ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Neha Suryawanshi
Student ID: x20169531

School of Computing
National College of Ireland

Supervisor: Majid Latifi

‘*
\ National

Collegef
MSc Project Submission Sheet II'Eland

National College of Ireland

School of Computing

Student Name: Neha Suryawanshi

Student 1D: X20169531

Programme: MSc in Data Analytics Year: 2021

Module: MSc Research Project

Lecturer: Majid Latifi

Submission Due

Date: 31/01/2022

Project Title:
Analysis of Theme Impact in Consumer Reviews using Natural Language Processing
Techniques

Word Count: 1317 Page Count: 12

| hereby certify that the information contained in this (my submission) is information pertaining to research |
conducted for this project. All information other than my own contribution will be fully referenced and listed in
the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing
Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism)
and may result in disciplinary action.

Signature: Neha Suryawanshi
Date: 31/01/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)

Attach a Moodle submission receipt of the online project submission, to each project
(including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own o
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on
computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box
located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Neha Suryawanshi
Student ID: x20169531

1 Introduction

Various components required for the research have been documented in this configuration
manual. The specification for hardware as well as software, environment setup and code
artefact snapshots have been documented as follows to give a brief idea about the steps
performed to implement the project and achieve the aims of the research. The main tasks
performed are:

i. Data selection & collection

ii. Data cleaning and pre-processing
iii. Data Transformation

Iv. Data Mining

V. Aspect Extraction

Vi. Sentiment Analysis

vii. Final Evaluation

2 System Configuration

2.1 Hardware
The hardware component used for the project implementation are as follows in Table 1.

Table 1- Hardware Components

Machine Model HP Pavilion

Operating System Windows

Processor Intel(R) Core (TM) i7-10510U CPU @ 1.80GHz 2.30 GHz
RAM 8.00 GB

Graphics None

GPU None

2.2 Software

Below Table 2 mentions the tools, libraries and programming language used in this research
project.

Table 2 - Software Components

Tools Jupiter Notebook
Excel

Text Notebook
Libraries Langdetect
Gensim

Textblob spaCy
Matplotlib

3 Project Development

3.1 Data Selection and Collection

The Datafiniti’s Business Database has made a hotel review dataset of 1000 reviews available
on Kaggle!. This dataset in in csv format and hence following code is used to load the data in
the data frame. The code and structure of data frame is shown in Figure 1.

[2]: M data = pd.read_csv("C:\\Data Analytics\\RIC\\ResearchProject\\Datafiniti_Hotel_Reviews.csv")
data
keys latitude ... reviews.date Seen reviews.rating reviews.sourceURLs reviews. text reviews title r
Our
2016-08- experience Bestrarmantia
fa/502 o7 o a 03700:00:00Z,2016- 0 25 %20 t Ranc S
us/calranchosaniafe/5021valenciacin/350754519 22 020058 & 0:00:00Z. 13 5.0 hitps://www.hotels.com/hotel/125418/reviews%20 = A e vacation
- ST everilll
26T00:00:00Z.2018 sve
z 5 S PR S54 %50 Sweet sweet
us/calranchosantafe/5021valenciacir’i350754510 32.000850 5.0 hitps://www.hotels.com/hotel/ 1254 10/reviews%20. s enit
serenity
2018-11- i
P Mo TRErEE) wponhass 15700:00:00Z,2016- = i San sl
us/calranchosaniafe/5021valenciacir/350754510 22 000050 08 5.0 hitpsi//www.hotels.com/hotel/ 125418/reviews%20 stay at Property and
U= o - r o
23700:00:002,2016 Raudi Expetience
alencia to

Figure 1- Data loading

3.2 Data Cleaning and Pre-processing
The two columns, reviews.text and reviews.title in the dataset are observed to the hotel guest
reviews. Since these two columns are useful for the research they are combined into one column
to make the data cleaning and pre-processing easier. Using the langdetect library the non-
English reviews are filtered out from the data frame. Further the data is cleaned as per below:
« Special characters such as ‘@’, ‘#’, ‘!’, etc., removal
+ Single characters removal

! https://www.kaggle.com/datafiniti/hotel-reviews

https://www.kaggle.com/datafiniti/hotel-reviews
https://www.kaggle.com/datafiniti/hotel-reviews
https://www.kaggle.com/datafiniti/hotel-reviews
https://www.kaggle.com/datafiniti/hotel-reviews

« Punctuation removal (except full stop)
+ Digit removal

All these reviews are stored in a text file called review.txt. The objective to create a new file is
to make the code reproducible and avoid any unnecessary code run if the clean review file
already exists. This saves time and resources. The snapshot of the code used to achieve this
task is below in Figure 2.

ilew

M review_file_exists = exists("C:\\Data Analytics\\RIC\\ResearchProject\\review.txt")

if not (re _file_exists):

try:

return detect(text)
except:

return 'unknown'

oLuUmMn 1O MArRE ONE reviewlex

xt'].str.lower() + data['re

.str.replace('[#,@0,&,*,!]1"', '")
"].str.replace(r'\b\w\b', '').str.replace(r'\s+', ' ')

"].str.replace(':',"'"').str.replace('-',"'").str.replace(',"',"'"').

stext"] = data["reviewstext"].str.replace('\d+', '')

/

#Sagve the cleaned text to
df = pd.DataFrame(data, columns
np.savetxt(r'C:\Data Analytics\R

data

reviewstex

eview.txt', df.values, fmt="%s')

elif(review_file_exists):

print{'review.txt file already exists.')

review.txt file zlready exists.

Figure 2- Data Cleaning(1)

The cleaning task continues with lemmatization and tokenization of text and also the removal
of stop words. For this task the spaCy library is used. Few of the custom stop words are also
added to the list of stop words available with spaCy library. The revies are then appended to a
list of list where review is seperated on the basis of full stop. Here each sentence is the
considered as one review which helps do the analysis on a granular level. These words are
discovered during the initail phase of LDA topic modelling. These words have been added after
analysing the frequent words in the review set which do not add any value in the textual
analysis. Post these steps the tokenised set of reviews are saved in a goodtext.csv file for the
same reason stated above. Code snap shot for the same is below in Figure 3.

goodtext_file_exists = exists("C:\\Data Analytics\\RIC\\ResearchProject\\goodtext.csv")
if not (goodtext_file_exists):

#load review.text file to further process the review text
with open('C:\\Data Analytics\\RIC\\ResearchProject\\review.txt’, "r') as file:
text = file.read().replace('\n', ")

#Text Lemmatization
doc = nlp(text, disable = ['ner’, ‘parser’])
text_lemmatized_list = []
for token in doc:
if token.lemma_ != "-PRON-":
text_lemmatized_list.append(token.lemma_)
else:
text_lemmatized_list.append(token)
text_lemmatized = ° '.join(text_lemmatized_list)

#Stopword removal
from nltk.tokenize import word_tokenize
cleantexts, tokens_without_sw = [],[]
all_ stopwords = nlp.Defaults.stop_words
all_stopwords |= {"try”,"use”,"don","hair","child”,"th ","st”,"con","look"”,"check"”, "timg
text_tokens = word_tokenize(text_lemmatized)
for word in text_tokens:
if word not in all_stopwords:
tokens_without_sw.append(word)

if word == '.":
cleantexts.append(tokens_without_sw)
tokens_without_sw = []

#Write the Lemmetized text review post stopword removal to a csv file

with open("C:\\Data Analytics\\RIC\\ResearchProject\\goodtext.csv", "w") as f:
wr = csv.writer(f)
wr.writerows(cleantexts)

elif(goodtext_file_exists):
print(’'goodtext.csv file already exists.’')

goodtext.csv file already exists.

Figure 3- Data Cleaning (2)

Figure 4 below shows how the textual data looks like after its imported from the goodtext.csv
file into a list.

#Read the goodtext file for further use
goodtext = []
with open("C:\\Data Analytics\\RIC\\ResearchProject\\goodtext.csv", "r") as file:
csvreader = csv.reader(file)
for row in csvreader:
goodtext.append(row)
goodtext

[["experience’,
‘valencia’,
‘absolutely’,
‘perfect’,
‘begin’,
‘end’,
‘special’,
"happy’,
‘stayed’,
D
[1,
[*heart’, ‘'beatb', 'romantic’', ‘vacation', 'everamaze', 'place’, '.'],
[1,
["extremely’, ‘warm', ‘welcoming', ".'],
[1,

oty oy (R W | [N |

Figure 4 — Clean text
4

3.3 Data Transformation

The goodtext list as shown above, is used to prepare a dictionary and a corpus which will be
used by the LDA model to topic modelling. The unwanted empty lists and full stops seen in
Figure 4 are removed from the dictionary to have more accuracy in the task of topic modelling.

3.4 Data Mining

Data mining is performed on the textual data using the LDA model of topic modelling. The
topic modelling facilitated the extraction of aspect from the review text. For each aspect a text
file is created and reviews matching any aspect is placed in its respective text file. This text
categorization task helped division of aspect wise reviews in an easier manner.

3.4.1. Topic Modelling — Baseline LDA model

A baseline LDA model with number of topics 4 is run at first. This model helped discover four
aspects — room, food, location, staff. The topics are still unclear and not easy to identify. The
calculated coherence score is very low — 0.2983. Following is the code for first LDA model in
Figure 5, along with the model visualization in Figure 6.

M np.random.seed(71)

ldamodel = LdaModel(corpus=corpus,
num_topics=4,
id2word=dictionary,
random_state=100,
chunksize=100,
passes=10,
per_word_topics=True)

ldamodel.show_topics()

'9.065*"good” + ©.056*"breakfast” + 0.846%"place"” + 0.026*"stay" + 0.019*"work" +
(1,
'0.053*"stay" + 0.036*"great” + ©.0931*"location” + 0.022*"price" + 0.014*"morning"
lent""),
(2,
'0.035*"night" + ©0.834*"bed" + 0.033*"stay" + 0.016*"service" + 0.015*"pool” + 6.0
(3,
'0.124*"room"” + 0.064*"clean" + 0.046*"staff" + 0.039*"nice" + 0.031*"friendly" +
)]

Figure 5 _ Baseline LDA model

Selected Topic:[1] [Previous Topic H Next Topic] [Clear Topic) Slide to adjust relevance metric:(2) | | |
A=1 00 02 04 06 08 1

Top-30 Most Relevant Terms for Topic 1 (29.3% of tokens)
[} 2,000 4,000 6,000 2,000

Intertopic Distance Map (via multidimensional scaling)

PC2

neipful [
door [N
quiet [N
bathroom [N
mmend [N
PC1 smell [

peautiful [l
wifi [l
tuo [

vl

3
Marginal topic distribution

Overall term frequency

2% I Estimated term frequency within the selected topic

5%
" 2. relevance(term w | topic t) = A * p(w | 1) + (1 - A).* p(w | t/p(w); see Sievert & Shirley (2014)

10%

Figure 6 _ Baseline LDA model visualozation

3.4.2. Hyperparameter Tuning

The hyperparameters of LDA are num_topics, alpha and eta. To find the optimal value for these
hyperparameters the model is run on a with a range of values for these parameters and
coherence score is calculated. The model is run changing the value of one parameter at a time
and keeping the rest of the parameters constant. Following Figure 7 and Figure 8 show the code

used for same.

def compute_coherence_values(corpus, dictionary, k, a, b):

lda_model = gensim.models.ldaMulticore(corpus=corpus,
id2word=dictionary,
num_topics=k,
random_state=100,
chunksize=100,
passes=10,
alpha=a,
eta=b)

coherence_model_lda = CoherenceModel(model=1da_model, texts=goodtext, dictionary=dictionary, coherence='c_v')

return coherence_model_lda.get_coherence()

Figure 7 _ Defination to compute coherence

min_topics = 2

max_topics = 12

step_size = 1

topics_range = range(min_topics, max_topics, step_size)

ange(9.01, 1, 0.3))
ic')

beta =
beta.append(
Validation
num_of_docs =
corpus_sets =

nge(@.21, 1, 8.3))
nmetric')

corpus_title = ['7

model_results = {'\

for k in topics_range

iter

rare

for b in beta

get the coherence score for

cv = compute_coherence_values(corpus=corpus_sets[i], dictionary=dictionary,
k=k, a=a, b=b)

the given parameters

Save the model r
model_results[’
model_results[’
model_results[’
model_results["
model_results[’

on_Set'].append(corpus_title[i])
.append(k)

].append{a)

1.append(b)

ence'].append(cv)

pbar.update(l1)
pd.DataFrame(model_results).to_csv('C:\\Data Analytics\\RIC\\ResearchProject\\1lda_tuning_results.csv', index=False)
pbar.close()

Figure 8 — Code to set range of values to hyperparameters
The result of the hyper tuning is saved in a csv file named Ida_tuning_results.csv. This result
is analysed using filters in Excel. Following is the analysed result in Table 3. The highlighted
row displays the most optimal values for the hyperparameters.

Table 3 — Hyperparameter Tuning Results

Validation_ et Topics Alpha Beta Coherence

100% Corpus 8 asymmetric 0.91 0.503231258
100% Corpus 9 asymmetric 0.91 0.500581261
100% Corpus 9 asymmetric 0.61 0.494660459
100% Corpus 7 asymmetric 0.61 0.491913908
100% Corpus 10 0.01 0.91 0.472133629
100% Corpus 7 0.01 0.91 0.471055795
100% Corpus 8 symmetric 0.91 0.462420889
100% Corpus 5 0.01 0.91 0.460108454
100% Corpus 8 0.01 0.91 0.458805676

3.4.3. LDA model with tuned hyperparameters

The LDA model which was run with tuned hyperparameters yields a much better result. It also
helps learn two more hidden aspects in the dataset — Amenities and Value for Money.

The coherence score of this model is 0.4767 which shows 62% increase in the performance.
The code for this model and coherence calculation is as follows in Figure 9.

np.random.seed(34)

final_lda_model = gensim.models.LdaMulticore(corpus=corpus,
id2word=dictionary,
num_topics=18,
random_state=160,
chunksize=108,
passes=10,
alpha=0.01,
eta=0.91)

Compute Coherence Score

coherence_model_lda = CoherenceModel(model=final_lda_model, texts=goodtext, dictionary=dictionary, coherence='c_v")
coherence_lda = coherence_model_lda.get_coherence()

print('Coherence Score: ', coherence_lda)

Coherence Score: ©.476767589837684

Figure 9 _ Hypertuned LDA model

3.4.4. Aspect Extraction and Text Categorization
Depending on the topics by the hyper tuned LDA model six aspects are extracted. The aspects
are extracted by analysing the topics displayed below in Figure 10.

[(e,
'0.006%"plan” + 0.002*"improvement” + 0.801*"feedback” + 8.800*"land"” + 8.880*"stay.not"” + 0.000*"father" + 0.000*"cape" + 0.808*"cod" + 8.800%"mr" +
"),

(1,
'0.008*"complaint” + ©.0@5*"surprise” + 0.084*"watch" + 0.083*"pleasantly” + ©.802*"hampton" + 8.002*"surprised” + 8.0@1*"york" + @.001*"memory"” + ©.@
001*"regis""),

(2,
'0.032*"breakfast” + 0.821*"good" + ©.016*"location" + ©.815*"great” + 0.013*"restaurant” + ©.811*"parking" + ©.811*"walk" + 0.010*"free" + 0.808*"nic
y"')s

(3,
'0.000*"breeze" + 0.000%"de" + 8.000*"luckily" + 0.800@*"exception" + ©.800*"le" + ©.000*"dunwoody" + 0.800*"mridien" + 8.080*"needsurprisingly" + ©.00
+ 0.000*"angry"'),

(4,

'9.813*"run" + 8.002%"guess” + 0.001%"race” + 0.000""rat" + 0.000%"candy" + ©.000*"nascar” + 0.908*"k" + 8.800*"fox" + ©.090*"bone" + ©.080""garbage"’

(5,

'0.005*"appreciate” + 8.084*"pass” + 8.083%"vegas" + 0.802*"improve" + 0.002%"las" + 8.001*"greatly" + 0.801*"energy" + ©.808*"boarding” + ©.000*"un"
),

'0.085*"accommodating” + ©.8@5*"vacation" + ©.004*"win" + 0.001*"louis" + ©.800*"back.nice” + 8.000*"afraid” + ©.000*"deskwa" + 0.000*"prize" + 0.800*

'@.871*"room" + ©.035*"clean" + 8.022*"bed" + ©.819*"comfortable"” + ©.813*"nice" + 8.018*"pool" + ©.008*"bathroom" + ©.806%"floor" + ©.806*"small" + @

'9.011%*"able" + 0.005*"river” + 8.801*"photo” + 0.801*"potential” + ©.801*"aren” + 0.800*"misleading” + ©.0@0*"unsafe"” + ©.000*"ashamed” + 8.080*"rank

'0.048*"stay" + 0.031*"staff" + 0.018*"room" + ©.018*"friendly" + ©.015*"great" + ©.013*"place" + ©.012*"good" + @.812*"night" + ©.010*"helpful” + @.@

Figure 10 _ LDA Topics

Aspects staff, room, location, food, amenities and value for money are identified along with the
related frequently occurring words using the LDA topic modelling. These words are then
appended in a list for each aspect as shown below in Figure 11.

staff = ["staff", "friendly”, "helpful”, "desk", "welcome", "employee", "attentive", “"professional”,
"rude”, "accommodating”, "checkin", “super", " owner", “execellent", "courteous"]

room = ["room", "clean", "comfortable", "quite", "bathroom", "bed", “shower", "door", "smell", "small",
"large", "hot", "old", "carpet", "towel", "spacious", "suite", "maintain", "accommodation”, "sleep",
"light", "stain", "upgrade", "pillow", "bedroom", "sheet", "sink", "comfy"]

food = ["food", "water", “"breakfast", "coffee", “"restaurant”, "eat", "complimentary”, "egg", "cookie", "continental"]
location = ["outside”, "place", "town", "area", "travel", "location", "far", "walk", "street", "road", "distance”,
"drive", "mile", "away", " convenient", "locate", "airport", "access", "beach", "downtown", "point",
"metro”, “"state", "station", "harbor", "shopping”, "mall"]

amenities = ["amenities”, "pool", "pet", "lobby", "western", "parking", "microwave", "fridge", "table", "book",
"view", "shuttle", "elevator", "kitchen", "smoke", "cigarette", "cook", "maintenance", "internet"]

valueForMoney = ["spend”, "price", "free", "offer", "service", "rate", "extra", "value", "pay", "deal",
rreasonable", "charge", "budget”, "refund"]

Figure 11 — Aspects and related words in a list

Once the aspect list is ready it is matched one by one with each review item in the goodtext list
and a similarity score is calculated. To calculate this similarity score the similarity method from
the spaCy library is used. The review which has the highest similarity score with the a particular
aspect is stored in its respective aspect txt file. The code for same in below in Figure 12 and
Figure 13.

aspectstaff_file_exists = exists("C:\\Data Analytics\\RIC\\ResearchProject\\reviews_for_staff.txt")
aspectroom_file exists = exists("C:\\Data Analytics\\RIC\\ResearchProject\\reviews_for_room.txt")

aspectfood_file exists = exists("C:\\Data Analytics\\RIC\\ResearchProjec s_for_food. txt"
aspectlocation_file_exists = exists("C:\\Data Analytics\\RIC ws_for_location.txt™)

Data Analytics\\RIC\\ResearchProject\\ for_amenities.txt")
\\Data Analytics\\RIC\\ earchProject\\reviews_for_Valueformoney.txt")

\\revie
esearchProject\\r

aspectamenities_file_exists = exists("C:\

aspectvalformoney_file_exists = exists("C:

if not (aspectstaff_file_exists and aspectroom_file_exists and aspectfood_file_exists and aspectlocation_file_exists

#function to check similarity
def calculatesimscore(aspecttext, reviewtext):
aspecttext = nlp(' '.join(str(e) for e in aspecttext))
scorelist = []
reviewlist = []
for i in range(len(reviewtext)):
strreview = nlp(' '.join(str(e) for e in reviewtext[i]))
simscore = aspecttext.similarity(strreview)
reviewlist.append(strreview)
scorelist.append(simscore)
aspectreviewdict = dict(zip(reviewlist, scorelist))

data_items = aspectreviewdict.items()
data_list = list(data_items)
df = pd.DataFrame(data_list)

return df

Figure 12 _ Function to calculate similarity

staffreviewscore = calculatesimscore(staff,goodtext)
staffreviewscore.rename(columns = {@:'Review’, 1:'StaffScore'}, inplace = True)

roomreviewscore = calculatesimscore(room,goodtext)
roomreviewscore.rename(columns = {@:'RoomReview', 1:'RoomScore’}, inplace = True)

foodreviewscore = calculatesimscore(food,goodtext)
foodreviewscore.rename(columns = {@:'FoodReview', 1:'FoodScore'}, inplace = True)

locationreviewscore = calculatesimscore(location,goodtext)
locationreviewscore.rename(columns = {@:'LocationReview’, 1:'lLocationScore'}, inplace = True)

amenitiesreviewscore = calculatesimscore(amenities,goodtext)
amenitiesreviewscore.rename(columns = {@:'AmenitieReview', 1:'AmenitiesScore'}, inplace = True)

valueForMoneyreviewscore = calculatesimscore(valueForMoney,goodtext)
valueForMoneyreviewscore.rename(columns = {@:'ValueForMoneyReview', 1:'ValueForMoneyScore'}, inplace = True)

#Dataframe which segregates reviews aspect wise comparing similarity score

Finalresult = pd.concat([staffreviewscore, roomreviewscore, foodreviewscore, locationreviewscore, amenitiesreviewscore, valueForMoneyreviewscore],
Finalresult = Finalresult.drop(['RoomReview’, 'FoodReview','LocationReview’,'AmenitieReview’,'ValueForMoneyReview'], axis = 1)
Finalresult['MaxScoreAspect'] = Finalresult[['StaffScore', 'RoomScore’, 'FoodScore', 'LocationScore', 'AmenitiesScore', 'ValueForMoneyScore']].idx

Finalresult.head()

#save reviews and similarity score in respective aspect files
reviewstaffdf = Finalresult[Finalresult['MaxScoreAspect’'] == 'StaffScore']['Review']
np.savetxt(r'C:\Data Analytics\RIC\ResearchProject\reviews_for_staff.txt', reviewstaffdf.values, fmt="%s')

reviewroomdf = Finalresult[Finalresult['MaxScoreAspect"’
np.savetxt(r'C:\Data Analytics\RIC\ResearchProject\revi

'RoomScore "]['Review']
for_room.txt", reviewroomdf.values, fmt='%s'

reviewfooddf = Finalresult[Finalresult['MaxScoreAspect'] == 'FoodScore']['Review’]
np.savetxt(r'C:\Data Analytics\RIC\ResearchProject\reviews_for_food.txt', reviewfooddf.values, fmt='%s"

reviewlocationdf sult[Finalresult['MaxScoreAspect'] == ‘LocationScore']['Review’]

Finalre
alytics\RIC\Re

np.savetxt(r'C:\Data An

reviewamenitiesdf = Finalresult[Finalresult['MaxScoreA
np.savetxt(r'C:\Data Analytics\RIC\ResearchProject\rev

reviewvalueformoneydf = Finalresult[Finalresult['MaxScoreAspect'] == 'ValueForMoneyScore']['Review’]
np.savetxt(r'C:\Data Analytics\RIC\ResearchProject\reviews_for_valueformoney.txt', reviewvalueformoneydf.values, fmt=

if (aspectstaff_file_exists and aspectroom_file_exists and aspectfood file_exists and aspectlocation_file_exists and aspectvalformoney file_exists):
print("Aspect wise files are already created")

Figure 13 — File creation for each aspect and its respective reviews based on similarity score

The snapshot of the room.txt file created is below in Figure

good nicely appoint room great location great location attend hockey game good quirkiness style

room small

good location poor

poor star bad cost valet

room bit small

good pleasant experiencd

personell help lucka extraordinary kind helpful complete goodgood beautiful room amenity occitane product
restaurant finch great food amazing bar

extremely comfortable bed pillow

wonderful conveniently locate td garden attend concert

good boxer boston fantastic great building location excellent able explore boston offer room good size ove
the boxer boston let betterbad poor room comfort room clothe old bath accesorie high price poor room comfq

10

3.5 Sentiment Analysis

The TextBlob library is used to calculate the polarity of each review file wise and following is
its code in Figure 14. Each aspect file makes use of the custom function - getPolarity() for
sentiment analysis and this is further visualized for each file. For staff as aspect sentiment
analysis visualization see Figure 14.

| #Create a function to get the polarity
def getPolarity(text):
return TextBlob(text).sentiment.polarity

def getAnalysis(score):
if score < 0@:
return 'Negative'
elif score == @:
return "Neutral”
else:
return ‘Positive’

 reviewforstaffdf = pd.read csv(’'C:\\Data Analytics\\RIC\\ResearchProject\\reviews for_staff.txt', sep="\n",header=None)
reviewforstaffdf.rename(columns = {@:'StaffReview'}, inplace = True)

reviewforstaffdf[' TextBlob_Polarity'] reviewforstaffdf['StaffReview'].apply(getPolarity)

reviewforstaffdf[TextBlob_Analysis'] reviewforstaffdf[TextBlob_Polarity’].apply(getAnalysis)

reviewforstaffdf

StaffReview TextBlob_Polarity TextBlob_Analysis

0 accommodate staff olivia excellent 1.000000 Positive

1 desk lady olivia extremely patient helpful -0.125000 Negative

2 room sleek modem 0.200000 Positive

3 clean modern upgrade bathroom amenity super ni... 0.375000 Positive

4 room large nicely furnish 0.407143 Positive
6077 room available 0.400000 Positive
6078 clean comfortable quiet 0.255556 Positive
6079 nice update pool area old 0.350000 Positive
6080 staff super nicepasse throughabsolutely terrib. .. -0.333333 Negative
6081 late -0.300000 Negative

6082 rows x 3 columns

Figure 14 _ Sentiment analysis

Sentiment Analysis for Staff Aspect

5000 -
4000 -
3000 -
2000 1
1000 1
0 4

: g g

=

Figure 15 _ Staff aspect sentiment analysis

11

The result is aggregated into one single data frame as shown in Figure 16. Also a visualization
for the aggregated results is seen in Figure 17.

Finaldf = pd.DataFrame(columns = ["Positive”,"Neutral”,"Negative"],
index = ['Staff', 'Room’, 'Food’, ‘Location’, 'Amenities’, 'Value For Money'])

Finaldf['Positive’'] = [reviewforstaffdf[reviewforstaffdf[' TextBlob_Analysis'] == 'Positive’][’'StaffReview'].count(),
reviewforroomdf[reviewforroomdf[' TextBlob_Analysis'] == 'Positive’]['RoomReview'].count(),
reviewforfooddf[reviewforfooddf['TextBlob_Analysis'] == 'Positive’]['FoodReview'].count(),
reviewforlocationdf[reviewforlocationdf['TextBlob_Analysis'] == 'Positive’]['LocationReview'].count(),

reviewforamenitiesdf[reviewforamenitiesdf[' TextBlob_Analysis'] == 'Positive’'][’'AmenitiesReview'].count(),
reviewforvalueformoneydf[reviewforvalueformoneydf[' TextBlob_Analysis'] == 'Positive’']['ValueformoneyReview'].count()]
Finaldf['Neutral'] = [reviewforstaffdf[reviewforstaffdf['TextBlob_Analysis'] == 'Neutral’]['StaffReview’'].count(),
reviewforroomdf[reviewforroomdf['TextBlob_Analysis'] == 'Neutral']['RoomReview’].count(),
reviewforfooddf[reviewforfooddf['TextBlob_Analysis'] == 'Neutral']['FoodReview'].count(),
reviewforlocationdf[reviewforlocationdf['TextBlob_Analysis'] == 'Neutral']['LocationReview'].count(),
reviewforamenitiesdf[reviewforamenitiesdf['TextBlob_Analysis'] == 'Neutral']['AmenitiesReview’'].count(),
reviewforvalueformoneydf[reviewforvalueformoneydf[TextBlob_Analysis’'] == 'Neutral’]['ValueformoneyReview'].count()]
Finaldf['Negative'] = [reviewforstaffdf[reviewforstaffdf[TextBlob_Analysis'] == 'Negative’]['StaffReview'].count(),
reviewforroomdf[reviewforroomdf['TextBlob_Analysis'] == 'Negative']['RoomReview'].count(),
reviewforfooddf[reviewforfooddf['TextBlob_Analysis'] == 'Negative'][FoodReview'].count(),
reviewforlocationdf[reviewforlocationdf['TextBlob_Analysis'] == 'Negative']['LocationReview'].count(),
reviewforamenitiesdf[reviewforamenitiesdf[' TextBlob_Analysis'] == 'Negative']['AmenitiesReview'].count(),
reviewforvalueformoneydf[reviewforvalueformoneydf[' TextBlob_Analysis'] == 'Negative']['ValueformoneyReview'].count()]

Finaldf
Positive Neutral Negative
Staff 4925 634 523
Room 9721 2490 1849
Food 1876 2225 380
Location 2403 1680 590
Amenities 1344 1485 389
Value For Money 805 909 246
Figure 16 _ Result aggregation of sentiment analysis of all aspects
Aspect Based Sentiment Analysis For Hotel Reviews
10000 = Positive
@ Neutral
B Negative
8000
6000
4000
2000
0

= °
s ; g
0n [}

4 w

Location
Amenities
Value For Money

Figure 17 _ Aspect wise Sentiment Analysis

12

