saved. In the lighting logs folder the final epoch checkpoint file is stored there. The
path is copied in pasted in load from checkpoint argument as shown below.

(0 & VMMR MobileNet-v2.ipynb B comment 2 shere @

PRO

File Edit View Insert Runtime Tools Help All changes saved

[]

+ Code + Text Connect ~ # Editing ~

trainer.logged metrics

{'accuracy': 9.9713114500845776,
"loss': B.2669646739959717,
"wal_accuracy': 8.59347990875126648,
"wal loss': @.09231957@4817771%}

classes = dataset.train_dataset.classes

predict_dataset, _ = random_split(
ZipDataset(args[TRAIN_ROOT'], return_targets=False, transform=transforms),
[12, len{ZipDataset(args['TRAIN_ROOT'], transform=transforms)) - 12],
generator=torch.Generator().manual_seed(42)

)

predict_loader = Dataloader(predict_dataset, batch_size=args['BATCH_SIZE'])

model = CarRecognitionModel.load from checkpoint(
‘lightning_logs/version_8/checkpoints/epoch=5-step=1887.ckpt’,
‘cuda’ if torch.cuda.is_available() else 'cpu’,
num_classes=args["NUM_CLASSES']

)

predictions = trainer.predict(model, predict loader)[@]
predictions = torch.softmax(predictions, dim=1)
predictions = predictions.argmax(l)

LOCAL_RANK: @ - CUDA_VISIBLE DEVICES: [@]
fusr/local/lib/python3.7/dist-packages/pytorch_lightning/trainer/data_loading.py:117: UserWarning: The dataloader, predict_dataloade
f"The dataloader, {name}, does not have many workers which may be & bottleneck.”
o X

Figure 19: Showing logged metrics and feeding training checkpoint for testing

11

CQO & VMMR MobileNet-v2.ipynb W comment 48 chare: 0 O
o -_n
PRO File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text Connect ~ #' Editing A

transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize((args['IMG_SIZE'], args['IMG_SIZE']))

Ed

1))

pred_dataset, _ = random_split(
ZipDataset(args['TRAIN_ROOT'], return_targets=True, transform=transforms),
[12, len(ZipDataset(args['TRAIN ROOT'])) - 12],
generator=torch.Generator().manual_seed(42)

<>

{x}

plt.figure(figsize=(15, 20))

for i, (img, tar) in enumerate(pred_dataset, 1):
img = img.cpu().numpy().transpose(1l, 2, @)

plt.subplot(4, 3, i)

plt.imshow(img)

plt.grid('off')

plt.title(f'Real: {classes[tar]} Pred: {classes[predictions[i-1]]}")

Real: chevrolet_s10_1997 Pred: chevrolet_s10_1997

i/ |- |

Real gonda_element_zom Pred: honda_element_2003 Real: bmw_x5_2002 Pred: bmw_x5_2002

= ==m

R R

ke
W

Figure 20: Testing module

The figure 21 below shows the results of the testing over the randomly selected images.

€O & VMMR MobileNet-v2.ipynb B Comment 2 swe @ @
PRO File Edit View Insert Runtime Tools Help All changes save -

+ Code + Text Connect v /' Ediing = A

iii

[1
Q
<
*1
O
Real acura_mdx_2005 Pred: acura_mdx_2005 cha‘ mazda_3_2012 Pred
"y
125 [
0 50 100 150 200 0 50 100 150 200
2ep_commander 2006 Pred. jeep_commander ZGQS infiniti_{x35_2005 Pred: infiniti_{x35_2005
[
50
B s
100
o ol
e

Figure 21: Test results (Real vs Predicted)

12

The last and final step is the loading of the tensorboard which is used to display the logged
metrics in a graphical format. This is shown below in figure 22.

€O & VMMRMobieNet-v2ipynb ¢ B e & S @ .©
PRO " File Edit View Insert Rumtime Tools Help Al changes saved

= +Code +Text Connect » | 4 Editing | A
- n L nn 160 nn n & nn 50 nn n il nin 150 i

Q [1 ¥*load_ext tensorboard
%tensorboard --logdir lightning logs

1§
" TensorBoard SCALARS IMAGES HPARAMS TIME SERIES INACTIVE g0
N -
rs
O [] show datz download links Q Filter tags (regular expressions supported)
Ignare outliers in chart scaling
accuracy A
Toaltip sorting method: default v
accuracy
tag: accuracy
Smoothing
—_— 0.6
Horizontal Axis 05
ﬂ RELATIVE WALL
03
Runs 200 300 400 500 600 700 8OO 900 1k
Write a regex to filter runs = B
O version 0
epoch A
TOGELE ALL RUNS
lightning_logs epoch
=] tag: epach

. 7

Figure 22: Tensorboard showing graphs

The same process is applied for every other model, the only difference is the creation of the
Vehicle Recognition class which defines the model being trained which are shown below for
both the VGG-16 and ResNet-50 models in figure 23.

13

X

QO & VMMR ResNet50.ipynb B comment 2 shae @ @

PRO File Edit View Insert Runtime Tools Help Saving..

+ Code + Text Connect ~ /2 Ediing A~

~ Creating the class for the ResNet-50 model vehicle recognition

TV B QR

© ° class CarRecognitionModel(pl.LightningModule):
def _ init_ (self, num_classes: int = 1):
{x} super(CarRecognitionMedel, self)._ init ()
- ! .
self.resnet = models.resnet5@(pretrained=True)
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, num_classes)
def forward(self, x):
return self.resnet(x)
def training_step(self, batch, batch idx):
imgs, labels = batch
preds = self(imgs)
loss = nn.CrossEntropyloss()(preds, labels)
self.log('loss', loss, on_step=False, on_epoch=True)
acc = accuracy(preds, labels)
self.log('accuracy’, acc, on_step=False, on_epoch=True, prog_bar=True)
cm = confusion_matrix(preds, labels, args['NUM CLASSES'])
= return {
‘loss": loss,
- ‘em': cm
® X
Figure 23: Creating the class for the ResNet-50 vehicle recognition model
& VMMR VGG-16.pynb
(60 Py B comment &% share £2 ‘
PRO File Edit View Insert Runtime Tools Help All changes saved
_ |+ Code + Text Connect = /" Editing A
~ Creating the class for the VGG-16 model vehicle recognition
rveoBR0N
<2 ° class CarRecognitionModel(pl.LightningModule):
def _ init_ (self, num_classes: int = 1):
{x} super(CarRecognitionModel, self)._ init ()
= self.model = models.vggl6(pretrained=True)
self.model.classifier[-1] = nn.linear(self.model.classifier[-1].in_features, num_classes)
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
imgs, labels = batch
preds = self{imgs)
loss = nn.CrossEntropyloss()(preds, labels)
self.log('loss’, loss, on_step=False, on_epoch=True)
acc = accuracy(preds, labels)
self.log('accuracy’, acc, on_step=False, on_epoch=True, prog_bar=True)
cm = confusion_matrix(preds, labels, args['NUM CLASSES'])
=
return {
E "loss': loss,
L]

Figure 24: Creating the class for the VGG-16 vehicle recognition model

14

co £ VMMR ResNet50.ipynb 7 B Comment 2% shee .®

PRO File Edit View Insert Runtime Tools Help All changes saved

— | + Code + Text Connect = # Editing ~
= | mdme T Type | Faroms

L s
Q @ | resnet | Resnet | 23.3 M

23.9 M Trainable params

<r] Mon-trainable params

23.9 M Total params
) 95.596 Total estimated model params size (MB)

Validation sanity check: 0% 0/2 [00:23<2, 7it/s]
O fusrflocal/lib/pythen2.7/dist-packages/pytorch_lightning/trainer/data_loading.py:117: Userwarning: The dataloader, val_dataloader @, does not have man)

f"The datalcader, {name}, does not have many workers which may be a bottleneck.
fusrflocal/lib/pythen3.7/dist-packages/pytorch_lightning/trainer/data_loading.py:117: Usertarning: The dataloader, train_datalcader, does nct have man)
f"The dataleader, {name}, does not have many workers which may be a bottleneck.”

Epoch 6: 6% [20/336 [00:32<08:38, 1.84s/t, los5=0.0814, v_num=1, val_lass=0.0718, val_acouracy=0.926, accuracy=0.877]

fusrflocal/lib/pythen3.7/dist-packages/pytorch_lightning/trainer/trainer.py:685: UserWarning: Detected KeyboardInterrupt, attempting graceful shutdown.
rank_zero_warn("Detected KeybeardInterrupt, attempting graceful shutdown...™)
<Figure size 422x288 with 2 Axes»

4 3
[1 trainer.logged_metrics
= {'accuracy': 8.9772727489471435,

'loss': ©8.13268275558948517,
'wal_accuracy': @.9356557258822338,

‘val_loss': 8.87182885514865684)
® X
Figure 25: Training the ResNet-50 model
co & VMMRVGG-16.ipynk =7 B commem % share £ .@
PRO file Edit View Insert Runtime Tools Help All changes saved
+ Code + Text Connect # Editing ~

Validating: T1% _ 120/198 [03:58<01:26, 1.795/it]

Jfusrflocal/lib/python3.7/dist-packages/pytorch_lightning/trainer/trainer.py:6&5: Userliarning: Detected KeyboardInterrupt, attempting graceful shutdc
rank_zero_warn{"Detected KeyboardInterrupt, attempting graceful shutdown...™)
<Figure size 432x288 with @ Axes»

1 *

trainer.logged_metrics

{'accuracy': B.9288819738758667,
'loss': @.2862@77222208924,
= 'val_accuracy': @.3927347382436329,
'val_loss': 8.831281849345731735}

Figure 26: Training the ResNet-50 model

3.5 Running the GUI application

The GUI application is built for user purposes in view of commercialization. The process
below explain how to run the application.

15

STEP 1: Unzip the GUI application on your PC with any unzipping tool

STEP 2: Open up a Command Line interface (CL1I).

STEP 3: Make sure the current working directory (CWD) contains the GUI application
folder.

STEP 4: Install the requirements by running the line pip install -r requirements.txt in your
cli. This is shown in figure 27.

B Anaconda Prompt (Anaconda3)

: pillow in ¢

: ope thon in

tensions in
: numpy in
: docutils in g

platform == "

ement alre sfied: pygment te-p s

' Figure 27: Installing the GUI application requirements

STEP 5: Run the server script by running the line python server.py as shown in figure 28.

B8 Anaconda Prompt (Anaconda3) - python server.py

ti d: sniff
r requirements.t

Figure 28: Running the server

STEP 6: Open another CLI window and run the line python main.py to open the GUI
application as shown in figure 29

16

- O My |

Hit the Start button below to take a vehicle photo

Browse files

Figure 29: Opening the GUI application

STEP 7: Either choose to capture a new image with the camera or upload an image file. The
list of trained classes are in the class_names file.

Output: The GUI application displays the top 3 predictions for the image passed through it
as seen in figure

Figure 30: Output showing top 3 predictions testing with an unclear captured image

17

