

Configuration Manual

MSc Research Project

Data Analytics

Samuel Biwei Tanga

Student ID: x20187784

School of Computing

National College of Ireland

Supervisor: Dr. Martin Alain

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Samuel Biwei Tanga

Student ID: 20167784

Programme: Data Analytics

Year: 2021

Module: MSc Research Project

Supervisor: Dr. Martin Alain

Submission Due Date: 16/12/2021

Project Title: A Deep Learning Approach to Vehicle Make and Model

Recognition with Specification Matching

Word Count: 1712

Page Count 19

I hereby certify that the information contained in this (my submission) is

information pertaining to research I conducted for this project. All information other

than my own contribution will be fully referenced and listed in the relevant bibliography

section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature: Samuel Biwei Tanga

Date: 16/12/2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to

each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for

your own reference and in case a project is lost or mislaid. It is not sufficient to

keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be

placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Samuel Biwei Tanga

X20167784

1 Introduction

This document provides comprehensive information on how to effectively replicate the

implementation aspect of the research "A Deep Learning Approach to Vehicle Make and

Model Recognition with Specification Matching" It provides in - depth information on how

to configure the development environment and also information on software and

hardware requirements needed for implementing, executing, and testing the models used in

the research. The sections that follow this provide these processes.

2 System Configuration

The recommended software and hardware requirements are given in this section. Also given,

is the configuration used by the author.

2.1 Hardware Configuration

Table 1: Hardware configuration

Hardware Recommended Used

Operating System • Ubuntu 16.04 or later

• macOS 10.12.6 or

later

• Windows 7 or later

Windows 10

RAM At least 8GB 16GB

CPU At least Core i5 Core i7

Hard Disk At least HDD 500GB SSD 250GB

2.2 Software Requirements

Table 2: Software Requirements

Software Version Used

Python 3.9.5

pip Pip 19.0

Google Chrome 96.0

Jupyter Notebook 6.4.0

Google Colab

2

The Google Colab is what was used for data processing, training, and testing the models and

also presentation of results. The PyCharm IDE was used to run the python scripts for the

development of the GUI application.

2.3 Google Colab

Google colab1 is an online IDE offered by google to run Jupyter notebooks. It is used mostly

for deep learning and neural networks projects. Most packages are already installed on the

google colab environment, users only need to import these packages in order to use them.

The google colab is associated with the user’s google account i.e. once a user has a google

account, they can have access to google colab. Files used in google colab are preferably

stored in a google drive. The figure below shows a google colab environment.

Figure 1: Google Colab Environment

3 Implementation

A complete step by step set of instructions with illustrated figures on how to replicate the

project from data acquisition to generating results is shown in this section.

3.1 Data Acquisition

The dataset used for this project can be downloaded from GitHub2 as shown in the Figure 2

below.

1 https://research.google.com/colaboratory/
2 https://github.com/faezetta/VMMRdb

3

Figure 2: Github Download page

3.2 Data Storage

The acquired data is stored on the researcher’s google drive in order to be used with google

colab. A new folder is created in the google drive (this can be any name) which will store all

the files associated with the project as soon as processing starts. In this case the folder has

been named VehicleMarks.

Figure 3: Google drive containing downloaded dataset

3.3 Data Preparation

The next step required is to connect the google drive to the google colab environment and

then change the working directory to the folder that was created earlier to store all project

files.

4

Figure 4: Connecting google drive to colab environment

After this the libraries needed for the initial process of the project are imported.

Figure 5: Importing Libraries

The next step is to define functions to iterate over the zipped dataset and also for selecting

files in order to create a subset before passing in the arguments for number of classes,

maximum and minimum number of images per class to be chosen. The figures 6 and 7 below

illustrate this.

5

Figure 6: Function to iterate over images in zipped file

Figure 7: Function to select images in zipped file

The arguments for selecting the balanced subset dataset are passed. The below figure 8 shows

the name for the new subset Cropped_v3, the image size, the minimum and maximum

number of cars per class and also the number of classes.

6

Figure 8: Parsing the arguments for the subset creation

After the arguments are passed the next step is define the function for creating the subset, one

important aspect is to ensure the images are saved in the ‘jpeg’ format. After this is done then

the create dataset function is called to create the subset. Creation of the subset runs for about

5hrs 26mins.

Figure 9: Creating the new susbset

7

3.4 Data Processing

The research created a new notebook for data processing and modelling. Each model is

created on a new notebook (This was the researcher’s choice; all the notebooks can be

merged as one). For this project, PyTorch Lighting is used. PyTorch lighting is a PyTorch

wrapper that gives full control and flexibility over codes. The trainer automates every other

thing. The figure 10 below shows the installation of the module.

Figure 10: Installing the Pytorch Ligthing

The required libraries for building the models are imported after installing PyTorch_Ligthing

Figure 11: Importing other required libraries

8

Again, the function for iterating over the zipped data set is defined like was done for the

original dataset.

Figure 12: Function to iterate over images in the subset zipped file

Next the Lighting module is created. All the training loop details are embedded here. The

lighting module handles running the training, validation and the test dataloaders, as well as

putting batches and computations on the right devices.

Figure 13: Function to iterate over images in zipped file

9

Next the parameters for training are parsed as arguments. Parameters such as learning rate

‘LR’, number of epochs, Image size, Patience Value and batch size.

Figure 14: Passing in the training parameters

The next step is to create the model class, in this case the MobileNet-V2 class.

Figure 15: Creating the class for the MobileNet vehicle recognition model

The next step is to define the training and validation step function, this functions are still

wrapped within the Vehicle recognition module. Also within this class is the optimizer

function.

10

Figure 16: Training and Validation step function

The next step is to run the training code, embedded in this code is the callback function for

early stopping which prevents the model from being overfitted.

Figure 17: Training initiation

11

The figure 18 below shows the training process of the MobileNet-v2 model.

Figure 18: Training the MobileNet-v2 model

The next step is to load the logged trainer metrics and also write the codes for testing the

trained model with random images from the test set (in this case, 12 images were chosen) as

shown in figure 19 and 20 below. In order to chose which training checkpoint the testing will

be carried on there is a need to go into the folder created earlier in the drive where all project

files are saved. In the lighting logs folder the final epoch checkpoint file is stored there. The

path is copied in pasted in load from checkpoint argument as shown below.

Figure 19: Showing logged metrics and feeding training checkpoint for testing

12

Figure 20: Testing module

The figure 21 below shows the results of the testing over the randomly selected images.

Figure 21: Test results (Real vs Predicted)

13

The last and final step is the loading of the tensorboard which is used to display the logged

metrics in a graphical format. This is shown below in figure 22.

Figure 22: Tensorboard showing graphs

The same process is applied for every other model, the only difference is the creation of the

Vehicle Recognition class which defines the model being trained which are shown below for

both the VGG-16 and ResNet-50 models in figure 23.

14

Figure 23: Creating the class for the ResNet-50 vehicle recognition model

Figure 24: Creating the class for the VGG-16 vehicle recognition model

15

Figure 25: Training the ResNet-50 model

Figure 26: Training the ResNet-50 model

3.5 Running the GUI application

The GUI application is built for user purposes in view of commercialization. The process

below explain how to run the application.

16

STEP 1: Unzip the GUI application on your PC with any unzipping tool

STEP 2: Open up a Command Line interface (CLI).

STEP 3: Make sure the current working directory (CWD) contains the GUI application

folder.

STEP 4: Install the requirements by running the line pip install -r requirements.txt in your

cli. This is shown in figure 27.

Figure 27: Installing the GUI application requirements

STEP 5: Run the server script by running the line python server.py as shown in figure 28.

Figure 28: Running the server

STEP 6: Open another CLI window and run the line python main.py to open the GUI

application as shown in figure 29

17

Figure 29: Opening the GUI application

STEP 7: Either choose to capture a new image with the camera or upload an image file. The

list of trained classes are in the class_names file.

Output: The GUI application displays the top 3 predictions for the image passed through it

as seen in figure

Figure 30: Output showing top 3 predictions testing with an unclear captured image

